update_name
This commit is contained in:
		
							
								
								
									
										201
									
								
								graph_dit/metrics/property_metric.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										201
									
								
								graph_dit/metrics/property_metric.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,201 @@ | ||||
| import math, os | ||||
| import pickle | ||||
| import os.path as op | ||||
|  | ||||
| import numpy as np | ||||
| import pandas as pd | ||||
| from joblib import dump, load | ||||
| from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor | ||||
| from sklearn.metrics import mean_absolute_error, roc_auc_score | ||||
|  | ||||
|  | ||||
| from rdkit import Chem | ||||
| from rdkit import rdBase | ||||
| from rdkit.Chem import AllChem | ||||
| from rdkit import DataStructs | ||||
| from rdkit.Chem import rdMolDescriptors | ||||
| rdBase.DisableLog('rdApp.error') | ||||
|  | ||||
| task_to_colname = { | ||||
|     'hiv_b': 'HIV_active', | ||||
|     'bace_b': 'Class', | ||||
|     'bbbp_b': 'p_np', | ||||
|     'O2': 'O2', | ||||
|     'N2': 'N2', | ||||
|     'CO2': 'CO2', | ||||
| } | ||||
|  | ||||
| tasktype_name = { | ||||
|     'hiv_b': 'classification', | ||||
|     'bace_b': 'classification', | ||||
|     'bbbp_b': 'classification', | ||||
|     'O2': 'regression', | ||||
|     'N2': 'regression', | ||||
|     'CO2': 'regression', | ||||
| } | ||||
|  | ||||
| class TaskModel(): | ||||
|     """Scores based on an ECFP classifier.""" | ||||
|     def __init__(self, model_path, task_name): | ||||
|         task_type = tasktype_name[task_name] | ||||
|         self.task_name = task_name | ||||
|         self.task_type = task_type | ||||
|         self.model_path = model_path | ||||
|         self.metric_func = roc_auc_score if 'classification' in self.task_type else mean_absolute_error | ||||
|  | ||||
|         try: | ||||
|             self.model = load(model_path) | ||||
|             print(self.task_name, ' evaluator loaded') | ||||
|         except: | ||||
|             print(self.task_name, ' evaluator not found, training new one...') | ||||
|             if 'classification' in task_type: | ||||
|                 self.model = RandomForestClassifier(random_state=0) | ||||
|             elif 'regression' in task_type: | ||||
|                 self.model = RandomForestRegressor(random_state=0) | ||||
|             perfermance = self.train() | ||||
|             dump(self.model, model_path) | ||||
|             print('Oracle peformance: ', perfermance) | ||||
|  | ||||
|     def train(self): | ||||
|         data_path = os.path.dirname(self.model_path) | ||||
|         data_path = os.path.join(os.path.dirname(self.model_path), '..', f'raw/{self.task_name}.csv.gz') | ||||
|         df = pd.read_csv(data_path) | ||||
|         col_name = task_to_colname[self.task_name] | ||||
|         y = df[col_name].to_numpy() | ||||
|         x_smiles = df['smiles'].to_numpy() | ||||
|         mask = ~np.isnan(y) | ||||
|         y = y[mask] | ||||
|  | ||||
|         if 'classification' in self.task_type: | ||||
|             y = y.astype(int) | ||||
|  | ||||
|         x_smiles = x_smiles[mask] | ||||
|         x_fps = [] | ||||
|         mask = [] | ||||
|         for i,smiles in enumerate(x_smiles): | ||||
|             mol = Chem.MolFromSmiles(smiles) | ||||
|             mask.append( int(mol is not None) ) | ||||
|             fp = TaskModel.fingerprints_from_mol(mol) if mol else np.zeros((1, 2048)) | ||||
|             x_fps.append(fp) | ||||
|         x_fps = np.concatenate(x_fps, axis=0) | ||||
|         self.model.fit(x_fps, y) | ||||
|         y_pred = self.model.predict(x_fps) | ||||
|         perf = self.metric_func(y, y_pred) | ||||
|         print(f'{self.task_name} performance: {perf}') | ||||
|         return perf | ||||
|  | ||||
|     def __call__(self, smiles_list): | ||||
|         fps = [] | ||||
|         mask = [] | ||||
|         for i,smiles in enumerate(smiles_list): | ||||
|             mol = Chem.MolFromSmiles(smiles) | ||||
|             mask.append( int(mol is not None) ) | ||||
|             fp = TaskModel.fingerprints_from_mol(mol) if mol else np.zeros((1, 2048)) | ||||
|             fps.append(fp) | ||||
|  | ||||
|         fps = np.concatenate(fps, axis=0) | ||||
|         if 'classification' in self.task_type: | ||||
