update_name
This commit is contained in:
		
							
								
								
									
										138
									
								
								graph_dit/metrics/abstract_metrics.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										138
									
								
								graph_dit/metrics/abstract_metrics.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,138 @@ | ||||
| import torch | ||||
| from torch import Tensor | ||||
| from torch.nn import functional as F | ||||
| from torchmetrics import Metric, MeanSquaredError | ||||
|  | ||||
|  | ||||
| class TrainAbstractMetricsDiscrete(torch.nn.Module): | ||||
|     def __init__(self): | ||||
|         super().__init__() | ||||
|  | ||||
|     def forward(self, masked_pred_X, masked_pred_E, true_X, true_E, log: bool): | ||||
|         pass | ||||
|  | ||||
|     def reset(self): | ||||
|         pass | ||||
|  | ||||
|     def log_epoch_metrics(self, current_epoch): | ||||
|         pass | ||||
|  | ||||
|  | ||||
| class TrainAbstractMetrics(torch.nn.Module): | ||||
|     def __init__(self): | ||||
|         super().__init__() | ||||
|  | ||||
|     def forward(self, masked_pred_epsX, masked_pred_epsE, pred_y, true_epsX, true_epsE, true_y, log): | ||||
|         pass | ||||
|  | ||||
|     def reset(self): | ||||
|         pass | ||||
|  | ||||
|     def log_epoch_metrics(self, current_epoch): | ||||
|         pass | ||||
|  | ||||
|  | ||||
| class SumExceptBatchMetric(Metric): | ||||
|     def __init__(self): | ||||
|         super().__init__() | ||||
|         self.add_state('total_value', default=torch.tensor(0.), dist_reduce_fx="sum") | ||||
|         self.add_state('total_samples', default=torch.tensor(0.), dist_reduce_fx="sum") | ||||
|  | ||||
|     def update(self, values) -> None: | ||||
|         self.total_value += torch.sum(values) | ||||
|         self.total_samples += values.shape[0] | ||||
|  | ||||
|     def compute(self): | ||||
|         return self.total_value / self.total_samples | ||||
|  | ||||
|  | ||||
| class SumExceptBatchMSE(MeanSquaredError): | ||||
|     def update(self, preds: Tensor, target: Tensor) -> None: | ||||
|         """Update state with predictions and targets. | ||||
|  | ||||
|         Args: | ||||
|             preds: Predictions from model | ||||
|             target: Ground truth values | ||||
|         """ | ||||
|         assert preds.shape == target.shape | ||||
|         sum_squared_error, n_obs = self._mean_squared_error_update(preds, target) | ||||
|  | ||||
|         self.sum_squared_error += sum_squared_error | ||||
|         self.total += n_obs | ||||
|  | ||||
|     def _mean_squared_error_update(self, preds: Tensor, target: Tensor): | ||||
|             """ Updates and returns variables required to compute Mean Squared Error. Checks for same shape of input | ||||
|             tensors. | ||||
|                 preds: Predicted tensor | ||||
|                 target: Ground truth tensor | ||||
|             """ | ||||
|             diff = preds - target | ||||
|             sum_squared_error = torch.sum(diff * diff) | ||||
|             n_obs = preds.shape[0] | ||||
|             return sum_squared_error, n_obs | ||||
|  | ||||
|  | ||||
| class SumExceptBatchKL(Metric): | ||||
|     def __init__(self): | ||||
|         super().__init__() | ||||
|         self.add_state('total_value', default=torch.tensor(0.), dist_reduce_fx="sum") | ||||
|         self.add_state('total_samples', default=torch.tensor(0.), dist_reduce_fx="sum") | ||||
|  | ||||
|     def update(self, p, q) -> None: | ||||
|         self.total_value += F.kl_div(q, p, reduction='sum') | ||||
|         self.total_samples += p.size(0) | ||||
|  | ||||
|     def compute(self): | ||||
|         return self.total_value / self.total_samples | ||||
|  | ||||
|  | ||||
| class CrossEntropyMetric(Metric): | ||||
|     def __init__(self): | ||||
|         super().__init__() | ||||
|         self.add_state('total_ce', default=torch.tensor(0.), dist_reduce_fx="sum") | ||||
|         self.add_state('total_samples', default=torch.tensor(0.), dist_reduce_fx="sum") | ||||
|  | ||||
|     def update(self, preds: Tensor, target: Tensor, weight=None) -> None: | ||||
|         """ Update state with predictions and targets. | ||||
|             preds: Predictions from model   (bs * n, d) or (bs * n * n, d) | ||||
|             target: Ground truth values     (bs * n, d) or (bs * n * n, d). """ | ||||
|         target = torch.argmax(target, dim=-1) | ||||
|         if weight is not None: | ||||
|             weight = weight.type_as(preds) | ||||
|             output = F.cross_entropy(preds, target, weight = weight, reduction='sum') | ||||
|         else: | ||||
|             output = F.cross_entropy(preds, target, reduction='sum') | ||||
|         self.total_ce += output | ||||
|         self.total_samples += preds.size(0) | ||||
|  | ||||
|     def compute(self): | ||||
|         return self.total_ce / self.total_samples | ||||
|  | ||||
|  | ||||
| class ProbabilityMetric(Metric): | ||||
|     def __init__(self): | ||||
|         """ This metric is used to track the marginal predicted probability of a class during training. """ | ||||
|         super().__init__() | ||||
|         self.add_state('prob', default=torch.tensor(0.), dist_reduce_fx="sum") | ||||
|         self.add_state('total', default=torch.tensor(0.), dist_reduce_fx="sum") | ||||
|  | ||||
|     def update(self, preds: Tensor) -> None: | ||||
|         self.prob += preds.sum() | ||||
|         self.total += preds.numel() | ||||
|  | ||||
|     def compute(self): | ||||
|         return self.prob / self.total | ||||
|  | ||||
|  | ||||
| class NLL(Metric): | ||||
|     def __init__(self): | ||||
|         super().__init__() | ||||
|         self.add_state('total_nll', default=torch.tensor(0.), dist_reduce_fx="sum") | ||||
|         self.add_state('total_samples', default=torch.tensor(0.), dist_reduce_fx="sum") | ||||
|  | ||||
|     def update(self, batch_nll) -> None: | ||||
|         self.total_nll += torch.sum(batch_nll) | ||||
|         self.total_samples += batch_nll.numel() | ||||
|  | ||||
|     def compute(self): | ||||
|         return self.total_nll / self.total_samples | ||||
		Reference in New Issue
	
	Block a user