set y's points
This commit is contained in:
		| @@ -25,7 +25,9 @@ from sklearn.model_selection import train_test_split | |||||||
| import utils as utils | import utils as utils | ||||||
| from datasets.abstract_dataset import AbstractDatasetInfos, AbstractDataModule | from datasets.abstract_dataset import AbstractDatasetInfos, AbstractDataModule | ||||||
| from diffusion.distributions import DistributionNodes | from diffusion.distributions import DistributionNodes | ||||||
| # from naswot.score_networks import get_nasbench201_idx_score | from naswot.score_networks import get_nasbench201_idx_score | ||||||
|  | from naswot import nasspace | ||||||
|  | from naswot import datasets as dt | ||||||
|  |  | ||||||
| import networkx as nx | import networkx as nx | ||||||
|  |  | ||||||
| @@ -682,7 +684,7 @@ class Dataset(InMemoryDataset): | |||||||
|  |  | ||||||
|         data_list = [] |         data_list = [] | ||||||
|         # len_data = len(self.api) |         # len_data = len(self.api) | ||||||
|         len_data = 1000 |         len_data = 15625 | ||||||
|         def check_valid_graph(nodes, edges): |         def check_valid_graph(nodes, edges): | ||||||
|             if len(nodes) != edges.shape[0] or len(nodes) != edges.shape[1]: |             if len(nodes) != edges.shape[0] or len(nodes) != edges.shape[1]: | ||||||
|                 return False |                 return False | ||||||
| @@ -745,11 +747,9 @@ class Dataset(InMemoryDataset): | |||||||
|             print(f'edges size: {edges.shape}, nodes size: {len(nodes)}') |             print(f'edges size: {edges.shape}, nodes size: {len(nodes)}') | ||||||
|             return  edges,nodes |             return  edges,nodes | ||||||
|          |          | ||||||
|         def get_nasbench_201_val(idx): |  | ||||||
|             pass |  | ||||||
|  |  | ||||||
|         # def graph_to_graph_data(graph, idx): |         def graph_to_graph_data(graph, idx, train_loader, searchspace, args, device): | ||||||
|         def graph_to_graph_data(graph): |         # def graph_to_graph_data(graph): | ||||||
|             ops = graph[1] |             ops = graph[1] | ||||||
|             adj = graph[0] |             adj = graph[0] | ||||||
|             nodes = [] |             nodes = [] | ||||||
| @@ -770,12 +770,49 @@ class Dataset(InMemoryDataset): | |||||||
|             edge_index = torch.tensor(edges_list, dtype=torch.long).t() |             edge_index = torch.tensor(edges_list, dtype=torch.long).t() | ||||||
|             edge_type = torch.tensor(edge_type, dtype=torch.long) |             edge_type = torch.tensor(edge_type, dtype=torch.long) | ||||||
|             edge_attr = edge_type |             edge_attr = edge_type | ||||||
|             y = torch.tensor([0, 0], dtype=torch.float).view(1, -1) |             # y = torch.tensor([0, 0], dtype=torch.float).view(1, -1) | ||||||
|             # y = get_nasbench_201_val(idx) |             y = get_nasbench201_idx_score(idx, train_loader, searchspace, args, device) | ||||||
|  |             print(y, idx) | ||||||
|  |             if y > 1600: | ||||||
|  |                 print(f'idx={idx}, y={y}') | ||||||
|  |                 y = torch.tensor([1, 1], dtype=torch.float).view(1, -1) | ||||||
|                 data = Data(x=x, edge_index=edge_index, edge_attr=edge_attr, y=y, idx=i) |                 data = Data(x=x, edge_index=edge_index, edge_attr=edge_attr, y=y, idx=i) | ||||||
|  |             else: | ||||||
|  |                 print(f'idx={idx}, y={y}') | ||||||
|  |                 y = torch.tensor([0, 0], dtype=torch.float).view(1, -1) | ||||||
|  |                 data = Data(x=x, edge_index=edge_index, edge_attr=edge_attr, y=y, idx=i) | ||||||
|  |                 return None | ||||||
|             return data |             return data | ||||||
|         graph_list = [] |         graph_list = [] | ||||||
|  |         class Args: | ||||||
