add naswot
This commit is contained in:
		
							
								
								
									
										105
									
								
								graph_dit/naswot/models/CifarDenseNet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										105
									
								
								graph_dit/naswot/models/CifarDenseNet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,105 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import math, torch | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
| from .initialization import initialize_resnet | ||||
|  | ||||
|  | ||||
| class Bottleneck(nn.Module): | ||||
|   def __init__(self, nChannels, growthRate): | ||||
|     super(Bottleneck, self).__init__() | ||||
|     interChannels = 4*growthRate | ||||
|     self.bn1 = nn.BatchNorm2d(nChannels) | ||||
|     self.conv1 = nn.Conv2d(nChannels, interChannels, kernel_size=1, bias=False) | ||||
|     self.bn2 = nn.BatchNorm2d(interChannels) | ||||
|     self.conv2 = nn.Conv2d(interChannels, growthRate, kernel_size=3, padding=1, bias=False) | ||||
|  | ||||
|   def forward(self, x): | ||||
|     out = self.conv1(F.relu(self.bn1(x))) | ||||
|     out = self.conv2(F.relu(self.bn2(out))) | ||||
|     out = torch.cat((x, out), 1) | ||||
|     return out | ||||
|  | ||||
|  | ||||
| class SingleLayer(nn.Module): | ||||
|   def __init__(self, nChannels, growthRate): | ||||
|     super(SingleLayer, self).__init__() | ||||
|     self.bn1 = nn.BatchNorm2d(nChannels) | ||||
|     self.conv1 = nn.Conv2d(nChannels, growthRate, kernel_size=3, padding=1, bias=False) | ||||
|  | ||||
|   def forward(self, x): | ||||
|     out = self.conv1(F.relu(self.bn1(x))) | ||||
|     out = torch.cat((x, out), 1) | ||||
|     return out | ||||
|  | ||||
|  | ||||
| class Transition(nn.Module): | ||||
|   def __init__(self, nChannels, nOutChannels): | ||||
|     super(Transition, self).__init__() | ||||
|     self.bn1 = nn.BatchNorm2d(nChannels) | ||||
|     self.conv1 = nn.Conv2d(nChannels, nOutChannels, kernel_size=1, bias=False) | ||||
|  | ||||
|   def forward(self, x): | ||||
|     out = self.conv1(F.relu(self.bn1(x))) | ||||
|     out = F.avg_pool2d(out, 2) | ||||
|     return out | ||||
|  | ||||
|  | ||||
| class DenseNet(nn.Module): | ||||
|   def __init__(self, growthRate, depth, reduction, nClasses, bottleneck): | ||||
|     super(DenseNet, self).__init__() | ||||
|  | ||||
|     if bottleneck:  nDenseBlocks = int( (depth-4) / 6 ) | ||||
|     else         :  nDenseBlocks = int( (depth-4) / 3 ) | ||||
|  | ||||
|     self.message = 'CifarDenseNet : block : {:}, depth : {:}, reduction : {:}, growth-rate = {:}, class = {:}'.format('bottleneck' if bottleneck else 'basic', depth, reduction, growthRate, nClasses) | ||||
|  | ||||
|     nChannels = 2*growthRate | ||||
|     self.conv1 = nn.Conv2d(3, nChannels, kernel_size=3, padding=1, bias=False) | ||||
|  | ||||
|     self.dense1 = self._make_dense(nChannels, growthRate, nDenseBlocks, bottleneck) | ||||
|     nChannels += nDenseBlocks*growthRate | ||||
|     nOutChannels = int(math.floor(nChannels*reduction)) | ||||
|     self.trans1 = Transition(nChannels, nOutChannels) | ||||
|  | ||||
|     nChannels = nOutChannels | ||||
|     self.dense2 = self._make_dense(nChannels, growthRate, nDenseBlocks, bottleneck) | ||||
|     nChannels += nDenseBlocks*growthRate | ||||
|     nOutChannels = int(math.floor(nChannels*reduction)) | ||||
|     self.trans2 = Transition(nChannels, nOutChannels) | ||||
|  | ||||
|     nChannels = nOutChannels | ||||
|     self.dense3 = self._make_dense(nChannels, growthRate, nDenseBlocks, bottleneck) | ||||
|     nChannels += nDenseBlocks*growthRate | ||||
|  | ||||
|     self.act = nn.Sequential( | ||||
|                   nn.BatchNorm2d(nChannels), nn.ReLU(inplace=True), | ||||
|                   nn.AvgPool2d(8)) | ||||
|     self.fc  = nn.Linear(nChannels, nClasses) | ||||
|  | ||||
|     self.apply(initialize_resnet) | ||||
|  | ||||
|   def get_message(self): | ||||
|     return self.message | ||||
|  | ||||
|   def _make_dense(self, nChannels, growthRate, nDenseBlocks, bottleneck): | ||||
|     layers = [] | ||||
|     for i in range(int(nDenseBlocks)): | ||||
|       if bottleneck: | ||||
|         layers.append(Bottleneck(nChannels, growthRate)) | ||||
|       else: | ||||
|         layers.append(SingleLayer(nChannels, growthRate)) | ||||
|       nChannels += growthRate | ||||
|     return nn.Sequential(*layers) | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     out = self.conv1( inputs ) | ||||
|     out = self.trans1(self.dense1(out)) | ||||
|     out = self.trans2(self.dense2(out)) | ||||
|     out = self.dense3(out) | ||||
|     features = self.act(out) | ||||
|     features = features.view(features.size(0), -1) | ||||
|     out = self.fc(features) | ||||
|     return features, out | ||||
							
								
								
									
										157
									
								
								graph_dit/naswot/models/CifarResNet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										157
									
								
								graph_dit/naswot/models/CifarResNet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,157 @@ | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
| from .initialization import initialize_resnet | ||||
| from .SharedUtils    import additive_func | ||||
|  | ||||
|  | ||||
| class Downsample(nn.Module):   | ||||
|  | ||||
|   def __init__(self, nIn, nOut, stride): | ||||
|     super(Downsample, self).__init__()  | ||||
|     assert stride == 2 and nOut == 2*nIn, 'stride:{} IO:{},{}'.format(stride, nIn, nOut) | ||||
|     self.in_dim  = nIn | ||||
|     self.out_dim = nOut | ||||
|     self.avg  = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)    | ||||
|     self.conv = nn.Conv2d(nIn, nOut, kernel_size=1, stride=1, padding=0, bias=False) | ||||
|  | ||||
|   def forward(self, x): | ||||
|     x   = self.avg(x) | ||||
|     out = self.conv(x) | ||||
|     return out | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|    | ||||
|   def __init__(self, nIn, nOut, kernel, stride, padding, bias, relu): | ||||
|     super(ConvBNReLU, self).__init__() | ||||
|     self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, bias=bias) | ||||
|     self.bn   = nn.BatchNorm2d(nOut) | ||||
|     if relu: self.relu = nn.ReLU(inplace=True) | ||||
|     else   : self.relu = None | ||||
|     self.out_dim = nOut | ||||
|     self.num_conv = 1 | ||||
|  | ||||
|   def forward(self, x): | ||||
|     conv = self.conv( x ) | ||||
|     bn   = self.bn( conv ) | ||||
|     if self.relu: return self.relu( bn ) | ||||
|     else        : return bn | ||||
|  | ||||
|  | ||||
| class ResNetBasicblock(nn.Module): | ||||
|   expansion = 1 | ||||
|   def __init__(self, inplanes, planes, stride): | ||||
|     super(ResNetBasicblock, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     self.conv_a = ConvBNReLU(inplanes, planes, 3, stride, 1, False, True) | ||||
|     self.conv_b = ConvBNReLU(  planes, planes, 3,      1, 1, False, False) | ||||
|     if stride == 2: | ||||
|       self.downsample = Downsample(inplanes, planes, stride) | ||||
|     elif inplanes != planes: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, False) | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     self.out_dim = planes | ||||
|     self.num_conv = 2 | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|  | ||||
|     basicblock = self.conv_a(inputs) | ||||
|     basicblock = self.conv_b(basicblock) | ||||
|  | ||||
|     if self.downsample is not None: | ||||
|       residual = self.downsample(inputs) | ||||
|     else: | ||||
|       residual = inputs | ||||
|     out = additive_func(residual, basicblock) | ||||
|     return F.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
|  | ||||
| class ResNetBottleneck(nn.Module): | ||||
|   expansion = 4 | ||||
|   def __init__(self, inplanes, planes, stride): | ||||
|     super(ResNetBottleneck, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     self.conv_1x1 = ConvBNReLU(inplanes, planes, 1,      1, 0, False, True) | ||||
|     self.conv_3x3 = ConvBNReLU(  planes, planes, 3, stride, 1, False, True) | ||||
|     self.conv_1x4 = ConvBNReLU(planes, planes*self.expansion, 1, 1, 0, False, False) | ||||
|     if stride == 2: | ||||
|       self.downsample = Downsample(inplanes, planes*self.expansion, stride) | ||||
|     elif inplanes != planes*self.expansion: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, False) | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     self.out_dim = planes * self.expansion | ||||
|     self.num_conv = 3 | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|  | ||||
|     bottleneck = self.conv_1x1(inputs) | ||||
|     bottleneck = self.conv_3x3(bottleneck) | ||||
|     bottleneck = self.conv_1x4(bottleneck) | ||||
|  | ||||
|     if self.downsample is not None: | ||||
|       residual = self.downsample(inputs) | ||||
|     else: | ||||
|       residual = inputs | ||||
|     out = additive_func(residual, bottleneck) | ||||
|     return F.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
|  | ||||
| class CifarResNet(nn.Module): | ||||
|  | ||||
|   def __init__(self, block_name, depth, num_classes, zero_init_residual): | ||||
|     super(CifarResNet, self).__init__() | ||||
|  | ||||
|     #Model type specifies number of layers for CIFAR-10 and CIFAR-100 model | ||||
|     if block_name == 'ResNetBasicblock': | ||||
|       block = ResNetBasicblock | ||||
|       assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110' | ||||
|       layer_blocks = (depth - 2) // 6 | ||||
|     elif block_name == 'ResNetBottleneck': | ||||
|       block = ResNetBottleneck | ||||
|       assert (depth - 2) % 9 == 0, 'depth should be one of 164' | ||||
|       layer_blocks = (depth - 2) // 9 | ||||
|     else: | ||||
|       raise ValueError('invalid block : {:}'.format(block_name)) | ||||
|  | ||||
|     self.message     = 'CifarResNet : Block : {:}, Depth : {:}, Layers for each block : {:}'.format(block_name, depth, layer_blocks) | ||||
|     self.num_classes = num_classes | ||||
|     self.channels    = [16] | ||||
|     self.layers      = nn.ModuleList( [ ConvBNReLU(3, 16, 3, 1, 1, False, True) ] ) | ||||
|     for stage in range(3): | ||||
|       for iL in range(layer_blocks): | ||||
|         iC     = self.channels[-1] | ||||
|         planes = 16 * (2**stage) | ||||
|         stride = 2 if stage > 0 and iL == 0 else 1 | ||||
|         module = block(iC, planes, stride) | ||||
|         self.channels.append( module.out_dim ) | ||||
|         self.layers.append  ( module ) | ||||
|         self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iC, module.out_dim, stride) | ||||
|  | ||||
|     self.avgpool = nn.AvgPool2d(8) | ||||
|     self.classifier = nn.Linear(module.out_dim, num_classes) | ||||
|     assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth) | ||||
|  | ||||
|     self.apply(initialize_resnet) | ||||
|     if zero_init_residual: | ||||
|       for m in self.modules(): | ||||
|         if isinstance(m, ResNetBasicblock): | ||||
|           nn.init.constant_(m.conv_b.bn.weight, 0) | ||||
|         elif isinstance(m, ResNetBottleneck): | ||||
|           nn.init.constant_(m.conv_1x4.bn.weight, 0) | ||||
|  | ||||
|   def get_message(self): | ||||
|     return self.message | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     x = inputs | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       x = layer( x ) | ||||
|     features = self.avgpool(x) | ||||
|     features = features.view(features.size(0), -1) | ||||
|     logits   = self.classifier(features) | ||||
|     return features, logits | ||||
							
								
								
									
										94
									
								
								graph_dit/naswot/models/CifarWideResNet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										94
									
								
								graph_dit/naswot/models/CifarWideResNet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,94 @@ | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
| from .initialization import initialize_resnet | ||||
|  | ||||
|  | ||||
| class WideBasicblock(nn.Module): | ||||
|   def __init__(self, inplanes, planes, stride, dropout=False): | ||||
|     super(WideBasicblock, self).__init__() | ||||
|  | ||||
|     self.bn_a = nn.BatchNorm2d(inplanes) | ||||
|     self.conv_a = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False) | ||||
|  | ||||
|     self.bn_b = nn.BatchNorm2d(planes) | ||||
|     if dropout: | ||||
|       self.dropout = nn.Dropout2d(p=0.5, inplace=True) | ||||
|     else: | ||||
|       self.dropout = None | ||||
|     self.conv_b = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) | ||||
|  | ||||
|     if inplanes != planes: | ||||
|       self.downsample = nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, padding=0, bias=False) | ||||
|     else: | ||||
|       self.downsample = None | ||||
|  | ||||
|   def forward(self, x): | ||||
|  | ||||
|     basicblock = self.bn_a(x) | ||||
|     basicblock = F.relu(basicblock) | ||||
|     basicblock = self.conv_a(basicblock) | ||||
|  | ||||
|     basicblock = self.bn_b(basicblock) | ||||
|     basicblock = F.relu(basicblock) | ||||
|     if self.dropout is not None: | ||||
|       basicblock = self.dropout(basicblock) | ||||
|     basicblock = self.conv_b(basicblock) | ||||
|  | ||||
|     if self.downsample is not None: | ||||
|       x = self.downsample(x) | ||||
|      | ||||
|     return x + basicblock | ||||
|  | ||||
|  | ||||
| class CifarWideResNet(nn.Module): | ||||
|   """ | ||||
|   ResNet optimized for the Cifar dataset, as specified in | ||||
|   https://arxiv.org/abs/1512.03385.pdf | ||||
|   """ | ||||
|   def __init__(self, depth, widen_factor, num_classes, dropout): | ||||
|     super(CifarWideResNet, self).__init__() | ||||
|  | ||||
|     #Model type specifies number of layers for CIFAR-10 and CIFAR-100 model | ||||
|     assert (depth - 4) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110' | ||||
|     layer_blocks = (depth - 4) // 6 | ||||
|     print ('CifarPreResNet : Depth : {} , Layers for each block : {}'.format(depth, layer_blocks)) | ||||
|  | ||||
|     self.num_classes = num_classes | ||||
|     self.dropout = dropout | ||||
|     self.conv_3x3 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False) | ||||
|  | ||||
|     self.message  = 'Wide ResNet : depth={:}, widen_factor={:}, class={:}'.format(depth, widen_factor, num_classes) | ||||
|     self.inplanes = 16 | ||||
|     self.stage_1 = self._make_layer(WideBasicblock, 16*widen_factor, layer_blocks, 1) | ||||
|     self.stage_2 = self._make_layer(WideBasicblock, 32*widen_factor, layer_blocks, 2) | ||||
|     self.stage_3 = self._make_layer(WideBasicblock, 64*widen_factor, layer_blocks, 2) | ||||
|     self.lastact = nn.Sequential(nn.BatchNorm2d(64*widen_factor), nn.ReLU(inplace=True)) | ||||
|     self.avgpool = nn.AvgPool2d(8) | ||||
|     self.classifier = nn.Linear(64*widen_factor, num_classes) | ||||
|  | ||||
|     self.apply(initialize_resnet) | ||||
|  | ||||
|   def get_message(self): | ||||
|     return self.message | ||||
|  | ||||
|   def _make_layer(self, block, planes, blocks, stride): | ||||
|  | ||||
|     layers = [] | ||||
|     layers.append(block(self.inplanes, planes, stride, self.dropout)) | ||||
|     self.inplanes = planes | ||||
|     for i in range(1, blocks): | ||||
|       layers.append(block(self.inplanes, planes, 1, self.dropout)) | ||||
|  | ||||
|     return nn.Sequential(*layers) | ||||
|  | ||||
|   def forward(self, x): | ||||
|     x = self.conv_3x3(x) | ||||
|     x = self.stage_1(x) | ||||
|     x = self.stage_2(x) | ||||
|     x = self.stage_3(x) | ||||
|     x = self.lastact(x) | ||||
|     x = self.avgpool(x) | ||||
|     features = x.view(x.size(0), -1) | ||||
|     outs     = self.classifier(features) | ||||
|     return features, outs | ||||
							
