comment some output statements
This commit is contained in:
		| @@ -87,7 +87,7 @@ class Denoiser(nn.Module): | |||||||
|     def forward(self, x, e, node_mask, y, t, unconditioned): |     def forward(self, x, e, node_mask, y, t, unconditioned): | ||||||
|          |          | ||||||
|         print("Denoiser Forward") |         print("Denoiser Forward") | ||||||
|         print(x.shape, e.shape, y.shape, t.shape, unconditioned) |         # print(x.shape, e.shape, y.shape, t.shape, unconditioned) | ||||||
|         force_drop_id = torch.zeros_like(y.sum(-1)) |         force_drop_id = torch.zeros_like(y.sum(-1)) | ||||||
|         # drop the nan values |         # drop the nan values | ||||||
|         force_drop_id[torch.isnan(y.sum(-1))] = 1 |         force_drop_id[torch.isnan(y.sum(-1))] = 1 | ||||||
| @@ -98,32 +98,32 @@ class Denoiser(nn.Module): | |||||||
|         # bs = batch size, n = number of nodes |         # bs = batch size, n = number of nodes | ||||||
|         bs, n, _ = x.size() |         bs, n, _ = x.size() | ||||||
|         x = torch.cat([x, e.reshape(bs, n, -1)], dim=-1) |         x = torch.cat([x, e.reshape(bs, n, -1)], dim=-1) | ||||||
|         print("X after concat with E") |         # print("X after concat with E") | ||||||
|         print(x.shape) |         # print(x.shape) | ||||||
|         # self.x_embedder = nn.Linear(Xdim + max_n_nodes * Edim, hidden_size, bias=False) |         # self.x_embedder = nn.Linear(Xdim + max_n_nodes * Edim, hidden_size, bias=False) | ||||||
|         x = self.x_embedder(x) |         x = self.x_embedder(x) | ||||||
|         print("X after x_embedder") |         # print("X after x_embedder") | ||||||
|         print(x.shape) |         # print(x.shape) | ||||||
|  |  | ||||||
|         # self.t_embedder = TimestepEmbedder(hidden_size) |         # self.t_embedder = TimestepEmbedder(hidden_size) | ||||||
|         c1 = self.t_embedder(t) |         c1 = self.t_embedder(t) | ||||||
|         print("C1 after t_embedder") |         # print("C1 after t_embedder") | ||||||
|         print(c1.shape) |         # print(c1.shape) | ||||||
|         for i in range(1, self.ydim): |         for i in range(1, self.ydim): | ||||||
|             if i == 1: |             if i == 1: | ||||||
|                 c2 = self.y_embedding_list[i-1](y[:, :2], self.training, force_drop_id, t) |                 c2 = self.y_embedding_list[i-1](y[:, :2], self.training, force_drop_id, t) | ||||||
|             else: |             else: | ||||||
|                 c2 = c2 + self.y_embedding_list[i-1](y[:, i:i+1], self.training, force_drop_id, t) |                 c2 = c2 + self.y_embedding_list[i-1](y[:, i:i+1], self.training, force_drop_id, t) | ||||||
|         print("C2 after y_embedding_list") |         # print("C2 after y_embedding_list") | ||||||
|         print(c2.shape) |         # print(c2.shape) | ||||||
|         print("C1 + C2") |         # print("C1 + C2") | ||||||
|         c = c1 + c2 |         c = c1 + c2 | ||||||
|         print(c.shape) |         # print(c.shape) | ||||||
|          |          | ||||||
|         for i, block in enumerate(self.encoders): |         for i, block in enumerate(self.encoders): | ||||||
|             x = block(x, c, node_mask) |             x = block(x, c, node_mask) | ||||||
|         print("X after block") |         # print("X after block") | ||||||
|         print(x.shape) |         # print(x.shape) | ||||||
|  |  | ||||||
|         # X: B * N * dx, E: B * N * N * de |         # X: B * N * dx, E: B * N * N * de | ||||||
|         X, E, y = self.out_layer(x, x_in, e_in, c, t, node_mask) |         X, E, y = self.out_layer(x, x_in, e_in, c, t, node_mask) | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user