|  |             pass | ||||||
|  |         args = Args() | ||||||
|  |         args.trainval = True | ||||||
|  |         args.augtype = 'none' | ||||||
|  |         args.repeat = 1 | ||||||
|  |         args.score = 'hook_logdet' | ||||||
|  |         args.sigma = 0.05 | ||||||
|  |         args.nasspace = 'nasbench201' | ||||||
|  |         args.batch_size = 128 | ||||||
|  |         args.GPU = '0' | ||||||
|  |         args.dataset = 'cifar10' | ||||||
|  |         args.api_loc = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth' | ||||||
|  |         args.data_loc = '../cifardata/' | ||||||
|  |         args.seed = 777 | ||||||
|  |         args.init = '' | ||||||
|  |         args.save_loc = 'results' | ||||||
|  |         args.save_string = 'naswot' | ||||||
|  |         args.dropout = False | ||||||
|  |         args.maxofn = 1 | ||||||
|  |         args.n_samples = 100 | ||||||
|  |         args.n_runs = 500 | ||||||
|  |         args.stem_out_channels = 16 | ||||||
|  |         args.num_stacks = 3 | ||||||
|  |         args.num_modules_per_stack = 3 | ||||||
|  |         args.num_labels = 1 | ||||||
|  |         searchspace = nasspace.get_search_space(args) | ||||||
|  |         train_loader = dt.get_data(args.dataset, args.data_loc, args.trainval, args.batch_size, args.augtype, args.repeat, args) | ||||||
|  |         device = torch.device('cuda:2') | ||||||
|         with tqdm(total = len_data) as pbar: |         with tqdm(total = len_data) as pbar: | ||||||
|             active_nodes = set() |             active_nodes = set() | ||||||
|             file_path = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/nasbench-201-graph.json' |             file_path = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/nasbench-201-graph.json' | ||||||
| @@ -785,6 +822,7 @@ class Dataset(InMemoryDataset): | |||||||
|             flex_graph_list = [] |             flex_graph_list = [] | ||||||
|             flex_graph_path = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/flex-nasbench201-graph.json' |             flex_graph_path = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/flex-nasbench201-graph.json' | ||||||
|             for graph in graph_list: |             for graph in graph_list: | ||||||
|  |                 print(f'iterate every graph in graph_list, here is {i}') | ||||||
|                 # arch_info = self.api.query_meta_info_by_index(i) |                 # arch_info = self.api.query_meta_info_by_index(i) | ||||||
|                 # results = self.api.query_by_index(i, 'cifar100') |                 # results = self.api.query_by_index(i, 'cifar100') | ||||||
|                 arch_info = graph['arch_str'] |                 arch_info = graph['arch_str'] | ||||||
| @@ -796,8 +834,11 @@ class Dataset(InMemoryDataset): | |||||||
|                 for op in ops: |                 for op in ops: | ||||||
|                     if op not in active_nodes: |                     if op not in active_nodes: | ||||||
|                         active_nodes.add(op) |                         active_nodes.add(op) | ||||||
|                  |                 data = graph_to_graph_data((adj_matrix, ops),idx=i, train_loader=train_loader, searchspace=searchspace, args=args, device=device)  | ||||||
|                 data = graph_to_graph_data((adj_matrix, ops))  |                 i += 1 | ||||||
|  |                 if data is None: | ||||||
|  |                     pbar.update(1) | ||||||
|  |                     continue | ||||||
|                 # with open(flex_graph_path, 'a') as f: |                 # with open(flex_graph_path, 'a') as f: | ||||||
|                 #     flex_graph = { |                 #     flex_graph = { | ||||||
|                 #         'adj_matrix': adj_matrix, |                 #         'adj_matrix': adj_matrix, | ||||||
| @@ -816,18 +857,12 @@ class Dataset(InMemoryDataset): | |||||||