								
								
									
										101
									
								
								graph_dit/naswot/models/ImageNet_MobileNetV2.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										101
									
								
								graph_dit/naswot/models/ImageNet_MobileNetV2.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,101 @@ | ||||
| # MobileNetV2: Inverted Residuals and Linear Bottlenecks, CVPR 2018 | ||||
| from torch import nn | ||||
| from .initialization import initialize_resnet | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|   def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1): | ||||
|     super(ConvBNReLU, self).__init__() | ||||
|     padding = (kernel_size - 1) // 2 | ||||
|     self.conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False) | ||||
|     self.bn   = nn.BatchNorm2d(out_planes) | ||||
|     self.relu = nn.ReLU6(inplace=True) | ||||
|    | ||||
|   def forward(self, x): | ||||
|     out = self.conv( x ) | ||||
|     out = self.bn  ( out ) | ||||
|     out = self.relu( out ) | ||||
|     return out | ||||
|  | ||||
|  | ||||
| class InvertedResidual(nn.Module): | ||||
|   def __init__(self, inp, oup, stride, expand_ratio): | ||||
|     super(InvertedResidual, self).__init__() | ||||
|     self.stride = stride | ||||
|     assert stride in [1, 2] | ||||
|  | ||||
|     hidden_dim = int(round(inp * expand_ratio)) | ||||
|     self.use_res_connect = self.stride == 1 and inp == oup | ||||
|  | ||||
|     layers = [] | ||||
|     if expand_ratio != 1: | ||||
|       # pw | ||||
|       layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1)) | ||||
|     layers.extend([ | ||||
|       # dw | ||||
|       ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim), | ||||
|       # pw-linear | ||||
|       nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), | ||||
|       nn.BatchNorm2d(oup), | ||||
|     ]) | ||||
|     self.conv = nn.Sequential(*layers) | ||||
|  | ||||
|   def forward(self, x): | ||||
|     if self.use_res_connect: | ||||
|       return x + self.conv(x) | ||||
|     else: | ||||
|       return self.conv(x) | ||||
|  | ||||
|  | ||||
| class MobileNetV2(nn.Module): | ||||
|   def __init__(self, num_classes, width_mult, input_channel, last_channel, block_name, dropout): | ||||
|     super(MobileNetV2, self).__init__() | ||||
|     if block_name == 'InvertedResidual': | ||||
|       block = InvertedResidual | ||||
|     else: | ||||
|       raise ValueError('invalid block name : {:}'.format(block_name)) | ||||
|     inverted_residual_setting = [ | ||||
|       # t, c,  n, s | ||||
|       [1, 16 , 1, 1], | ||||
|       [6, 24 , 2, 2], | ||||
|       [6, 32 , 3, 2], | ||||
|       [6, 64 , 4, 2], | ||||
|       [6, 96 , 3, 1], | ||||
|       [6, 160, 3, 2], | ||||
|       [6, 320, 1, 1], | ||||
|     ] | ||||
|  | ||||
|     # building first layer | ||||
|     input_channel = int(input_channel * width_mult) | ||||
|     self.last_channel = int(last_channel * max(1.0, width_mult)) | ||||
|     features = [ConvBNReLU(3, input_channel, stride=2)] | ||||
|     # building inverted residual blocks | ||||
|     for t, c, n, s in inverted_residual_setting: | ||||
|       output_channel = int(c * width_mult) | ||||
|       for i in range(n): | ||||
|         stride = s if i == 0 else 1 | ||||
|         features.append(block(input_channel, output_channel, stride, expand_ratio=t)) | ||||
|         input_channel = output_channel | ||||
|     # building last several layers | ||||
|     features.append(ConvBNReLU(input_channel, self.last_channel, kernel_size=1)) | ||||
|     # make it nn.Sequential | ||||
|     self.features = nn.Sequential(*features) | ||||
|  | ||||
|     # building classifier | ||||
|     self.classifier = nn.Sequential( | ||||
|       nn.Dropout(dropout), | ||||
|       nn.Linear(self.last_channel, num_classes), | ||||
|     ) | ||||
|     self.message = 'MobileNetV2 : width_mult={:}, in-C={:}, last-C={:}, block={:}, dropout={:}'.format(width_mult, input_channel, last_channel, block_name, dropout) | ||||
|  | ||||
|     # weight initialization | ||||
|     self.apply( initialize_resnet ) | ||||
|  | ||||
|   def get_message(self): | ||||
|     return self.message | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     features = self.features(inputs) | ||||
|     vectors  = features.mean([2, 3]) | ||||
|     predicts = self.classifier(vectors) | ||||
|     return features, predicts | ||||
							
								
								
									
										172
									
								
								graph_dit/naswot/models/ImageNet_ResNet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										172
									
								
								graph_dit/naswot/models/ImageNet_ResNet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,172 @@ | ||||
| # Deep Residual Learning for Image Recognition, CVPR 2016 | ||||
| import torch.nn as nn | ||||
| from .initialization import initialize_resnet | ||||
|  | ||||
| def conv3x3(in_planes, out_planes, stride=1, groups=1): | ||||
|   return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, groups=groups, bias=False) | ||||
|  | ||||
|  | ||||
| def conv1x1(in_planes, out_planes, stride=1): | ||||
|   return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) | ||||
|  | ||||
|  | ||||
| class BasicBlock(nn.Module): | ||||
|   expansion = 1 | ||||
|  | ||||
|   def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64): | ||||
|     super(BasicBlock, self).__init__() | ||||
|     if groups != 1 or base_width != 64: | ||||
|       raise ValueError('BasicBlock only supports groups=1 and base_width=64') | ||||
|     # Both self.conv1 and self.downsample layers downsample the input when stride != 1 | ||||
|     self.conv1 = conv3x3(inplanes, planes, stride) | ||||
|     self.bn1   = nn.BatchNorm2d(planes) | ||||
|     self.relu  = nn.ReLU(inplace=True) | ||||
|     self.conv2 = conv3x3(planes, planes) | ||||
|     self.bn2   = nn.BatchNorm2d(planes) | ||||
|     self.downsample = downsample | ||||
|     self.stride = stride | ||||
|  | ||||
|   def forward(self, x): | ||||
|     identity = x | ||||
|  | ||||
|     out = self.conv1(x) | ||||
|     out = self.bn1(out) | ||||
|     out = self.relu(out) | ||||
|  | ||||
|     out = self.conv2(out) | ||||
|     out = self.bn2(out) | ||||
|  | ||||
|     if self.downsample is not None: | ||||
|       identity = self.downsample(x) | ||||
|  | ||||
|     out += identity | ||||
|     out = self.relu(out) | ||||
|  | ||||
|     return out | ||||
|  | ||||
|  | ||||
| class Bottleneck(nn.Module): | ||||
|   expansion = 4 | ||||
|  | ||||
|   def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64): | ||||
|     super(Bottleneck, self).__init__() | ||||
|     width = int(planes * (base_width / 64.)) * groups | ||||
|     # Both self.conv2 and self.downsample layers downsample the input when stride != 1 | ||||
|     self.conv1 = conv1x1(inplanes, width) | ||||
|     self.bn1   = nn.BatchNorm2d(width) | ||||
|     self.conv2 = conv3x3(width, width, stride, groups) | ||||
|     self.bn2   = nn.BatchNorm2d(width) | ||||
|     self.conv3 = conv1x1(width, planes * self.expansion) | ||||
|     self.bn3   = nn.BatchNorm2d(planes * self.expansion) | ||||
|     self.relu  = nn.ReLU(inplace=True) | ||||
|     self.downsample = downsample | ||||
|     self.stride = stride | ||||
|  | ||||
|   def forward(self, x): | ||||
|     identity = x | ||||
|  | ||||
|     out = self.conv1(x) | ||||
|     out = self.bn1(out) | ||||
|     out = self.relu(out) | ||||
|  | ||||
|     out = self.conv2(out) | ||||
|     out = self.bn2(out) | ||||
|     out = self.relu(out) | ||||
|  | ||||
|     out = self.conv3(out) | ||||
|     out = self.bn3(out) | ||||
|  | ||||
|     if self.downsample is not None: | ||||
|       identity = self.downsample(x) | ||||
|  | ||||
|     out += identity | ||||
|     out = self.relu(out) | ||||
|  | ||||
|     return out | ||||
|  | ||||
|  | ||||
| class ResNet(nn.Module): | ||||
|  | ||||
|   def __init__(self, block_name, layers, deep_stem, num_classes, zero_init_residual, groups, width_per_group): | ||||
|     super(ResNet, self).__init__() | ||||
|  | ||||
|     #planes = [int(width_per_group * groups * 2 ** i) for i in range(4)] | ||||
|     if block_name == 'BasicBlock'  : block= BasicBlock | ||||
|     elif block_name == 'Bottleneck': block= Bottleneck | ||||
|     else                           : raise ValueError('invalid block-name : {:}'.format(block_name)) | ||||
|  | ||||
|     if not deep_stem: | ||||
|       self.conv = nn.Sequential( | ||||
|                    nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False), | ||||
|                    nn.BatchNorm2d(64), nn.ReLU(inplace=True)) | ||||
|     else: | ||||
|       self.conv = nn.Sequential( | ||||
|                    nn.Conv2d(           3, 32, kernel_size=3, stride=2, padding=1, bias=False), | ||||
|                    nn.BatchNorm2d(32), nn.ReLU(inplace=True), | ||||
|                    nn.Conv2d(32, 32, kernel_size=3, stride=1, padding=1, bias=False), | ||||
|                    nn.BatchNorm2d(32), nn.ReLU(inplace=True), | ||||
|                    nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1, bias=False), | ||||
|                    nn.BatchNorm2d(64), nn.ReLU(inplace=True)) | ||||
|     self.inplanes = 64 | ||||
|     self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | ||||
|     self.layer1 = self._make_layer(block, 64 , layers[0], stride=1, groups=groups, base_width=width_per_group) | ||||
|     self.layer2 = self._make_layer(block, 128, layers[1], stride=2, groups=groups, base_width=width_per_group) | ||||
|     self.layer3 = self._make_layer(block, 256, layers[2], stride=2, groups=groups, base_width=width_per_group) | ||||
|     self.layer4 = self._make_layer(block, 512, layers[3], stride=2, groups=groups, base_width=width_per_group) | ||||
|     self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) | ||||
|     self.fc      = nn.Linear(512 * block.expansion, num_classes) | ||||
|     self.message = 'block = {:}, layers = {:}, deep_stem = {:}, num_classes = {:}'.format(block, layers, deep_stem, num_classes) | ||||
|  | ||||
|     self.apply( initialize_resnet ) | ||||
|  | ||||
|     # Zero-initialize the last BN in each residual branch, | ||||
|     # so that the residual branch starts with zeros, and each residual block behaves like an identity. | ||||
|     # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 | ||||
|     if zero_init_residual: | ||||
|       for m in self.modules(): | ||||
|         if isinstance(m, Bottleneck): | ||||
|           nn.init.constant_(m.bn3.weight, 0) | ||||
|         elif isinstance(m, BasicBlock): | ||||
|           nn.init.constant_(m.bn2.weight, 0) | ||||
|  | ||||
|   def _make_layer(self, block, planes, blocks, stride, groups, base_width): | ||||
|     downsample = None | ||||
|     if stride != 1 or self.inplanes != planes * block.expansion: | ||||
|       if stride == 2: | ||||
|         downsample = nn.Sequential( | ||||
|           nn.AvgPool2d(kernel_size=2, stride=2, padding=0), | ||||
|           conv1x1(self.inplanes, planes * block.expansion, 1), | ||||
|           nn.BatchNorm2d(planes * block.expansion), | ||||
|         ) | ||||
|       elif stride == 1: | ||||
|         downsample = nn.Sequential( | ||||
|           conv1x1(self.inplanes, planes * block.expansion, stride), | ||||
|           nn.BatchNorm2d(planes * block.expansion), | ||||
|         ) | ||||
|       else: raise ValueError('invalid stride [{:}] for downsample'.format(stride)) | ||||
|  | ||||
|     layers = [] | ||||
|     layers.append(block(self.inplanes, planes, stride, downsample, groups, base_width)) | ||||
|     self.inplanes = planes * block.expansion | ||||
|     for _ in range(1, blocks): | ||||
|       layers.append(block(self.inplanes, planes, 1, None, groups, base_width)) | ||||
|  | ||||
|     return nn.Sequential(*layers) | ||||
|  | ||||
|   def get_message(self): | ||||
|     return self.message | ||||
|  | ||||
|   def forward(self, x): | ||||
|     x = self.conv(x) | ||||
|     x = self.maxpool(x) | ||||
|  | ||||
|     x = self.layer1(x) | ||||
|     x = self.layer2(x) | ||||
|     x = self.layer3(x) | ||||
|     x = self.layer4(x) | ||||
|  | ||||
|     features = self.avgpool(x) | ||||
|     features = features.view(features.size(0), -1) | ||||
|     logits   = self.fc(features) | ||||
|  | ||||
|     return features, logits | ||||
							
								
								
									
										34
									
								
								graph_dit/naswot/models/SharedUtils.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										34
									
								
								graph_dit/naswot/models/SharedUtils.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,34 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ##################################################### | ||||
| import torch | ||||
| import torch.nn as nn | ||||
|  | ||||
|  | ||||
| def additive_func(A, B): | ||||
|   assert A.dim() == B.dim() and A.size(0) == B.size(0), '{:} vs {:}'.format(A.size(), B.size()) | ||||
|   C = min(A.size(1), B.size(1)) | ||||
|   if A.size(1) == B.size(1): | ||||
|     return A + B | ||||
|   elif A.size(1) < B.size(1): | ||||
|     out = B.clone() | ||||
|     out[:,:C] += A | ||||
|     return out | ||||
|   else: | ||||
|     out = A.clone() | ||||
|     out[:,:C] += B | ||||
|     return out | ||||
|  | ||||
|  | ||||
| def change_key(key, value): | ||||
|   def func(m): | ||||
|     if hasattr(m, key): | ||||
|       setattr(m, key, value) | ||||
|   return func | ||||
|  | ||||
|  | ||||
| def parse_channel_info(xstring): | ||||
|   blocks = xstring.split(' ') | ||||
|   blocks = [x.split('-') for x in blocks] | ||||
|   blocks = [[int(_) for _ in x] for x in blocks] | ||||
|   return blocks | ||||
							
								
								