|             scores = self.model.predict_proba(fps)[:, 1] | ||||
|         else: | ||||
|             scores = self.model.predict(fps) | ||||
|         scores = scores * np.array(mask) | ||||
|         return np.float32(scores) | ||||
|  | ||||
|     @classmethod | ||||
|     def fingerprints_from_mol(cls, mol):  # use ECFP4 | ||||
|         features_vec = AllChem.GetMorganFingerprintAsBitVect(mol, 2, nBits=2048) | ||||
|         features = np.zeros((1,)) | ||||
|         DataStructs.ConvertToNumpyArray(features_vec, features) | ||||
|         return features.reshape(1, -1) | ||||
|  | ||||
| ###### SAS Score ###### | ||||
| _fscores = None | ||||
|  | ||||
| def readFragmentScores(name='fpscores'): | ||||
|     import gzip | ||||
|     global _fscores | ||||
|     # generate the full path filename: | ||||
|     if name == "fpscores": | ||||
|         name = op.join(op.dirname(__file__), name) | ||||
|     data = pickle.load(gzip.open('%s.pkl.gz' % name)) | ||||
|     outDict = {} | ||||
|     for i in data: | ||||
|         for j in range(1, len(i)): | ||||
|             outDict[i[j]] = float(i[0]) | ||||
|     _fscores = outDict | ||||
|  | ||||
| def numBridgeheadsAndSpiro(mol, ri=None): | ||||
|     nSpiro = rdMolDescriptors.CalcNumSpiroAtoms(mol) | ||||
|     nBridgehead = rdMolDescriptors.CalcNumBridgeheadAtoms(mol) | ||||
|     return nBridgehead, nSpiro | ||||
|  | ||||
| def calculateSAS(smiles_list): | ||||
|     scores = [] | ||||
|     for i, smiles in enumerate(smiles_list): | ||||
|         mol = Chem.MolFromSmiles(smiles) | ||||
|         score = calculateScore(mol) | ||||
|         scores.append(score) | ||||
|     return np.float32(scores) | ||||
|  | ||||
| def calculateScore(m): | ||||
|     if _fscores is None: | ||||
|         readFragmentScores() | ||||
|  | ||||
|     # fragment score | ||||
|     fp = rdMolDescriptors.GetMorganFingerprint(m, | ||||
|                                                2)  # <- 2 is the *radius* of the circular fingerprint | ||||
|     fps = fp.GetNonzeroElements() | ||||
|     score1 = 0. | ||||
|     nf = 0 | ||||
|     for bitId, v in fps.items(): | ||||
|         nf += v | ||||
|         sfp = bitId | ||||
|         score1 += _fscores.get(sfp, -4) * v | ||||
|     score1 /= nf | ||||
|  | ||||
|     # features score | ||||
|     nAtoms = m.GetNumAtoms() | ||||
|     nChiralCenters = len(Chem.FindMolChiralCenters(m, includeUnassigned=True)) | ||||
|     ri = m.GetRingInfo() | ||||
|     nBridgeheads, nSpiro = numBridgeheadsAndSpiro(m, ri) | ||||
|     nMacrocycles = 0 | ||||
|     for x in ri.AtomRings(): | ||||
|         if len(x) > 8: | ||||
|             nMacrocycles += 1 | ||||
|  | ||||
|     sizePenalty = nAtoms**1.005 - nAtoms | ||||
|     stereoPenalty = math.log10(nChiralCenters + 1) | ||||
|     spiroPenalty = math.log10(nSpiro + 1) | ||||
|     bridgePenalty = math.log10(nBridgeheads + 1) | ||||
|     macrocyclePenalty = 0. | ||||
|     # --------------------------------------- | ||||
|     # This differs from the paper, which defines: | ||||
|     #  macrocyclePenalty = math.log10(nMacrocycles+1) | ||||
|     # This form generates better results when 2 or more macrocycles are present | ||||
|     if nMacrocycles > 0: | ||||
|         macrocyclePenalty = math.log10(2) | ||||
|  | ||||
|     score2 = 0. - sizePenalty - stereoPenalty - spiroPenalty - bridgePenalty - macrocyclePenalty | ||||
|  | ||||
|     # correction for the fingerprint density | ||||
|     # not in the original publication, added in version 1.1 | ||||
|     # to make highly symmetrical molecules easier to synthetise | ||||
|     score3 = 0. | ||||
|     if nAtoms > len(fps): | ||||
|         score3 = math.log(float(nAtoms) / len(fps)) * .5 | ||||
|  | ||||
|     sascore = score1 + score2 + score3 | ||||
|  | ||||
|     # need to transform "raw" value into scale between 1 and 10 | ||||
|     min = -4.0 | ||||
|     max = 2.5 | ||||
|     sascore = 11. - (sascore - min + 1) / (max - min) * 9. | ||||
|     # smooth the 10-end | ||||
|     if sascore > 8.: | ||||
|         sascore = 8. + math.log(sascore + 1. - 9.) | ||||
|     if sascore > 10.: | ||||
|         sascore = 10.0 | ||||
|     elif sascore < 1.: | ||||
|         sascore = 1.0 | ||||
|  | ||||
|     return sascore | ||||
		Reference in New Issue
	
	Block a user