|                         f.write(str(data.edge_attr)) |                         f.write(str(data.edge_attr)) | ||||||
|                 data_list.append(data) |                 data_list.append(data) | ||||||
|  |  | ||||||
|                 new_adj, new_ops = generate_flex_adj_mat(ori_nodes=ori_nodes, ori_edges=ori_adj, max_nodes=12, min_nodes=9,  random_ratio=0.5) |                 # new_adj, new_ops = generate_flex_adj_mat(ori_nodes=ori_nodes, ori_edges=ori_adj, max_nodes=12, min_nodes=9,  random_ratio=0.5) | ||||||
|                 flex_graph_list.append({ |                 # flex_graph_list.append({ | ||||||
|                     'adj_matrix':new_adj.tolist(), |  | ||||||
|                     'ops': new_ops, |  | ||||||
|                 }) |  | ||||||
|                 # with open(flex_graph_path, 'w') as f: |  | ||||||
|                 #     flex_graph = { |  | ||||||
|                 #     'adj_matrix':new_adj.tolist(), |                 #     'adj_matrix':new_adj.tolist(), | ||||||
|                 #     'ops': new_ops, |                 #     'ops': new_ops, | ||||||
|                 #     } |                 # }) | ||||||
|                 #     json.dump(flex_graph, f) |                 # data_list.append(graph_to_graph_data((new_adj, new_ops))) | ||||||
|                 data_list.append(graph_to_graph_data((new_adj, new_ops))) |  | ||||||
|                 |                 | ||||||
|                 # graph_list.append({ |                 # graph_list.append({ | ||||||
|                 #     "adj_matrix": adj_matrix, |                 #     "adj_matrix": adj_matrix, | ||||||
| @@ -859,6 +894,7 @@ class Dataset(InMemoryDataset): | |||||||
|                 #         "seed": seed, |                 #         "seed": seed, | ||||||
|                 #     }for seed, result in results.items()] |                 #     }for seed, result in results.items()] | ||||||
|                 # }) |                 # }) | ||||||
|  |                 # i += 1 | ||||||
|                 pbar.update(1) |                 pbar.update(1) | ||||||
|          |          | ||||||
|         for graph in graph_list: |         for graph in graph_list: | ||||||
| @@ -872,8 +908,8 @@ class Dataset(InMemoryDataset): | |||||||
|                 graph['ops'] = ops |                 graph['ops'] = ops | ||||||
|         with open(f'nasbench-201-graph.json', 'w') as f: |         with open(f'nasbench-201-graph.json', 'w') as f: | ||||||
|             json.dump(graph_list, f) |             json.dump(graph_list, f) | ||||||
|         with open(flex_graph_path, 'w') as f: |         # with open(flex_graph_path, 'w') as f: | ||||||
|             json.dump(flex_graph_list, f) |             # json.dump(flex_graph_list, f) | ||||||
|              |              | ||||||
|         torch.save(self.collate(data_list), self.processed_paths[0]) |         torch.save(self.collate(data_list), self.processed_paths[0]) | ||||||
|  |  | ||||||
| @@ -1148,7 +1184,8 @@ class DataInfos(AbstractDatasetInfos): | |||||||
|             #         ops_type[op] = len(ops_type) |             #         ops_type[op] = len(ops_type) | ||||||
|             # len_ops.add(len(ops)) |             # len_ops.add(len(ops)) | ||||||
|             # graphs.append((adj_matrix, ops)) |             # graphs.append((adj_matrix, ops)) | ||||||
|         graphs = read_adj_ops_from_json(f'/nfs/data3/hanzhang/nasbenchDiT/graph_dit/flex-nasbench201-graph.json') |         # graphs = read_adj_ops_from_json(f'/nfs/data3/hanzhang/nasbenchDiT/graph_dit/flex-nasbench201-graph.json') | ||||||
|  |         graphs = read_adj_ops_from_json(f'/nfs/data3/hanzhang/nasbenchDiT/graph_dit/nasbench-201-graph.json') | ||||||
|  |  | ||||||
|         # check first five graphs |         # check first five graphs | ||||||
|         for i in range(5): |         for i in range(5): | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user