									
										185
									
								
								graph_dit/naswot/models/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										185
									
								
								graph_dit/naswot/models/__init__.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,185 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| from os import path as osp | ||||
| from typing import List, Text | ||||
| import torch | ||||
|  | ||||
| __all__ = ['change_key', 'get_cell_based_tiny_net', 'get_search_spaces', 'get_cifar_models', 'get_imagenet_models', \ | ||||
|            'obtain_model', 'obtain_search_model', 'load_net_from_checkpoint', \ | ||||
|            'CellStructure', 'CellArchitectures' | ||||
|            ] | ||||
|  | ||||
| # useful modules | ||||
| from config_utils import dict2config | ||||
| from .SharedUtils import change_key | ||||
| from .cell_searchs import CellStructure, CellArchitectures | ||||
|  | ||||
|  | ||||
| # Cell-based NAS Models | ||||
| def get_cell_based_tiny_net(config): | ||||
|   if isinstance(config, dict): config = dict2config(config, None) # to support the argument being a dict | ||||
|   super_type = getattr(config, 'super_type', 'basic') | ||||
|   group_names = ['DARTS-V1', 'DARTS-V2', 'GDAS', 'SETN', 'ENAS', 'RANDOM'] | ||||
|   if super_type == 'basic' and config.name in group_names: | ||||
|     from .cell_searchs import nas201_super_nets as nas_super_nets | ||||
|     try: | ||||
|       return nas_super_nets[config.name](config.C, config.N, config.max_nodes, config.num_classes, config.space, config.affine, config.track_running_stats) | ||||
|     except: | ||||
|       return nas_super_nets[config.name](config.C, config.N, config.max_nodes, config.num_classes, config.space) | ||||
|   elif super_type == 'nasnet-super': | ||||
|     from .cell_searchs import nasnet_super_nets as nas_super_nets | ||||
|     return nas_super_nets[config.name](config.C, config.N, config.steps, config.multiplier, \ | ||||
|                     config.stem_multiplier, config.num_classes, config.space, config.affine, config.track_running_stats) | ||||
|   elif config.name == 'infer.tiny': | ||||
|     from .cell_infers import TinyNetwork | ||||
|     if hasattr(config, 'genotype'): | ||||
|       genotype = config.genotype | ||||
|     elif hasattr(config, 'arch_str'): | ||||
|       genotype = CellStructure.str2structure(config.arch_str) | ||||
|     else: raise ValueError('Can not find genotype from this config : {:}'.format(config)) | ||||
|     return TinyNetwork(config.C, config.N, genotype, config.num_classes) | ||||
|   elif config.name == 'infer.shape.tiny': | ||||
|     from .shape_infers import DynamicShapeTinyNet | ||||
|     if isinstance(config.channels, str): | ||||
|       channels = tuple([int(x) for x in config.channels.split(':')]) | ||||
|     else: channels = config.channels | ||||
|     genotype = CellStructure.str2structure(config.genotype) | ||||
|     return DynamicShapeTinyNet(channels, genotype, config.num_classes) | ||||
|   elif config.name == 'infer.nasnet-cifar': | ||||
|     from .cell_infers import NASNetonCIFAR | ||||
|     raise NotImplementedError | ||||
|   else: | ||||
|     raise ValueError('invalid network name : {:}'.format(config.name)) | ||||
|  | ||||
|  | ||||
| # obtain the search space, i.e., a dict mapping the operation name into a python-function for this op | ||||
| def get_search_spaces(xtype, name) -> List[Text]: | ||||
|   if xtype == 'cell': | ||||
|     from .cell_operations import SearchSpaceNames | ||||
|     assert name in SearchSpaceNames, 'invalid name [{:}] in {:}'.format(name, SearchSpaceNames.keys()) | ||||
|     return SearchSpaceNames[name] | ||||
|   else: | ||||
|     raise ValueError('invalid search-space type is {:}'.format(xtype)) | ||||
|  | ||||
|  | ||||
| def get_cifar_models(config, extra_path=None): | ||||
|   super_type = getattr(config, 'super_type', 'basic') | ||||
|   if super_type == 'basic': | ||||
|     from .CifarResNet      import CifarResNet | ||||
|     from .CifarDenseNet    import DenseNet | ||||
|     from .CifarWideResNet  import CifarWideResNet | ||||
|     if config.arch == 'resnet': | ||||
|       return CifarResNet(config.module, config.depth, config.class_num, config.zero_init_residual) | ||||
|     elif config.arch == 'densenet': | ||||
|       return DenseNet(config.growthRate, config.depth, config.reduction, config.class_num, config.bottleneck) | ||||
|     elif config.arch == 'wideresnet': | ||||
|       return CifarWideResNet(config.depth, config.wide_factor, config.class_num, config.dropout) | ||||
|     else: | ||||
|       raise ValueError('invalid module type : {:}'.format(config.arch)) | ||||
|   elif super_type.startswith('infer'): | ||||
|     from .shape_infers import InferWidthCifarResNet | ||||
|     from .shape_infers import InferDepthCifarResNet | ||||
|     from .shape_infers import InferCifarResNet | ||||
|     from .cell_infers import NASNetonCIFAR | ||||
|     assert len(super_type.split('-')) == 2, 'invalid super_type : {:}'.format(super_type) | ||||
|     infer_mode = super_type.split('-')[1] | ||||
|     if infer_mode == 'width': | ||||
|       return InferWidthCifarResNet(config.module, config.depth, config.xchannels, config.class_num, config.zero_init_residual) | ||||
|     elif infer_mode == 'depth': | ||||
|       return InferDepthCifarResNet(config.module, config.depth, config.xblocks, config.class_num, config.zero_init_residual) | ||||
|     elif infer_mode == 'shape': | ||||
|       return InferCifarResNet(config.module, config.depth, config.xblocks, config.xchannels, config.class_num, config.zero_init_residual) | ||||
|     elif infer_mode == 'nasnet.cifar': | ||||
|       genotype = config.genotype | ||||
|       if extra_path is not None:  # reload genotype by extra_path | ||||
|         if not osp.isfile(extra_path): raise ValueError('invalid extra_path : {:}'.format(extra_path)) | ||||
|         xdata = torch.load(extra_path) | ||||
|         current_epoch = xdata['epoch'] | ||||
|         genotype = xdata['genotypes'][current_epoch-1] | ||||
|       C = config.C if hasattr(config, 'C') else config.ichannel | ||||
|       N = config.N if hasattr(config, 'N') else config.layers | ||||
|       return NASNetonCIFAR(C, N, config.stem_multi, config.class_num, genotype, config.auxiliary) | ||||
|     else: | ||||
|       raise ValueError('invalid infer-mode : {:}'.format(infer_mode)) | ||||
|   else: | ||||
|     raise ValueError('invalid super-type : {:}'.format(super_type)) | ||||
|  | ||||
|  | ||||
| def get_imagenet_models(config): | ||||
|   super_type = getattr(config, 'super_type', 'basic') | ||||
|   if super_type == 'basic': | ||||
|     from .ImageNet_ResNet import ResNet | ||||
|     from .ImageNet_MobileNetV2 import MobileNetV2 | ||||
|     if config.arch == 'resnet': | ||||
|       return ResNet(config.block_name, config.layers, config.deep_stem, config.class_num, config.zero_init_residual, config.groups, config.width_per_group) | ||||
|     elif config.arch == 'mobilenet_v2': | ||||
|       return MobileNetV2(config.class_num, config.width_multi, config.input_channel, config.last_channel, 'InvertedResidual', config.dropout) | ||||
|     else: | ||||
|       raise ValueError('invalid arch : {:}'.format( config.arch )) | ||||
|   elif super_type.startswith('infer'): # NAS searched architecture | ||||
|     assert len(super_type.split('-')) == 2, 'invalid super_type : {:}'.format(super_type) | ||||
|     infer_mode = super_type.split('-')[1] | ||||
|     if infer_mode == 'shape': | ||||
|       from .shape_infers import InferImagenetResNet | ||||
|       from .shape_infers import InferMobileNetV2 | ||||
|       if config.arch == 'resnet': | ||||
|         return InferImagenetResNet(config.block_name, config.layers, config.xblocks, config.xchannels, config.deep_stem, config.class_num, config.zero_init_residual) | ||||
|       elif config.arch == "MobileNetV2": | ||||
|         return InferMobileNetV2(config.class_num, config.xchannels, config.xblocks, config.dropout) | ||||
|       else: | ||||
|         raise ValueError('invalid arch-mode : {:}'.format(config.arch)) | ||||
|     else: | ||||
|       raise ValueError('invalid infer-mode : {:}'.format(infer_mode)) | ||||
|   else: | ||||
|     raise ValueError('invalid super-type : {:}'.format(super_type)) | ||||
|  | ||||
|  | ||||
| # Try to obtain the network by config. | ||||
| def obtain_model(config, extra_path=None): | ||||
|   if config.dataset == 'cifar': | ||||
|     return get_cifar_models(config, extra_path) | ||||
|   elif config.dataset == 'imagenet': | ||||
|     return get_imagenet_models(config) | ||||
|   else: | ||||
|     raise ValueError('invalid dataset in the model config : {:}'.format(config)) | ||||
|  | ||||
|  | ||||
| def obtain_search_model(config): | ||||
|   if config.dataset == 'cifar': | ||||
|     if config.arch == 'resnet': | ||||
|       from .shape_searchs import SearchWidthCifarResNet | ||||
|       from .shape_searchs import SearchDepthCifarResNet | ||||
|       from .shape_searchs import SearchShapeCifarResNet | ||||
|       if config.search_mode == 'width': | ||||
|         return SearchWidthCifarResNet(config.module, config.depth, config.class_num) | ||||
|       elif config.search_mode == 'depth': | ||||
|         return SearchDepthCifarResNet(config.module, config.depth, config.class_num) | ||||
|       elif config.search_mode == 'shape': | ||||
|         return SearchShapeCifarResNet(config.module, config.depth, config.class_num) | ||||
|       else: raise ValueError('invalid search mode : {:}'.format(config.search_mode)) | ||||
|     elif config.arch == 'simres': | ||||
|       from .shape_searchs import SearchWidthSimResNet | ||||
|       if config.search_mode == 'width': | ||||
|         return SearchWidthSimResNet(config.depth, config.class_num) | ||||
|       else: raise ValueError('invalid search mode : {:}'.format(config.search_mode)) | ||||
|     else: | ||||
|       raise ValueError('invalid arch : {:} for dataset [{:}]'.format(config.arch, config.dataset)) | ||||
|   elif config.dataset == 'imagenet': | ||||
|     from .shape_searchs import SearchShapeImagenetResNet | ||||
|     assert config.search_mode == 'shape', 'invalid search-mode : {:}'.format( config.search_mode ) | ||||
|     if config.arch == 'resnet': | ||||
|       return SearchShapeImagenetResNet(config.block_name, config.layers, config.deep_stem, config.class_num) | ||||
|     else: | ||||
|       raise ValueError('invalid model config : {:}'.format(config)) | ||||
|   else: | ||||
|     raise ValueError('invalid dataset in the model config : {:}'.format(config)) | ||||
|  | ||||
|  | ||||
| def load_net_from_checkpoint(checkpoint): | ||||
|   assert osp.isfile(checkpoint), 'checkpoint {:} does not exist'.format(checkpoint) | ||||
|   checkpoint   = torch.load(checkpoint) | ||||
|   model_config = dict2config(checkpoint['model-config'], None) | ||||
|   model        = obtain_model(model_config) | ||||
|   model.load_state_dict(checkpoint['base-model']) | ||||
|   return model | ||||
							
								
								
									
										5
									
								
								graph_dit/naswot/models/cell_infers/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										5
									
								
								graph_dit/naswot/models/cell_infers/__init__.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,5 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ##################################################### | ||||
| from .tiny_network import TinyNetwork | ||||
| from .nasnet_cifar import NASNetonCIFAR | ||||
							
								
								
									
										120
									
								
								graph_dit/naswot/models/cell_infers/cells.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										120
									
								
								graph_dit/naswot/models/cell_infers/cells.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,120 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ##################################################### | ||||
|  | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import OPS | ||||
|  | ||||
|  | ||||
| # Cell for NAS-Bench-201 | ||||
| class InferCell(nn.Module): | ||||
|  | ||||
|   def __init__(self, genotype, C_in, C_out, stride): | ||||
|     super(InferCell, self).__init__() | ||||
|  | ||||
|     self.layers  = nn.ModuleList() | ||||
|     self.node_IN = [] | ||||
|     self.node_IX = [] | ||||
|     self.genotype = deepcopy(genotype) | ||||
|     for i in range(1, len(genotype)): | ||||
|       node_info = genotype[i-1] | ||||
|       cur_index = [] | ||||
|       cur_innod = [] | ||||
|       for (op_name, op_in) in node_info: | ||||
|         if op_in == 0: | ||||
|           layer = OPS[op_name](C_in , C_out, stride, True, True) | ||||
|         else: | ||||
|           layer = OPS[op_name](C_out, C_out,      1, True, True) | ||||
|         cur_index.append( len(self.layers) ) | ||||
|         cur_innod.append( op_in ) | ||||
|         self.layers.append( layer ) | ||||
|       self.node_IX.append( cur_index ) | ||||
|       self.node_IN.append( cur_innod ) | ||||
|     self.nodes   = len(genotype) | ||||
|     self.in_dim  = C_in | ||||
|     self.out_dim = C_out | ||||
|  | ||||
|   def extra_repr(self): | ||||
|     string = 'info :: nodes={nodes}, inC={in_dim}, outC={out_dim}'.format(**self.__dict__) | ||||
|     laystr = [] | ||||
|     for i, (node_layers, node_innods) in enumerate(zip(self.node_IX,self.node_IN)): | ||||
|       y = ['I{:}-L{:}'.format(_ii, _il) for _il, _ii in zip(node_layers, node_innods)] | ||||
|       x = '{:}<-({:})'.format(i+1, ','.join(y)) | ||||
|       laystr.append( x ) | ||||
|     return string + ', [{:}]'.format( ' | '.join(laystr) ) + ', {:}'.format(self.genotype.tostr()) | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     nodes = [inputs] | ||||
|     for i, (node_layers, node_innods) in enumerate(zip(self.node_IX,self.node_IN)): | ||||
|       node_feature = sum( self.layers[_il](nodes[_ii]) for _il, _ii in zip(node_layers, node_innods) ) | ||||
|       nodes.append( node_feature ) | ||||
|     return nodes[-1] | ||||
|  | ||||
|  | ||||
|  | ||||
| # Learning Transferable Architectures for Scalable Image Recognition, CVPR 2018 | ||||
| class NASNetInferCell(nn.Module): | ||||
|  | ||||
|   def __init__(self, genotype, C_prev_prev, C_prev, C, reduction, reduction_prev, affine, track_running_stats): | ||||
|     super(NASNetInferCell, self).__init__() | ||||
|     self.reduction = reduction | ||||
|     if reduction_prev: self.preprocess0 = OPS['skip_connect'](C_prev_prev, C, 2, affine, track_running_stats) | ||||
|     else             : self.preprocess0 = OPS['nor_conv_1x1'](C_prev_prev, C, 1, affine, track_running_stats) | ||||
|     self.preprocess1 = OPS['nor_conv_1x1'](C_prev, C, 1, affine, track_running_stats) | ||||
|  | ||||
|     if not reduction: | ||||
|       nodes, concats = genotype['normal'], genotype['normal_concat'] | ||||
|     else: | ||||
|       nodes, concats = genotype['reduce'], genotype['reduce_concat'] | ||||
|     self._multiplier = len(concats) | ||||
|     self._concats = concats | ||||
|     self._steps = len(nodes) | ||||
|     self._nodes = nodes | ||||
|     self.edges = nn.ModuleDict() | ||||
|     for i, node in enumerate(nodes): | ||||
|       for in_node in node: | ||||
|         name, j = in_node[0], in_node[1] | ||||
|         stride = 2 if reduction and j < 2 else 1 | ||||
|         node_str = '{:}<-{:}'.format(i+2, j) | ||||
|         self.edges[node_str] = OPS[name](C, C, stride, affine, track_running_stats) | ||||
|  | ||||
|   # [TODO] to support drop_prob in this function.. | ||||
|   def forward(self, s0, s1, unused_drop_prob): | ||||
|     s0 = self.preprocess0(s0) | ||||
|     s1 = self.preprocess1(s1) | ||||
|  | ||||
|     states = [s0, s1] | ||||
|     for i, node in enumerate(self._nodes): | ||||
|       clist = [] | ||||
|       for in_node in node: | ||||
|         name, j = in_node[0], in_node[1] | ||||
|         node_str = '{:}<-{:}'.format(i+2, j) | ||||
|         op = self.edges[ node_str ] | ||||
|         clist.append( op(states[j]) ) | ||||
|       states.append( sum(clist) ) | ||||
|     return torch.cat([states[x] for x in self._concats], dim=1) | ||||
|  | ||||
|  | ||||
| class AuxiliaryHeadCIFAR(nn.Module): | ||||
|  | ||||
|   def __init__(self, C, num_classes): | ||||
|     """assuming input size 8x8""" | ||||
|     super(AuxiliaryHeadCIFAR, self).__init__() | ||||
|     self.features = nn.Sequential( | ||||
|       nn.ReLU(inplace=True), | ||||
|       nn.AvgPool2d(5, stride=3, padding=0, count_include_pad=False), # image size = 2 x 2 | ||||
|       nn.Conv2d(C, 128, 1, bias=False), | ||||
|       nn.BatchNorm2d(128), | ||||
|       nn.ReLU(inplace=True), | ||||
|       nn.Conv2d(128, 768, 2, bias=False), | ||||
|       nn.BatchNorm2d(768), | ||||
|       nn.ReLU(inplace=True) | ||||
|     ) | ||||
|     self.classifier = nn.Linear(768, num_classes) | ||||
|  | ||||
|   def forward(self, x): | ||||
|     x = self.features(x) | ||||
|     x = self.classifier(x.view(x.size(0),-1)) | ||||
|     return x | ||||
							
								
								
									
										71
									
								
								graph_dit/naswot/models/cell_infers/nasnet_cifar.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										71
									
								
								graph_dit/naswot/models/cell_infers/nasnet_cifar.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,71 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ##################################################### | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from .cells import NASNetInferCell as InferCell, AuxiliaryHeadCIFAR | ||||
|  | ||||
|  | ||||
| # The macro structure is based on NASNet | ||||
| class NASNetonCIFAR(nn.Module): | ||||
|  | ||||
|   def __init__(self, C, N, stem_multiplier, num_classes, genotype, auxiliary, affine=True, track_running_stats=True): | ||||
|     super(NASNetonCIFAR, self).__init__() | ||||
|     self._C        = C | ||||
|     self._layerN   = N | ||||
|     self.stem = nn.Sequential( | ||||
|                     nn.Conv2d(3, C*stem_multiplier, kernel_size=3, padding=1, bias=False), | ||||
|                     nn.BatchNorm2d(C*stem_multiplier)) | ||||
|    | ||||
|     # config for each layer | ||||
|     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * (N-1) + [C*4 ] + [C*4  ] * (N-1) | ||||
|     layer_reductions = [False] * N + [True] + [False] * (N-1) + [True] + [False] * (N-1) | ||||
|  | ||||
|     C_prev_prev, C_prev, C_curr, reduction_prev = C*stem_multiplier, C*stem_multiplier, C, False | ||||
|     self.auxiliary_index = None | ||||
|     self.auxiliary_head  = None | ||||
|     self.cells = nn.ModuleList() | ||||
|     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): | ||||
|       cell = InferCell(genotype, C_prev_prev, C_prev, C_curr, reduction, reduction_prev, affine, track_running_stats) | ||||
|       self.cells.append( cell ) | ||||
|       C_prev_prev, C_prev, reduction_prev = C_prev, cell._multiplier*C_curr, reduction | ||||
|       if reduction and C_curr == C*4 and auxiliary: | ||||
|         self.auxiliary_head = AuxiliaryHeadCIFAR(C_prev, num_classes) | ||||
|         self.auxiliary_index = index | ||||
|     self._Layer     = len(self.cells) | ||||
|     self.lastact    = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|     self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|     self.classifier = nn.Linear(C_prev, num_classes) | ||||
|     self.drop_path_prob = -1 | ||||
|  | ||||
|   def update_drop_path(self, drop_path_prob): | ||||
|     self.drop_path_prob = drop_path_prob | ||||
|  | ||||
|   def auxiliary_param(self): | ||||
|     if self.auxiliary_head is None: return [] | ||||
|     else: return list( self.auxiliary_head.parameters() ) | ||||
|  | ||||
|   def get_message(self): | ||||
|     string = self.extra_repr() | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr()) | ||||
|     return string | ||||
|  | ||||
|   def extra_repr(self): | ||||
|     return ('{name}(C={_C}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__)) | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     stem_feature, logits_aux = self.stem(inputs), None | ||||
|     cell_results = [stem_feature, stem_feature] | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       cell_feature = cell(cell_results[-2], cell_results[-1], self.drop_path_prob) | ||||
|       cell_results.append( cell_feature ) | ||||
|       if self.auxiliary_index is not None and i == self.auxiliary_index and self.training: | ||||
|         logits_aux = self.auxiliary_head( cell_results[-1] ) | ||||
|     out = self.lastact(cell_results[-1]) | ||||
|     out = self.global_pooling( out ) | ||||
|     out = out.view(out.size(0), -1) | ||||
|     logits = self.classifier(out) | ||||
|     if logits_aux is None: return out, logits | ||||
|     else: return out, [logits, logits_aux] | ||||
							
								
								
									
										58
									
								
								graph_dit/naswot/models/cell_infers/tiny_network.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										58
									
								
								graph_dit/naswot/models/cell_infers/tiny_network.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,58 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ##################################################### | ||||
| import torch.nn as nn | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from .cells import InferCell | ||||
|  | ||||
|  | ||||
| # The macro structure for architectures in NAS-Bench-201 | ||||
| class TinyNetwork(nn.Module): | ||||
|  | ||||
|   def __init__(self, C, N, genotype, num_classes): | ||||
|     super(TinyNetwork, self).__init__() | ||||
|     self._C               = C | ||||
|     self._layerN          = N | ||||
|  | ||||
|     self.stem = nn.Sequential( | ||||
|                     nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), | ||||
|                     nn.BatchNorm2d(C)) | ||||
|    | ||||
|     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * N + [C*4 ] + [C*4  ] * N     | ||||
|     layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|  | ||||
|     C_prev = C | ||||
|     self.cells = nn.ModuleList() | ||||
|     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): | ||||
|       if reduction: | ||||
|         cell = ResNetBasicblock(C_prev, C_curr, 2, True) | ||||
|       else: | ||||
|         cell = InferCell(genotype, C_prev, C_curr, 1) | ||||
|       self.cells.append( cell ) | ||||
|       C_prev = cell.out_dim | ||||
|     self._Layer= len(self.cells) | ||||
|  | ||||
|     self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|     self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|     self.classifier = nn.Linear(C_prev, num_classes) | ||||
|  | ||||
|   def get_message(self): | ||||
|     string = self.extra_repr() | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr()) | ||||
|     return string | ||||
|  | ||||
|   def extra_repr(self): | ||||
|     return ('{name}(C={_C}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__)) | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     feature = self.stem(inputs) | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       feature = cell(feature) | ||||
|  | ||||
|     out = self.lastact(feature) | ||||
|     out = self.global_pooling( out ) | ||||
|     out = out.view(out.size(0), -1) | ||||
|     logits = self.classifier(out) | ||||
|  | ||||
|     return logits, out | ||||
							
								
								
									
										297
									
								
								graph_dit/naswot/models/cell_operations.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										297
									
								
								graph_dit/naswot/models/cell_operations.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,297 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import torch | ||||
| import torch.nn as nn | ||||
|  | ||||
| __all__ = ['OPS', 'ResNetBasicblock', 'SearchSpaceNames'] | ||||
|  | ||||
| OPS = { | ||||
|   'none'         : lambda C_in, C_out, stride, affine, track_running_stats: Zero(C_in, C_out, stride), | ||||
|   'avg_pool_3x3' : lambda C_in, C_out, stride, affine, track_running_stats: POOLING(C_in, C_out, stride, 'avg', affine, track_running_stats), | ||||
|   'max_pool_3x3' : lambda C_in, C_out, stride, affine, track_running_stats: POOLING(C_in, C_out, stride, 'max', affine, track_running_stats), | ||||
|   'nor_conv_7x7' : lambda C_in, C_out, stride, affine, track_running_stats: ReLUConvBN(C_in, C_out, (7,7), (stride,stride), (3,3), (1,1), affine, track_running_stats), | ||||
|   'nor_conv_3x3' : lambda C_in, C_out, stride, affine, track_running_stats: ReLUConvBN(C_in, C_out, (3,3), (stride,stride), (1,1), (1,1), affine, track_running_stats), | ||||
|   'nor_conv_1x1' : lambda C_in, C_out, stride, affine, track_running_stats: ReLUConvBN(C_in, C_out, (1,1), (stride,stride), (0,0), (1,1), affine, track_running_stats), | ||||
|   'dua_sepc_3x3' : lambda C_in, C_out, stride, affine, track_running_stats: DualSepConv(C_in, C_out, (3,3), (stride,stride), (1,1), (1,1), affine, track_running_stats), | ||||
|   'dua_sepc_5x5' : lambda C_in, C_out, stride, affine, track_running_stats: DualSepConv(C_in, C_out, (5,5), (stride,stride), (2,2), (1,1), affine, track_running_stats), | ||||
|   'dil_sepc_3x3' : lambda C_in, C_out, stride, affine, track_running_stats: SepConv(C_in, C_out, (3,3), (stride,stride), (2,2), (2,2), affine, track_running_stats), | ||||
|   'dil_sepc_5x5' : lambda C_in, C_out, stride, affine, track_running_stats: SepConv(C_in, C_out, (5,5), (stride,stride), (4,4), (2,2), affine, track_running_stats), | ||||
|   'skip_connect' : lambda C_in, C_out, stride, affine, track_running_stats: Identity() if stride == 1 and C_in == C_out else FactorizedReduce(C_in, C_out, stride, affine, track_running_stats), | ||||
| } | ||||
|  | ||||
| CONNECT_NAS_BENCHMARK = ['none', 'skip_connect', 'nor_conv_3x3'] | ||||
| NAS_BENCH_201         = ['none', 'skip_connect', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3'] | ||||
| DARTS_SPACE           = ['none', 'skip_connect', 'dua_sepc_3x3', 'dua_sepc_5x5', 'dil_sepc_3x3', 'dil_sepc_5x5', 'avg_pool_3x3', 'max_pool_3x3'] | ||||
|  | ||||
| SearchSpaceNames = {'connect-nas'  : CONNECT_NAS_BENCHMARK, | ||||
|                     'nas-bench-201': NAS_BENCH_201, | ||||
|                     'darts'        : DARTS_SPACE} | ||||
|  | ||||
|  | ||||
| class ReLUConvBN(nn.Module): | ||||
|  | ||||
|   def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, affine, track_running_stats=True): | ||||
|     super(ReLUConvBN, self).__init__() | ||||
|     self.op = nn.Sequential( | ||||
|       nn.ReLU(inplace=False), | ||||
|       nn.Conv2d(C_in, C_out, kernel_size, stride=stride, padding=padding, dilation=dilation, bias=False), | ||||
|       nn.BatchNorm2d(C_out, affine=affine, track_running_stats=track_running_stats) | ||||
|     ) | ||||
|  | ||||
|   def forward(self, x): | ||||
|     return self.op(x) | ||||
|  | ||||
|  | ||||
| class SepConv(nn.Module): | ||||
|      | ||||
|   def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, affine, track_running_stats=True): | ||||
|     super(SepConv, self).__init__() | ||||
|     self.op = nn.Sequential( | ||||
|       nn.ReLU(inplace=False), | ||||
|       nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=C_in, bias=False), | ||||
|       nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=False), | ||||
|       nn.BatchNorm2d(C_out, affine=affine, track_running_stats=track_running_stats), | ||||
|       ) | ||||
|  | ||||
|   def forward(self, x): | ||||
|     return self.op(x) | ||||
|  | ||||
|  | ||||
| class DualSepConv(nn.Module): | ||||
|      | ||||
|   def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, affine, track_running_stats=True): | ||||
|     super(DualSepConv, self).__init__() | ||||
|     self.op_a = SepConv(C_in, C_in , kernel_size, stride, padding, dilation, affine, track_running_stats) | ||||
|     self.op_b = SepConv(C_in, C_out, kernel_size, 1, padding, dilation, affine, track_running_stats) | ||||
|  | ||||
|   def forward(self, x): | ||||
|     x = self.op_a(x) | ||||
|     x = self.op_b(x) | ||||
|     return x | ||||
|  | ||||
|  | ||||
| class ResNetBasicblock(nn.Module): | ||||
|  | ||||
|   def __init__(self, inplanes, planes, stride, affine=True): | ||||
|     super(ResNetBasicblock, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     self.conv_a = ReLUConvBN(inplanes, planes, 3, stride, 1, 1, affine) | ||||
|     self.conv_b = ReLUConvBN(  planes, planes, 3,      1, 1, 1, affine) | ||||
|     if stride == 2: | ||||
|       self.downsample = nn.Sequential( | ||||
|                            nn.AvgPool2d(kernel_size=2, stride=2, padding=0), | ||||
|                            nn.Conv2d(inplanes, planes, kernel_size=1, stride=1, padding=0, bias=False)) | ||||
|     elif inplanes != planes: | ||||
|       self.downsample = ReLUConvBN(inplanes, planes, 1, 1, 0, 1, affine) | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     self.in_dim  = inplanes | ||||
|     self.out_dim = planes | ||||
|     self.stride  = stride | ||||
|     self.num_conv = 2 | ||||
|  | ||||
|   def extra_repr(self): | ||||
|     string = '{name}(inC={in_dim}, outC={out_dim}, stride={stride})'.format(name=self.__class__.__name__, **self.__dict__) | ||||
|     return string | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|  | ||||
|     basicblock = self.conv_a(inputs) | ||||
|     basicblock = self.conv_b(basicblock) | ||||
|  | ||||
|     if self.downsample is not None: | ||||
|       residual = self.downsample(inputs) | ||||
|     else: | ||||
|       residual = inputs | ||||
|     return residual + basicblock | ||||
|  | ||||
|  | ||||
| class POOLING(nn.Module): | ||||
|  | ||||
|   def __init__(self, C_in, C_out, stride, mode, affine=True, track_running_stats=True): | ||||
|     super(POOLING, self).__init__() | ||||
|     if C_in == C_out: | ||||
|       self.preprocess = None | ||||
|     else: | ||||
|       self.preprocess = ReLUConvBN(C_in, C_out, 1, 1, 0, 1, affine, track_running_stats) | ||||
|     if mode == 'avg'  : self.op = nn.AvgPool2d(3, stride=stride, padding=1, count_include_pad=False) | ||||
|     elif mode == 'max': self.op = nn.MaxPool2d(3, stride=stride, padding=1) | ||||
|     else              : raise ValueError('Invalid mode={:} in POOLING'.format(mode)) | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.preprocess: x = self.preprocess(inputs) | ||||
|     else              : x = inputs | ||||
|     return self.op(x) | ||||
|  | ||||
|  | ||||
| class Identity(nn.Module): | ||||
|  | ||||
|   def __init__(self): | ||||
|     super(Identity, self).__init__() | ||||
|  | ||||
|   def forward(self, x): | ||||
|     return x | ||||
|  | ||||
|  | ||||
| class Zero(nn.Module): | ||||
|  | ||||
|   def __init__(self, C_in, C_out, stride): | ||||
|     super(Zero, self).__init__() | ||||
|     self.C_in   = C_in | ||||
|     self.C_out  = C_out | ||||
|     self.stride = stride | ||||
|     self.is_zero = True | ||||
|  | ||||
|   def forward(self, x): | ||||
|     if self.C_in == self.C_out: | ||||
|       if self.stride == 1: return x.mul(0.) | ||||
|       else               : return x[:,:,::self.stride,::self.stride].mul(0.) | ||||
|     else: | ||||
|       shape = list(x.shape) | ||||
|       shape[1] = self.C_out | ||||
|       zeros = x.new_zeros(shape, dtype=x.dtype, device=x.device) | ||||
|       return zeros | ||||
|  | ||||
|   def extra_repr(self): | ||||
|     return 'C_in={C_in}, C_out={C_out}, stride={stride}'.format(**self.__dict__) | ||||
|  | ||||
|  | ||||
| class FactorizedReduce(nn.Module): | ||||
|  | ||||
|   def __init__(self, C_in, C_out, stride, affine, track_running_stats): | ||||
|     super(FactorizedReduce, self).__init__() | ||||
|     self.stride = stride | ||||
|     self.C_in   = C_in   | ||||
|     self.C_out  = C_out   | ||||
|     self.relu   = nn.ReLU(inplace=False) | ||||
|     if stride == 2: | ||||
|       #assert C_out % 2 == 0, 'C_out : {:}'.format(C_out) | ||||
|       C_outs = [C_out // 2, C_out - C_out // 2] | ||||
|       self.convs = nn.ModuleList() | ||||
|       for i in range(2): | ||||
|         self.convs.append( nn.Conv2d(C_in, C_outs[i], 1, stride=stride, padding=0, bias=False) ) | ||||
|       self.pad = nn.ConstantPad2d((0, 1, 0, 1), 0) | ||||
|     elif stride == 1: | ||||
|       self.conv = nn.Conv2d(C_in, C_out, 1, stride=stride, padding=0, bias=False) | ||||
|     else: | ||||
|       raise ValueError('Invalid stride : {:}'.format(stride)) | ||||
|     self.bn = nn.BatchNorm2d(C_out, affine=affine, track_running_stats=track_running_stats) | ||||
|  | ||||
|   def forward(self, x): | ||||
|     if self.stride == 2: | ||||
|       x = self.relu(x) | ||||
|       y = self.pad(x) | ||||
|       out = torch.cat([self.convs[0](x), self.convs[1](y[:,:,1:,1:])], dim=1) | ||||
|     else: | ||||
|       out = self.conv(x) | ||||
|     out = self.bn(out) | ||||
|     return out | ||||
|  | ||||
|   def extra_repr(self): | ||||
|     return 'C_in={C_in}, C_out={C_out}, stride={stride}'.format(**self.__dict__) | ||||
|  | ||||
|  | ||||
| # Auto-ReID: Searching for a Part-Aware ConvNet for Person Re-Identification, ICCV 2019 | ||||
| class PartAwareOp(nn.Module): | ||||
|  | ||||
|   def __init__(self, C_in, C_out, stride, part=4): | ||||
|     super().__init__() | ||||
|     self.part   = 4 | ||||
|     self.hidden = C_in // 3 | ||||
|     self.avg_pool = nn.AdaptiveAvgPool2d(1) | ||||
|     self.local_conv_list = nn.ModuleList() | ||||
|     for i in range(self.part): | ||||
|       self.local_conv_list.append( | ||||
|             nn.Sequential(nn.ReLU(), nn.Conv2d(C_in, self.hidden, 1), nn.BatchNorm2d(self.hidden, affine=True)) | ||||
|             ) | ||||
|     self.W_K = nn.Linear(self.hidden, self.hidden) | ||||
|     self.W_Q = nn.Linear(self.hidden, self.hidden) | ||||
|  | ||||
|     if stride == 2  : self.last = FactorizedReduce(C_in + self.hidden, C_out, 2) | ||||
|     elif stride == 1: self.last = FactorizedReduce(C_in + self.hidden, C_out, 1) | ||||
|     else:             raise ValueError('Invalid Stride : {:}'.format(stride)) | ||||
|  | ||||
|   def forward(self, x): | ||||
|     batch, C, H, W = x.size() | ||||
|     assert H >= self.part, 'input size too small : {:} vs {:}'.format(x.shape, self.part) | ||||
|     IHs = [0] | ||||
|     for i in range(self.part): IHs.append( min(H, int((i+1)*(float(H)/self.part))) ) | ||||
|     local_feat_list = [] | ||||
|     for i in range(self.part): | ||||
|       feature = x[:, :, IHs[i]:IHs[i+1], :] | ||||
|       xfeax   = self.avg_pool(feature) | ||||
|       xfea    = self.local_conv_list[i]( xfeax ) | ||||
|       local_feat_list.append( xfea ) | ||||
|     part_feature = torch.cat(local_feat_list, dim=2).view(batch, -1, self.part) | ||||
|     part_feature = part_feature.transpose(1,2).contiguous() | ||||
|     part_K       = self.W_K(part_feature) | ||||
|     part_Q       = self.W_Q(part_feature).transpose(1,2).contiguous() | ||||
|     weight_att   = torch.bmm(part_K, part_Q) | ||||
|     attention    = torch.softmax(weight_att, dim=2) | ||||
|     aggreateF    = torch.bmm(attention, part_feature).transpose(1,2).contiguous() | ||||
|     features = [] | ||||
|     for i in range(self.part): | ||||
|       feature = aggreateF[:, :, i:i+1].expand(batch, self.hidden, IHs[i+1]-IHs[i]) | ||||
|       feature = feature.view(batch, self.hidden, IHs[i+1]-IHs[i], 1) | ||||
|       features.append( feature ) | ||||
|     features  = torch.cat(features, dim=2).expand(batch, self.hidden, H, W) | ||||
|     final_fea = torch.cat((x,features), dim=1) | ||||
|     outputs   = self.last( final_fea ) | ||||
|     return outputs | ||||
|  | ||||
|  | ||||
| # Searching for A Robust Neural Architecture in Four GPU Hours | ||||
| class GDAS_Reduction_Cell(nn.Module): | ||||
|  | ||||
|   def __init__(self, C_prev_prev, C_prev, C, reduction_prev, multiplier, affine, track_running_stats): | ||||
|     super(GDAS_Reduction_Cell, self).__init__() | ||||
|     if reduction_prev: | ||||
|       self.preprocess0 = FactorizedReduce(C_prev_prev, C, 2, affine, track_running_stats) | ||||
|     else: | ||||
|       self.preprocess0 = ReLUConvBN(C_prev_prev, C, 1, 1, 0, 1, affine, track_running_stats) | ||||
|     self.preprocess1 = ReLUConvBN(C_prev, C, 1, 1, 0, 1, affine, track_running_stats) | ||||
|     self.multiplier  = multiplier | ||||
|  | ||||
|     self.reduction = True | ||||
|     self.ops1 = nn.ModuleList( | ||||
|                   [nn.Sequential( | ||||
|                       nn.ReLU(inplace=False), | ||||
|                       nn.Conv2d(C, C, (1, 3), stride=(1, 2), padding=(0, 1), groups=8, bias=False), | ||||
|                       nn.Conv2d(C, C, (3, 1), stride=(2, 1), padding=(1, 0), groups=8, bias=False), | ||||
|                       nn.BatchNorm2d(C, affine=True), | ||||
|                       nn.ReLU(inplace=False), | ||||
|                       nn.Conv2d(C, C, 1, stride=1, padding=0, bias=False), | ||||
|                       nn.BatchNorm2d(C, affine=True)), | ||||
|                    nn.Sequential( | ||||
|                       nn.ReLU(inplace=False), | ||||
|                       nn.Conv2d(C, C, (1, 3), stride=(1, 2), padding=(0, 1), groups=8, bias=False), | ||||
|                       nn.Conv2d(C, C, (3, 1), stride=(2, 1), padding=(1, 0), groups=8, bias=False), | ||||
|                       nn.BatchNorm2d(C, affine=True), | ||||
|                       nn.ReLU(inplace=False), | ||||
|                       nn.Conv2d(C, C, 1, stride=1, padding=0, bias=False), | ||||
|                       nn.BatchNorm2d(C, affine=True))]) | ||||
|  | ||||
|     self.ops2 = nn.ModuleList( | ||||
|                   [nn.Sequential( | ||||
|                       nn.MaxPool2d(3, stride=1, padding=1), | ||||
|                       nn.BatchNorm2d(C, affine=True)), | ||||
|                    nn.Sequential( | ||||
|                       nn.MaxPool2d(3, stride=2, padding=1), | ||||
|                       nn.BatchNorm2d(C, affine=True))]) | ||||
|  | ||||
|   def forward(self, s0, s1, drop_prob = -1): | ||||
|     s0 = self.preprocess0(s0) | ||||
|     s1 = self.preprocess1(s1) | ||||
|  | ||||
|     X0 = self.ops1[0] (s0) | ||||
|     X1 = self.ops1[1] (s1) | ||||
|     if self.training and drop_prob > 0.: | ||||
|       X0, X1 = drop_path(X0, drop_prob), drop_path(X1, drop_prob) | ||||
|  | ||||
|     #X2 = self.ops2[0] (X0+X1) | ||||
|     X2 = self.ops2[0] (s0) | ||||
|     X3 = self.ops2[1] (s1) | ||||
|     if self.training and drop_prob > 0.: | ||||
|       X2, X3 = drop_path(X2, drop_prob), drop_path(X3, drop_prob) | ||||
|     return torch.cat([X0, X1, X2, X3], dim=1) | ||||
							
								
								
									
										24
									
								
								graph_dit/naswot/models/cell_searchs/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										24
									
								
								graph_dit/naswot/models/cell_searchs/__init__.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,24 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| # The macro structure is defined in NAS-Bench-201 | ||||
| from .search_model_darts    import TinyNetworkDarts | ||||
| from .search_model_gdas     import TinyNetworkGDAS | ||||
| from .search_model_setn     import TinyNetworkSETN | ||||
| from .search_model_enas     import TinyNetworkENAS | ||||
| from .search_model_random   import TinyNetworkRANDOM | ||||
| from .genotypes             import Structure as CellStructure, architectures as CellArchitectures | ||||
| # NASNet-based macro structure | ||||
| from .search_model_gdas_nasnet import NASNetworkGDAS | ||||
| from .search_model_darts_nasnet import NASNetworkDARTS | ||||
|  | ||||
|  | ||||
| nas201_super_nets = {'DARTS-V1': TinyNetworkDarts, | ||||
|                      "DARTS-V2": TinyNetworkDarts, | ||||
|                      "GDAS": TinyNetworkGDAS, | ||||
|                      "SETN": TinyNetworkSETN, | ||||
|                      "ENAS": TinyNetworkENAS, | ||||
|                      "RANDOM": TinyNetworkRANDOM} | ||||
|  | ||||
| nasnet_super_nets = {"GDAS": NASNetworkGDAS, | ||||
|                      "DARTS": NASNetworkDARTS} | ||||
							
								
								
									
										12
									
								
								graph_dit/naswot/models/cell_searchs/_test_module.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										12
									
								
								graph_dit/naswot/models/cell_searchs/_test_module.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,12 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import torch | ||||
| from search_model_enas_utils import Controller | ||||
|  | ||||
| def main(): | ||||
|   controller = Controller(6, 4) | ||||
|   predictions = controller() | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   main() | ||||
							
								
								
									
										199
									
								
								graph_dit/naswot/models/cell_searchs/genotypes.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										199
									
								
								graph_dit/naswot/models/cell_searchs/genotypes.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,199 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| from copy import deepcopy | ||||
|  | ||||
|  | ||||
|  | ||||
| def get_combination(space, num): | ||||
|   combs = [] | ||||
|   for i in range(num): | ||||
|     if i == 0: | ||||
|       for func in space: | ||||
|         combs.append( [(func, i)] ) | ||||
|     else: | ||||
|       new_combs = [] | ||||
|       for string in combs: | ||||
|         for func in space: | ||||
|           xstring = string + [(func, i)] | ||||
|           new_combs.append( xstring ) | ||||
|       combs = new_combs | ||||
|   return combs | ||||
|    | ||||
|  | ||||
|  | ||||
| class Structure: | ||||
|  | ||||
|   def __init__(self, genotype): | ||||
|     assert isinstance(genotype, list) or isinstance(genotype, tuple), 'invalid class of genotype : {:}'.format(type(genotype)) | ||||
|     self.node_num = len(genotype) + 1 | ||||
|     self.nodes    = [] | ||||
|     self.node_N   = [] | ||||
|     for idx, node_info in enumerate(genotype): | ||||
|       assert isinstance(node_info, list) or isinstance(node_info, tuple), 'invalid class of node_info : {:}'.format(type(node_info)) | ||||
|       assert len(node_info) >= 1, 'invalid length : {:}'.format(len(node_info)) | ||||
|       for node_in in node_info: | ||||
|         assert isinstance(node_in, list) or isinstance(node_in, tuple), 'invalid class of in-node : {:}'.format(type(node_in)) | ||||
|         assert len(node_in) == 2 and node_in[1] <= idx, 'invalid in-node : {:}'.format(node_in) | ||||
|       self.node_N.append( len(node_info) ) | ||||
|       self.nodes.append( tuple(deepcopy(node_info)) ) | ||||
|  | ||||
|   def tolist(self, remove_str): | ||||
|     # convert this class to the list, if remove_str is 'none', then remove the 'none' operation. | ||||
|     # note that we re-order the input node in this function | ||||
|     # return the-genotype-list and success [if unsuccess, it is not a connectivity] | ||||
|     genotypes = [] | ||||
|     for node_info in self.nodes: | ||||
|       node_info = list( node_info ) | ||||
|       node_info = sorted(node_info, key=lambda x: (x[1], x[0])) | ||||
|       node_info = tuple(filter(lambda x: x[0] != remove_str, node_info)) | ||||
|       if len(node_info) == 0: return None, False | ||||
|       genotypes.append( node_info ) | ||||
|     return genotypes, True | ||||
|  | ||||
|   def node(self, index): | ||||
|     assert index > 0 and index <= len(self), 'invalid index={:} < {:}'.format(index, len(self)) | ||||
|     return self.nodes[index] | ||||
|  | ||||
|   def tostr(self): | ||||
|     strings = [] | ||||
|     for node_info in self.nodes: | ||||
|       string = '|'.join([x[0]+'~{:}'.format(x[1]) for x in node_info]) | ||||
|       string = '|{:}|'.format(string) | ||||
|       strings.append( string ) | ||||
|     return '+'.join(strings) | ||||
|  | ||||
|   def check_valid(self): | ||||
|     nodes = {0: True} | ||||
|     for i, node_info in enumerate(self.nodes): | ||||
|       sums = [] | ||||
|       for op, xin in node_info: | ||||
|         if op == 'none' or nodes[xin] is False: x = False | ||||
|         else: x = True | ||||
|         sums.append( x ) | ||||
|       nodes[i+1] = sum(sums) > 0 | ||||
|     return nodes[len(self.nodes)] | ||||
|  | ||||
|   def to_unique_str(self, consider_zero=False): | ||||
|     # this is used to identify the isomorphic cell, which rerquires the prior knowledge of operation | ||||
|     # two operations are special, i.e., none and skip_connect | ||||
|     nodes = {0: '0'} | ||||
|     for i_node, node_info in enumerate(self.nodes): | ||||
|       cur_node = [] | ||||
|       for op, xin in node_info: | ||||
|         if consider_zero is None: | ||||
|           x = '('+nodes[xin]+')' + '@{:}'.format(op) | ||||
|         elif consider_zero: | ||||
|           if op == 'none' or nodes[xin] == '#': x = '#' # zero | ||||
|           elif op == 'skip_connect': x = nodes[xin] | ||||
|           else: x = '('+nodes[xin]+')' + '@{:}'.format(op) | ||||
|         else: | ||||
|           if op == 'skip_connect': x = nodes[xin] | ||||
|           else: x = '('+nodes[xin]+')' + '@{:}'.format(op) | ||||
|         cur_node.append(x) | ||||
|       nodes[i_node+1] = '+'.join( sorted(cur_node) ) | ||||
|     return nodes[ len(self.nodes) ] | ||||
|  | ||||
|   def check_valid_op(self, op_names): | ||||
|     for node_info in self.nodes: | ||||
|       for inode_edge in node_info: | ||||
|         #assert inode_edge[0] in op_names, 'invalid op-name : {:}'.format(inode_edge[0]) | ||||
|         if inode_edge[0] not in op_names: return False | ||||
|     return True | ||||
|  | ||||
|   def __repr__(self): | ||||
|     return ('{name}({node_num} nodes with {node_info})'.format(name=self.__class__.__name__, node_info=self.tostr(), **self.__dict__)) | ||||
|  | ||||
|   def __len__(self): | ||||
|     return len(self.nodes) + 1 | ||||
|  | ||||
|   def __getitem__(self, index): | ||||
|     return self.nodes[index] | ||||
|  | ||||
|   @staticmethod | ||||
|   def str2structure(xstr): | ||||
|     assert isinstance(xstr, str), 'must take string (not {:}) as input'.format(type(xstr)) | ||||
|     nodestrs = xstr.split('+') | ||||
|     genotypes = [] | ||||
|     for i, node_str in enumerate(nodestrs): | ||||
|       inputs = list(filter(lambda x: x != '', node_str.split('|'))) | ||||
|       for xinput in inputs: assert len(xinput.split('~')) == 2, 'invalid input length : {:}'.format(xinput) | ||||
|       inputs = ( xi.split('~') for xi in inputs ) | ||||
|       input_infos = tuple( (op, int(IDX)) for (op, IDX) in inputs) | ||||
|       genotypes.append( input_infos ) | ||||
|     return Structure( genotypes ) | ||||
|  | ||||
|   @staticmethod | ||||
|   def str2fullstructure(xstr, default_name='none'): | ||||
|     assert isinstance(xstr, str), 'must take string (not {:}) as input'.format(type(xstr)) | ||||
|     nodestrs = xstr.split('+') | ||||
|     genotypes = [] | ||||
|     for i, node_str in enumerate(nodestrs): | ||||
|       inputs = list(filter(lambda x: x != '', node_str.split('|'))) | ||||
|       for xinput in inputs: assert len(xinput.split('~')) == 2, 'invalid input length : {:}'.format(xinput) | ||||
|       inputs = ( xi.split('~') for xi in inputs ) | ||||
|       input_infos = list( (op, int(IDX)) for (op, IDX) in inputs) | ||||
|       all_in_nodes= list(x[1] for x in input_infos) | ||||
|       for j in range(i): | ||||
|         if j not in all_in_nodes: input_infos.append((default_name, j)) | ||||
|       node_info = sorted(input_infos, key=lambda x: (x[1], x[0])) | ||||
|       genotypes.append( tuple(node_info) ) | ||||
|     return Structure( genotypes ) | ||||
|  | ||||
|   @staticmethod | ||||
|   def gen_all(search_space, num, return_ori): | ||||
|     assert isinstance(search_space, list) or isinstance(search_space, tuple), 'invalid class of search-space : {:}'.format(type(search_space)) | ||||
|     assert num >= 2, 'There should be at least two nodes in a neural cell instead of {:}'.format(num) | ||||
|     all_archs = get_combination(search_space, 1) | ||||
|     for i, arch in enumerate(all_archs): | ||||
|       all_archs[i] = [ tuple(arch) ] | ||||
|    | ||||
|     for inode in range(2, num): | ||||
|       cur_nodes = get_combination(search_space, inode) | ||||
|       new_all_archs = [] | ||||
|       for previous_arch in all_archs: | ||||
|         for cur_node in cur_nodes: | ||||
|           new_all_archs.append( previous_arch + [tuple(cur_node)] ) | ||||
|       all_archs = new_all_archs | ||||
|     if return_ori: | ||||
|       return all_archs | ||||
|     else: | ||||
|       return [Structure(x) for x in all_archs] | ||||
|  | ||||
|  | ||||
|  | ||||
| ResNet_CODE = Structure( | ||||
|   [(('nor_conv_3x3', 0), ), # node-1  | ||||
|    (('nor_conv_3x3', 1), ), # node-2 | ||||
|    (('skip_connect', 0), ('skip_connect', 2))] # node-3 | ||||
|   ) | ||||
|  | ||||
| AllConv3x3_CODE = Structure( | ||||
|   [(('nor_conv_3x3', 0), ), # node-1  | ||||
|    (('nor_conv_3x3', 0), ('nor_conv_3x3', 1)), # node-2 | ||||
|    (('nor_conv_3x3', 0), ('nor_conv_3x3', 1), ('nor_conv_3x3', 2))] # node-3 | ||||
|   ) | ||||
|  | ||||
| AllFull_CODE = Structure( | ||||
|   [(('skip_connect', 0), ('nor_conv_1x1', 0), ('nor_conv_3x3', 0), ('avg_pool_3x3', 0)), # node-1  | ||||
|    (('skip_connect', 0), ('nor_conv_1x1', 0), ('nor_conv_3x3', 0), ('avg_pool_3x3', 0), ('skip_connect', 1), ('nor_conv_1x1', 1), ('nor_conv_3x3', 1), ('avg_pool_3x3', 1)), # node-2 | ||||
|    (('skip_connect', 0), ('nor_conv_1x1', 0), ('nor_conv_3x3', 0), ('avg_pool_3x3', 0), ('skip_connect', 1), ('nor_conv_1x1', 1), ('nor_conv_3x3', 1), ('avg_pool_3x3', 1), ('skip_connect', 2), ('nor_conv_1x1', 2), ('nor_conv_3x3', 2), ('avg_pool_3x3', 2))] # node-3 | ||||
|   ) | ||||
|  | ||||
| AllConv1x1_CODE = Structure( | ||||
|   [(('nor_conv_1x1', 0), ), # node-1  | ||||
|    (('nor_conv_1x1', 0), ('nor_conv_1x1', 1)), # node-2 | ||||
|    (('nor_conv_1x1', 0), ('nor_conv_1x1', 1), ('nor_conv_1x1', 2))] # node-3 | ||||
|   ) | ||||
|  | ||||
| AllIdentity_CODE = Structure( | ||||
|   [(('skip_connect', 0), ), # node-1  | ||||
|    (('skip_connect', 0), ('skip_connect', 1)), # node-2 | ||||
|    (('skip_connect', 0), ('skip_connect', 1), ('skip_connect', 2))] # node-3 | ||||
|   ) | ||||
|  | ||||
| architectures = {'resnet'  : ResNet_CODE, | ||||
|                  'all_c3x3': AllConv3x3_CODE, | ||||
|                  'all_c1x1': AllConv1x1_CODE, | ||||
|                  'all_idnt': AllIdentity_CODE, | ||||
|                  'all_full': AllFull_CODE} | ||||
							
								
								
									
										197
									
								
								graph_dit/naswot/models/cell_searchs/search_cells.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										197
									
								
								graph_dit/naswot/models/cell_searchs/search_cells.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,197 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import math, random, torch | ||||
| import warnings | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import OPS | ||||
|  | ||||
|  | ||||
| # This module is used for NAS-Bench-201, represents a small search space with a complete DAG | ||||
| class NAS201SearchCell(nn.Module): | ||||
|  | ||||
|   def __init__(self, C_in, C_out, stride, max_nodes, op_names, affine=False, track_running_stats=True): | ||||
|     super(NAS201SearchCell, self).__init__() | ||||
|  | ||||
|     self.op_names  = deepcopy(op_names) | ||||
|     self.edges     = nn.ModuleDict() | ||||
|     self.max_nodes = max_nodes | ||||
|     self.in_dim    = C_in | ||||
|     self.out_dim   = C_out | ||||
|     for i in range(1, max_nodes): | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         if j == 0: | ||||
|           xlists = [OPS[op_name](C_in , C_out, stride, affine, track_running_stats) for op_name in op_names] | ||||
|         else: | ||||
|           xlists = [OPS[op_name](C_in , C_out,      1, affine, track_running_stats) for op_name in op_names] | ||||
|         self.edges[ node_str ] = nn.ModuleList( xlists ) | ||||
|     self.edge_keys  = sorted(list(self.edges.keys())) | ||||
|     self.edge2index = {key:i for i, key in enumerate(self.edge_keys)} | ||||
|     self.num_edges  = len(self.edges) | ||||
|  | ||||
|   def extra_repr(self): | ||||
|     string = 'info :: {max_nodes} nodes, inC={in_dim}, outC={out_dim}'.format(**self.__dict__) | ||||
|     return string | ||||
|  | ||||
|   def forward(self, inputs, weightss): | ||||
|     nodes = [inputs] | ||||
|     for i in range(1, self.max_nodes): | ||||
|       inter_nodes = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         weights  = weightss[ self.edge2index[node_str] ] | ||||
|         inter_nodes.append( sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) ) | ||||
|       nodes.append( sum(inter_nodes) ) | ||||
|     return nodes[-1] | ||||
|  | ||||
|   # GDAS | ||||
|   def forward_gdas(self, inputs, hardwts, index): | ||||
|     nodes   = [inputs] | ||||
|     for i in range(1, self.max_nodes): | ||||
|       inter_nodes = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         weights  = hardwts[ self.edge2index[node_str] ] | ||||
|         argmaxs  = index[ self.edge2index[node_str] ].item() | ||||
|         weigsum  = sum( weights[_ie] * edge(nodes[j]) if _ie == argmaxs else weights[_ie] for _ie, edge in enumerate(self.edges[node_str]) ) | ||||
|         inter_nodes.append( weigsum ) | ||||
|       nodes.append( sum(inter_nodes) ) | ||||
|     return nodes[-1] | ||||
|  | ||||
|   # joint | ||||
|   def forward_joint(self, inputs, weightss): | ||||
|     nodes = [inputs] | ||||
|     for i in range(1, self.max_nodes): | ||||
|       inter_nodes = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         weights  = weightss[ self.edge2index[node_str] ] | ||||
|         #aggregation = sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) / weights.numel() | ||||
|         aggregation = sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) | ||||
|         inter_nodes.append( aggregation ) | ||||
|       nodes.append( sum(inter_nodes) ) | ||||
|     return nodes[-1] | ||||
|  | ||||
|   # uniform random sampling per iteration, SETN | ||||
|   def forward_urs(self, inputs): | ||||
|     nodes = [inputs] | ||||
|     for i in range(1, self.max_nodes): | ||||
|       while True: # to avoid select zero for all ops | ||||
|         sops, has_non_zero = [], False | ||||
|         for j in range(i): | ||||
|           node_str   = '{:}<-{:}'.format(i, j) | ||||
|           candidates = self.edges[node_str] | ||||
|           select_op  = random.choice(candidates) | ||||
|           sops.append( select_op ) | ||||
|           if not hasattr(select_op, 'is_zero') or select_op.is_zero is False: has_non_zero=True | ||||
|         if has_non_zero: break | ||||
|       inter_nodes = [] | ||||
|       for j, select_op in enumerate(sops): | ||||
|         inter_nodes.append( select_op(nodes[j]) ) | ||||
|       nodes.append( sum(inter_nodes) ) | ||||
|     return nodes[-1] | ||||
|  | ||||
|   # select the argmax | ||||
|   def forward_select(self, inputs, weightss): | ||||
|     nodes = [inputs] | ||||
|     for i in range(1, self.max_nodes): | ||||
|       inter_nodes = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         weights  = weightss[ self.edge2index[node_str] ] | ||||
|         inter_nodes.append( self.edges[node_str][ weights.argmax().item() ]( nodes[j] ) ) | ||||
|         #inter_nodes.append( sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) ) | ||||
|       nodes.append( sum(inter_nodes) ) | ||||
|     return nodes[-1] | ||||
|  | ||||
|   # forward with a specific structure | ||||
|   def forward_dynamic(self, inputs, structure): | ||||
|     nodes = [inputs] | ||||
|     for i in range(1, self.max_nodes): | ||||
|       cur_op_node = structure.nodes[i-1] | ||||
|       inter_nodes = [] | ||||
|       for op_name, j in cur_op_node: | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         op_index = self.op_names.index( op_name ) | ||||
|         inter_nodes.append( self.edges[node_str][op_index]( nodes[j] ) ) | ||||
|       nodes.append( sum(inter_nodes) ) | ||||
|     return nodes[-1] | ||||
|  | ||||
|  | ||||
|  | ||||
| class MixedOp(nn.Module): | ||||
|  | ||||
|   def __init__(self, space, C, stride, affine, track_running_stats): | ||||
|     super(MixedOp, self).__init__() | ||||
|     self._ops = nn.ModuleList() | ||||
|     for primitive in space: | ||||
|       op = OPS[primitive](C, C, stride, affine, track_running_stats) | ||||
|       self._ops.append(op) | ||||
|  | ||||
|   def forward_gdas(self, x, weights, index): | ||||
|     return self._ops[index](x) * weights[index] | ||||
|  | ||||
|   def forward_darts(self, x, weights): | ||||
|     return sum(w * op(x) for w, op in zip(weights, self._ops)) | ||||
|  | ||||
|  | ||||
| # Learning Transferable Architectures for Scalable Image Recognition, CVPR 2018 | ||||
| class NASNetSearchCell(nn.Module): | ||||
|  | ||||
|   def __init__(self, space, steps, multiplier, C_prev_prev, C_prev, C, reduction, reduction_prev, affine, track_running_stats): | ||||
|     super(NASNetSearchCell, self).__init__() | ||||
|     self.reduction = reduction | ||||
|     self.op_names  = deepcopy(space) | ||||
|     if reduction_prev: self.preprocess0 = OPS['skip_connect'](C_prev_prev, C, 2, affine, track_running_stats) | ||||
|     else             : self.preprocess0 = OPS['nor_conv_1x1'](C_prev_prev, C, 1, affine, track_running_stats) | ||||
|     self.preprocess1 = OPS['nor_conv_1x1'](C_prev, C, 1, affine, track_running_stats) | ||||
|     self._steps = steps | ||||
|     self._multiplier = multiplier | ||||
|  | ||||
|     self._ops = nn.ModuleList() | ||||
|     self.edges     = nn.ModuleDict() | ||||
|     for i in range(self._steps): | ||||
|       for j in range(2+i): | ||||
|         node_str = '{:}<-{:}'.format(i, j)  # indicate the edge from node-(j) to node-(i+2) | ||||
|         stride = 2 if reduction and j < 2 else 1 | ||||
|         op = MixedOp(space, C, stride, affine, track_running_stats) | ||||
|         self.edges[ node_str ] = op | ||||
|     self.edge_keys  = sorted(list(self.edges.keys())) | ||||
|     self.edge2index = {key:i for i, key in enumerate(self.edge_keys)} | ||||
|     self.num_edges  = len(self.edges) | ||||
|  | ||||
|   def forward_gdas(self, s0, s1, weightss, indexs): | ||||
|     s0 = self.preprocess0(s0) | ||||
|     s1 = self.preprocess1(s1) | ||||
|  | ||||
|     states = [s0, s1] | ||||
|     for i in range(self._steps): | ||||
|       clist = [] | ||||
|       for j, h in enumerate(states): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         op = self.edges[ node_str ] | ||||
|         weights = weightss[ self.edge2index[node_str] ] | ||||
|         index   = indexs[ self.edge2index[node_str] ].item() | ||||
|         clist.append( op.forward_gdas(h, weights, index) ) | ||||
|       states.append( sum(clist) ) | ||||
|  | ||||
|     return torch.cat(states[-self._multiplier:], dim=1) | ||||
|  | ||||
|   def forward_darts(self, s0, s1, weightss): | ||||
|     s0 = self.preprocess0(s0) | ||||
|     s1 = self.preprocess1(s1) | ||||
|  | ||||
|     states = [s0, s1] | ||||
|     for i in range(self._steps): | ||||
|       clist = [] | ||||
|       for j, h in enumerate(states): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         op = self.edges[ node_str ] | ||||
|         weights = weightss[ self.edge2index[node_str] ] | ||||
|         clist.append( op.forward_darts(h, weights) ) | ||||
|       states.append( sum(clist) ) | ||||
|  | ||||
|     return torch.cat(states[-self._multiplier:], dim=1) | ||||
							
								
								
									
										97
									
								
								graph_dit/naswot/models/cell_searchs/search_model_darts.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										97
									
								
								graph_dit/naswot/models/cell_searchs/search_model_darts.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,97 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ######################################################## | ||||
| # DARTS: Differentiable Architecture Search, ICLR 2019 # | ||||
| ######################################################## | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from .search_cells     import NAS201SearchCell as SearchCell | ||||
| from .genotypes        import Structure | ||||
|  | ||||
|  | ||||
| class TinyNetworkDarts(nn.Module): | ||||
|  | ||||
|   def __init__(self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats): | ||||
|     super(TinyNetworkDarts, self).__init__() | ||||
|     self._C        = C | ||||
|     self._layerN   = N | ||||
|     self.max_nodes = max_nodes | ||||
|     self.stem = nn.Sequential( | ||||
|                     nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), | ||||
|                     nn.BatchNorm2d(C)) | ||||
|    | ||||
|     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * N + [C*4 ] + [C*4  ] * N     | ||||
|     layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|  | ||||
|     C_prev, num_edge, edge2index = C, None, None | ||||
|     self.cells = nn.ModuleList() | ||||
|     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): | ||||
|       if reduction: | ||||
|         cell = ResNetBasicblock(C_prev, C_curr, 2) | ||||
|       else: | ||||
|         cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space, affine, track_running_stats) | ||||
|         if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|         else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges) | ||||
|       self.cells.append( cell ) | ||||
|       C_prev = cell.out_dim | ||||
|     self.op_names   = deepcopy( search_space ) | ||||
|     self._Layer     = len(self.cells) | ||||
|     self.edge2index = edge2index | ||||
|     self.lastact    = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|     self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|     self.classifier = nn.Linear(C_prev, num_classes) | ||||
|     self.arch_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) | ||||
|  | ||||
|   def get_weights(self): | ||||
|     xlist = list( self.stem.parameters() ) + list( self.cells.parameters() ) | ||||
|     xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() ) | ||||
|     xlist+= list( self.classifier.parameters() ) | ||||
|     return xlist | ||||
|  | ||||
|   def get_alphas(self): | ||||
|     return [self.arch_parameters] | ||||
|  | ||||
|   def show_alphas(self): | ||||
|     with torch.no_grad(): | ||||
|       return 'arch-parameters :\n{:}'.format( nn.functional.softmax(self.arch_parameters, dim=-1).cpu() ) | ||||
|  | ||||
|   def get_message(self): | ||||
|     string = self.extra_repr() | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr()) | ||||
|     return string | ||||
|  | ||||
|   def extra_repr(self): | ||||
|     return ('{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__)) | ||||
|  | ||||
|   def genotype(self): | ||||
|     genotypes = [] | ||||
|     for i in range(1, self.max_nodes): | ||||
|       xlist = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         with torch.no_grad(): | ||||
|           weights = self.arch_parameters[ self.edge2index[node_str] ] | ||||
|           op_name = self.op_names[ weights.argmax().item() ] | ||||
|         xlist.append((op_name, j)) | ||||
|       genotypes.append( tuple(xlist) ) | ||||
|     return Structure( genotypes ) | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     alphas  = nn.functional.softmax(self.arch_parameters, dim=-1) | ||||
|  | ||||
|     feature = self.stem(inputs) | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       if isinstance(cell, SearchCell): | ||||
|         feature = cell(feature, alphas) | ||||
|       else: | ||||
|         feature = cell(feature) | ||||
|  | ||||
|     out = self.lastact(feature) | ||||
|     out = self.global_pooling( out ) | ||||
|     out = out.view(out.size(0), -1) | ||||
|     logits = self.classifier(out) | ||||
|  | ||||
|     return out, logits | ||||
| @@ -0,0 +1,108 @@ | ||||
| #################### | ||||
| # DARTS, ICLR 2019 # | ||||
| #################### | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from typing import List, Text, Dict | ||||
| from .search_cells import NASNetSearchCell as SearchCell | ||||
|  | ||||
|  | ||||
| # The macro structure is based on NASNet | ||||
| class NASNetworkDARTS(nn.Module): | ||||
|  | ||||
|   def __init__(self, C: int, N: int, steps: int, multiplier: int, stem_multiplier: int, | ||||
|                num_classes: int, search_space: List[Text], affine: bool, track_running_stats: bool): | ||||
|     super(NASNetworkDARTS, self).__init__() | ||||
|     self._C        = C | ||||
|     self._layerN   = N | ||||
|     self._steps    = steps | ||||
|     self._multiplier = multiplier | ||||
|     self.stem = nn.Sequential( | ||||
|                     nn.Conv2d(3, C*stem_multiplier, kernel_size=3, padding=1, bias=False), | ||||
|                     nn.BatchNorm2d(C*stem_multiplier)) | ||||
|    | ||||
|     # config for each layer | ||||
|     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * (N-1) + [C*4 ] + [C*4  ] * (N-1) | ||||
|     layer_reductions = [False] * N + [True] + [False] * (N-1) + [True] + [False] * (N-1) | ||||
|  | ||||
|     num_edge, edge2index = None, None | ||||
|     C_prev_prev, C_prev, C_curr, reduction_prev = C*stem_multiplier, C*stem_multiplier, C, False | ||||
|  | ||||
|     self.cells = nn.ModuleList() | ||||
|     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): | ||||
|       cell = SearchCell(search_space, steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev, affine, track_running_stats) | ||||
|       if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|       else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges) | ||||
|       self.cells.append( cell ) | ||||
|       C_prev_prev, C_prev, reduction_prev = C_prev, multiplier*C_curr, reduction | ||||
|     self.op_names   = deepcopy( search_space ) | ||||
|     self._Layer     = len(self.cells) | ||||
|     self.edge2index = edge2index | ||||
|     self.lastact    = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|     self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|     self.classifier = nn.Linear(C_prev, num_classes) | ||||
|     self.arch_normal_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) | ||||
|     self.arch_reduce_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) | ||||
|  | ||||
|   def get_weights(self) -> List[torch.nn.Parameter]: | ||||
|     xlist = list( self.stem.parameters() ) + list( self.cells.parameters() ) | ||||
|     xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() ) | ||||
|     xlist+= list( self.classifier.parameters() ) | ||||
|     return xlist | ||||
|  | ||||
|   def get_alphas(self) -> List[torch.nn.Parameter]: | ||||
|     return [self.arch_normal_parameters, self.arch_reduce_parameters] | ||||
|  | ||||
|   def show_alphas(self) -> Text: | ||||
|     with torch.no_grad(): | ||||
|       A = 'arch-normal-parameters :\n{:}'.format( nn.functional.softmax(self.arch_normal_parameters, dim=-1).cpu() ) | ||||
|       B = 'arch-reduce-parameters :\n{:}'.format( nn.functional.softmax(self.arch_reduce_parameters, dim=-1).cpu() ) | ||||
|     return '{:}\n{:}'.format(A, B) | ||||
|  | ||||
|   def get_message(self) -> Text: | ||||
|     string = self.extra_repr() | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr()) | ||||
|     return string | ||||
|  | ||||
|   def extra_repr(self) -> Text: | ||||
|     return ('{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__)) | ||||
|  | ||||
|   def genotype(self) -> Dict[Text, List]: | ||||
|     def _parse(weights): | ||||
|       gene = [] | ||||
|       for i in range(self._steps): | ||||
|         edges = [] | ||||
|         for j in range(2+i): | ||||
|           node_str = '{:}<-{:}'.format(i, j) | ||||
|           ws = weights[ self.edge2index[node_str] ] | ||||
|           for k, op_name in enumerate(self.op_names): | ||||
|             if op_name == 'none': continue | ||||
|             edges.append( (op_name, j, ws[k]) ) | ||||
|         edges = sorted(edges, key=lambda x: -x[-1]) | ||||
|         selected_edges = edges[:2] | ||||
|         gene.append( tuple(selected_edges) ) | ||||
|       return gene | ||||
|     with torch.no_grad(): | ||||
|       gene_normal = _parse(torch.softmax(self.arch_normal_parameters, dim=-1).cpu().numpy()) | ||||
|       gene_reduce = _parse(torch.softmax(self.arch_reduce_parameters, dim=-1).cpu().numpy()) | ||||
|     return {'normal': gene_normal, 'normal_concat': list(range(2+self._steps-self._multiplier, self._steps+2)), | ||||
|             'reduce': gene_reduce, 'reduce_concat': list(range(2+self._steps-self._multiplier, self._steps+2))} | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|  | ||||
|     normal_w = nn.functional.softmax(self.arch_normal_parameters, dim=1) | ||||
|     reduce_w = nn.functional.softmax(self.arch_reduce_parameters, dim=1) | ||||
|  | ||||
|     s0 = s1 = self.stem(inputs) | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       if cell.reduction: ww = reduce_w | ||||
|       else             : ww = normal_w | ||||
|       s0, s1 = s1, cell.forward_darts(s0, s1, ww) | ||||
|     out = self.lastact(s1) | ||||
|     out = self.global_pooling( out ) | ||||
|     out = out.view(out.size(0), -1) | ||||
|     logits = self.classifier(out) | ||||
|  | ||||
|     return out, logits | ||||
							
								
								
									
										94
									
								
								graph_dit/naswot/models/cell_searchs/search_model_enas.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										94
									
								
								graph_dit/naswot/models/cell_searchs/search_model_enas.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,94 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ########################################################################## | ||||
| # Efficient Neural Architecture Search via Parameters Sharing, ICML 2018 # | ||||
| ########################################################################## | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from .search_cells     import NAS201SearchCell as SearchCell | ||||
| from .genotypes        import Structure | ||||
| from .search_model_enas_utils import Controller | ||||
|  | ||||
|  | ||||
| class TinyNetworkENAS(nn.Module): | ||||
|  | ||||
|   def __init__(self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats): | ||||
|     super(TinyNetworkENAS, self).__init__() | ||||
|     self._C        = C | ||||
|     self._layerN   = N | ||||
|     self.max_nodes = max_nodes | ||||
|     self.stem = nn.Sequential( | ||||
|                     nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), | ||||
|                     nn.BatchNorm2d(C)) | ||||
|    | ||||
|     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * N + [C*4 ] + [C*4  ] * N     | ||||
|     layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|  | ||||
|     C_prev, num_edge, edge2index = C, None, None | ||||
|     self.cells = nn.ModuleList() | ||||
|     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): | ||||
|       if reduction: | ||||
|         cell = ResNetBasicblock(C_prev, C_curr, 2) | ||||
|       else: | ||||
|         cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space, affine, track_running_stats) | ||||
|         if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|         else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges) | ||||
|       self.cells.append( cell ) | ||||
|       C_prev = cell.out_dim | ||||
|     self.op_names   = deepcopy( search_space ) | ||||
|     self._Layer     = len(self.cells) | ||||
|     self.edge2index = edge2index | ||||
|     self.lastact    = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|     self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|     self.classifier = nn.Linear(C_prev, num_classes) | ||||
|     # to maintain the sampled architecture | ||||
|     self.sampled_arch = None | ||||
|  | ||||
|   def update_arch(self, _arch): | ||||
|     if _arch is None: | ||||
|       self.sampled_arch = None | ||||
|     elif isinstance(_arch, Structure): | ||||
|       self.sampled_arch = _arch | ||||
|     elif isinstance(_arch, (list, tuple)): | ||||
|       genotypes = [] | ||||
|       for i in range(1, self.max_nodes): | ||||
|         xlist = [] | ||||
|         for j in range(i): | ||||
|           node_str = '{:}<-{:}'.format(i, j) | ||||
|           op_index = _arch[ self.edge2index[node_str] ] | ||||
|           op_name  = self.op_names[ op_index ] | ||||
|           xlist.append((op_name, j)) | ||||
|         genotypes.append( tuple(xlist) ) | ||||
|       self.sampled_arch = Structure(genotypes) | ||||
|     else: | ||||
|       raise ValueError('invalid type of input architecture : {:}'.format(_arch)) | ||||
|     return self.sampled_arch | ||||
|      | ||||
|   def create_controller(self): | ||||
|     return Controller(len(self.edge2index), len(self.op_names)) | ||||
|  | ||||
|   def get_message(self): | ||||
|     string = self.extra_repr() | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr()) | ||||
|     return string | ||||
|  | ||||
|   def extra_repr(self): | ||||
|     return ('{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__)) | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|  | ||||
|     feature = self.stem(inputs) | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       if isinstance(cell, SearchCell): | ||||
|         feature = cell.forward_dynamic(feature, self.sampled_arch) | ||||
|       else: feature = cell(feature) | ||||
|  | ||||
|     out = self.lastact(feature) | ||||
|     out = self.global_pooling( out ) | ||||
|     out = out.view(out.size(0), -1) | ||||
|     logits = self.classifier(out) | ||||
|  | ||||
|     return out, logits | ||||
| @@ -0,0 +1,55 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ########################################################################## | ||||
| # Efficient Neural Architecture Search via Parameters Sharing, ICML 2018 # | ||||
| ########################################################################## | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from torch.distributions.categorical import Categorical | ||||
|  | ||||
| class Controller(nn.Module): | ||||
|   # we refer to https://github.com/TDeVries/enas_pytorch/blob/master/models/controller.py | ||||
|   def __init__(self, num_edge, num_ops, lstm_size=32, lstm_num_layers=2, tanh_constant=2.5, temperature=5.0): | ||||
|     super(Controller, self).__init__() | ||||
|     # assign the attributes | ||||
|     self.num_edge  = num_edge | ||||
|     self.num_ops   = num_ops | ||||
|     self.lstm_size = lstm_size | ||||
|     self.lstm_N    = lstm_num_layers | ||||
|     self.tanh_constant = tanh_constant | ||||
|     self.temperature   = temperature | ||||
|     # create parameters | ||||
|     self.register_parameter('input_vars', nn.Parameter(torch.Tensor(1, 1, lstm_size))) | ||||
|     self.w_lstm = nn.LSTM(input_size=self.lstm_size, hidden_size=self.lstm_size, num_layers=self.lstm_N) | ||||
|     self.w_embd = nn.Embedding(self.num_ops, self.lstm_size) | ||||
|     self.w_pred = nn.Linear(self.lstm_size, self.num_ops) | ||||
|  | ||||
|     nn.init.uniform_(self.input_vars         , -0.1, 0.1) | ||||
|     nn.init.uniform_(self.w_lstm.weight_hh_l0, -0.1, 0.1) | ||||
|     nn.init.uniform_(self.w_lstm.weight_ih_l0, -0.1, 0.1) | ||||
|     nn.init.uniform_(self.w_embd.weight      , -0.1, 0.1) | ||||
|     nn.init.uniform_(self.w_pred.weight      , -0.1, 0.1) | ||||
|  | ||||
|   def forward(self): | ||||
|  | ||||
|     inputs, h0 = self.input_vars, None | ||||
|     log_probs, entropys, sampled_arch = [], [], [] | ||||
|     for iedge in range(self.num_edge): | ||||
|       outputs, h0 = self.w_lstm(inputs, h0) | ||||
|        | ||||
|       logits = self.w_pred(outputs) | ||||
|       logits = logits / self.temperature | ||||
|       logits = self.tanh_constant * torch.tanh(logits) | ||||
|       # distribution | ||||
|       op_distribution = Categorical(logits=logits) | ||||
|       op_index    = op_distribution.sample() | ||||
|       sampled_arch.append( op_index.item() ) | ||||
|  | ||||
|       op_log_prob = op_distribution.log_prob(op_index) | ||||
|       log_probs.append( op_log_prob.view(-1) ) | ||||
|       op_entropy  = op_distribution.entropy() | ||||
|       entropys.append( op_entropy.view(-1) ) | ||||
|        | ||||
|       # obtain the input embedding for the next step | ||||
|       inputs = self.w_embd(op_index) | ||||
|     return torch.sum(torch.cat(log_probs)), torch.sum(torch.cat(entropys)), sampled_arch | ||||
							
								
								
									
										111
									
								
								graph_dit/naswot/models/cell_searchs/search_model_gdas.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										111
									
								
								graph_dit/naswot/models/cell_searchs/search_model_gdas.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,111 @@ | ||||
| ########################################################################### | ||||
| # Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019 # | ||||
| ########################################################################### | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from .search_cells     import NAS201SearchCell as SearchCell | ||||
| from .genotypes        import Structure | ||||
|  | ||||
|  | ||||
| class TinyNetworkGDAS(nn.Module): | ||||
|  | ||||
|   #def __init__(self, C, N, max_nodes, num_classes, search_space, affine=False, track_running_stats=True): | ||||
|   def __init__(self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats): | ||||
|     super(TinyNetworkGDAS, self).__init__() | ||||
|     self._C        = C | ||||
|     self._layerN   = N | ||||
|     self.max_nodes = max_nodes | ||||
|     self.stem = nn.Sequential( | ||||
|                     nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), | ||||
|                     nn.BatchNorm2d(C)) | ||||
|    | ||||
|     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * N + [C*4 ] + [C*4  ] * N     | ||||
|     layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|  | ||||
|     C_prev, num_edge, edge2index = C, None, None | ||||
|     self.cells = nn.ModuleList() | ||||
|     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): | ||||
|       if reduction: | ||||
|         cell = ResNetBasicblock(C_prev, C_curr, 2) | ||||
|       else: | ||||
|         cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space, affine, track_running_stats) | ||||
|         if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|         else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges) | ||||
|       self.cells.append( cell ) | ||||
|       C_prev = cell.out_dim | ||||
|     self.op_names   = deepcopy( search_space ) | ||||
|     self._Layer     = len(self.cells) | ||||
|     self.edge2index = edge2index | ||||
|     self.lastact    = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|     self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|     self.classifier = nn.Linear(C_prev, num_classes) | ||||
|     self.arch_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) | ||||
|     self.tau        = 10 | ||||
|  | ||||
|   def get_weights(self): | ||||
|     xlist = list( self.stem.parameters() ) + list( self.cells.parameters() ) | ||||
|     xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() ) | ||||
|     xlist+= list( self.classifier.parameters() ) | ||||
|     return xlist | ||||
|  | ||||
|   def set_tau(self, tau): | ||||
|     self.tau = tau | ||||
|  | ||||
|   def get_tau(self): | ||||
|     return self.tau | ||||
|  | ||||
|   def get_alphas(self): | ||||
|     return [self.arch_parameters] | ||||
|  | ||||
|   def show_alphas(self): | ||||
|     with torch.no_grad(): | ||||
|       return 'arch-parameters :\n{:}'.format( nn.functional.softmax(self.arch_parameters, dim=-1).cpu() ) | ||||
|  | ||||
|   def get_message(self): | ||||
|     string = self.extra_repr() | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr()) | ||||
|     return string | ||||
|  | ||||
|   def extra_repr(self): | ||||
|     return ('{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__)) | ||||
|  | ||||
|   def genotype(self): | ||||
|     genotypes = [] | ||||
|     for i in range(1, self.max_nodes): | ||||
|       xlist = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         with torch.no_grad(): | ||||
|           weights = self.arch_parameters[ self.edge2index[node_str] ] | ||||
|           op_name = self.op_names[ weights.argmax().item() ] | ||||
|         xlist.append((op_name, j)) | ||||
|       genotypes.append( tuple(xlist) ) | ||||
|     return Structure( genotypes ) | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     while True: | ||||
|       gumbels = -torch.empty_like(self.arch_parameters).exponential_().log() | ||||
|       logits  = (self.arch_parameters.log_softmax(dim=1) + gumbels) / self.tau | ||||
|       probs   = nn.functional.softmax(logits, dim=1) | ||||
|       index   = probs.max(-1, keepdim=True)[1] | ||||
|       one_h   = torch.zeros_like(logits).scatter_(-1, index, 1.0) | ||||
|       hardwts = one_h - probs.detach() + probs | ||||
|       if (torch.isinf(gumbels).any()) or (torch.isinf(probs).any()) or (torch.isnan(probs).any()): | ||||
|         continue | ||||
|       else: break | ||||
|  | ||||
|     feature = self.stem(inputs) | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       if isinstance(cell, SearchCell): | ||||
|         feature = cell.forward_gdas(feature, hardwts, index) | ||||
|       else: | ||||
|         feature = cell(feature) | ||||
|     out = self.lastact(feature) | ||||
|     out = self.global_pooling( out ) | ||||
|     out = out.view(out.size(0), -1) | ||||
|     logits = self.classifier(out) | ||||
|  | ||||
|     return out, logits | ||||
							
								
								
									
										125
									
								
								graph_dit/naswot/models/cell_searchs/search_model_gdas_nasnet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										125
									
								
								graph_dit/naswot/models/cell_searchs/search_model_gdas_nasnet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,125 @@ | ||||
| ########################################################################### | ||||
| # Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019 # | ||||
| ########################################################################### | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from .search_cells import NASNetSearchCell as SearchCell | ||||
|  | ||||
|  | ||||
| # The macro structure is based on NASNet | ||||
| class NASNetworkGDAS(nn.Module): | ||||
|  | ||||
|   def __init__(self, C, N, steps, multiplier, stem_multiplier, num_classes, search_space, affine, track_running_stats): | ||||
|     super(NASNetworkGDAS, self).__init__() | ||||
|     self._C        = C | ||||
|     self._layerN   = N | ||||
|     self._steps    = steps | ||||
|     self._multiplier = multiplier | ||||
|     self.stem = nn.Sequential( | ||||
|                     nn.Conv2d(3, C*stem_multiplier, kernel_size=3, padding=1, bias=False), | ||||
|                     nn.BatchNorm2d(C*stem_multiplier)) | ||||
|    | ||||
|     # config for each layer | ||||
|     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * (N-1) + [C*4 ] + [C*4  ] * (N-1) | ||||
|     layer_reductions = [False] * N + [True] + [False] * (N-1) + [True] + [False] * (N-1) | ||||
|  | ||||
|     num_edge, edge2index = None, None | ||||
|     C_prev_prev, C_prev, C_curr, reduction_prev = C*stem_multiplier, C*stem_multiplier, C, False | ||||
|  | ||||
|     self.cells = nn.ModuleList() | ||||
|     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): | ||||
|       cell = SearchCell(search_space, steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev, affine, track_running_stats) | ||||
|       if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|       else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges) | ||||
|       self.cells.append( cell ) | ||||
|       C_prev_prev, C_prev, reduction_prev = C_prev, multiplier*C_curr, reduction | ||||
|     self.op_names   = deepcopy( search_space ) | ||||
|     self._Layer     = len(self.cells) | ||||
|     self.edge2index = edge2index | ||||
|     self.lastact    = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|     self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|     self.classifier = nn.Linear(C_prev, num_classes) | ||||
|     self.arch_normal_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) | ||||
|     self.arch_reduce_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) | ||||
|     self.tau        = 10 | ||||
|  | ||||
|   def get_weights(self): | ||||
|     xlist = list( self.stem.parameters() ) + list( self.cells.parameters() ) | ||||
|     xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() ) | ||||
|     xlist+= list( self.classifier.parameters() ) | ||||
|     return xlist | ||||
|  | ||||
|   def set_tau(self, tau): | ||||
|     self.tau = tau | ||||
|  | ||||
|   def get_tau(self): | ||||
|     return self.tau | ||||
|  | ||||
|   def get_alphas(self): | ||||
|     return [self.arch_normal_parameters, self.arch_reduce_parameters] | ||||
|  | ||||
|   def show_alphas(self): | ||||
|     with torch.no_grad(): | ||||
|       A = 'arch-normal-parameters :\n{:}'.format( nn.functional.softmax(self.arch_normal_parameters, dim=-1).cpu() ) | ||||
|       B = 'arch-reduce-parameters :\n{:}'.format( nn.functional.softmax(self.arch_reduce_parameters, dim=-1).cpu() ) | ||||
|     return '{:}\n{:}'.format(A, B) | ||||
|  | ||||
|   def get_message(self): | ||||
|     string = self.extra_repr() | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr()) | ||||
|     return string | ||||
|  | ||||
|   def extra_repr(self): | ||||
|     return ('{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__)) | ||||
|  | ||||
|   def genotype(self): | ||||
|     def _parse(weights): | ||||
|       gene = [] | ||||
|       for i in range(self._steps): | ||||
|         edges = [] | ||||
|         for j in range(2+i): | ||||
|           node_str = '{:}<-{:}'.format(i, j) | ||||
|           ws = weights[ self.edge2index[node_str] ] | ||||
|           for k, op_name in enumerate(self.op_names): | ||||
|             if op_name == 'none': continue | ||||
|             edges.append( (op_name, j, ws[k]) ) | ||||
|         edges = sorted(edges, key=lambda x: -x[-1]) | ||||
|         selected_edges = edges[:2] | ||||
|         gene.append( tuple(selected_edges) ) | ||||
|       return gene | ||||
|     with torch.no_grad(): | ||||
|       gene_normal = _parse(torch.softmax(self.arch_normal_parameters, dim=-1).cpu().numpy()) | ||||
|       gene_reduce = _parse(torch.softmax(self.arch_reduce_parameters, dim=-1).cpu().numpy()) | ||||
|     return {'normal': gene_normal, 'normal_concat': list(range(2+self._steps-self._multiplier, self._steps+2)), | ||||
|             'reduce': gene_reduce, 'reduce_concat': list(range(2+self._steps-self._multiplier, self._steps+2))} | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     def get_gumbel_prob(xins): | ||||
|       while True: | ||||
|         gumbels = -torch.empty_like(xins).exponential_().log() | ||||
|         logits  = (xins.log_softmax(dim=1) + gumbels) / self.tau | ||||
|         probs   = nn.functional.softmax(logits, dim=1) | ||||
|         index   = probs.max(-1, keepdim=True)[1] | ||||
|         one_h   = torch.zeros_like(logits).scatter_(-1, index, 1.0) | ||||
|         hardwts = one_h - probs.detach() + probs | ||||
|         if (torch.isinf(gumbels).any()) or (torch.isinf(probs).any()) or (torch.isnan(probs).any()): | ||||
|           continue | ||||
|         else: break | ||||
|       return hardwts, index | ||||
|  | ||||
|     normal_hardwts, normal_index = get_gumbel_prob(self.arch_normal_parameters) | ||||
|     reduce_hardwts, reduce_index = get_gumbel_prob(self.arch_reduce_parameters) | ||||
|  | ||||
|     s0 = s1 = self.stem(inputs) | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       if cell.reduction: hardwts, index = reduce_hardwts, reduce_index | ||||
|       else             : hardwts, index = normal_hardwts, normal_index | ||||
|       s0, s1 = s1, cell.forward_gdas(s0, s1, hardwts, index) | ||||
|     out = self.lastact(s1) | ||||
|     out = self.global_pooling( out ) | ||||
|     out = out.view(out.size(0), -1) | ||||
|     logits = self.classifier(out) | ||||
|  | ||||
|     return out, logits | ||||
							
								
								
									
										81
									
								
								graph_dit/naswot/models/cell_searchs/search_model_random.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										81
									
								
								graph_dit/naswot/models/cell_searchs/search_model_random.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,81 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ############################################################################## | ||||
| # Random Search and Reproducibility for Neural Architecture Search, UAI 2019 #  | ||||
| ############################################################################## | ||||
| import torch, random | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from .search_cells     import NAS201SearchCell as SearchCell | ||||
| from .genotypes        import Structure | ||||
|  | ||||
|  | ||||
| class TinyNetworkRANDOM(nn.Module): | ||||
|  | ||||
|   def __init__(self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats): | ||||
|     super(TinyNetworkRANDOM, self).__init__() | ||||
|     self._C        = C | ||||
|     self._layerN   = N | ||||
|     self.max_nodes = max_nodes | ||||
|     self.stem = nn.Sequential( | ||||
|                     nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), | ||||
|                     nn.BatchNorm2d(C)) | ||||
|    | ||||
|     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * N + [C*4 ] + [C*4  ] * N     | ||||
|     layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|  | ||||
|     C_prev, num_edge, edge2index = C, None, None | ||||
|     self.cells = nn.ModuleList() | ||||
|     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): | ||||
|       if reduction: | ||||
|         cell = ResNetBasicblock(C_prev, C_curr, 2) | ||||
|       else: | ||||
|         cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space, affine, track_running_stats) | ||||
|         if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|         else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges) | ||||
|       self.cells.append( cell ) | ||||
|       C_prev = cell.out_dim | ||||
|     self.op_names   = deepcopy( search_space ) | ||||
|     self._Layer     = len(self.cells) | ||||
|     self.edge2index = edge2index | ||||
|     self.lastact    = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|     self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|     self.classifier = nn.Linear(C_prev, num_classes) | ||||
|     self.arch_cache = None | ||||
|      | ||||
|   def get_message(self): | ||||
|     string = self.extra_repr() | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr()) | ||||
|     return string | ||||
|  | ||||
|   def extra_repr(self): | ||||
|     return ('{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__)) | ||||
|  | ||||
|   def random_genotype(self, set_cache): | ||||
|     genotypes = [] | ||||
|     for i in range(1, self.max_nodes): | ||||
|       xlist = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         op_name  = random.choice( self.op_names ) | ||||
|         xlist.append((op_name, j)) | ||||
|       genotypes.append( tuple(xlist) ) | ||||
|     arch = Structure( genotypes ) | ||||
|     if set_cache: self.arch_cache = arch | ||||
|     return arch | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|  | ||||
|     feature = self.stem(inputs) | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       if isinstance(cell, SearchCell): | ||||
|         feature = cell.forward_dynamic(feature, self.arch_cache) | ||||
|       else: feature = cell(feature) | ||||
|  | ||||
|     out = self.lastact(feature) | ||||
|     out = self.global_pooling( out ) | ||||
|     out = out.view(out.size(0), -1) | ||||
|     logits = self.classifier(out) | ||||
|     return out, logits | ||||
							
								
								
									
										152
									
								
								graph_dit/naswot/models/cell_searchs/search_model_setn.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										152
									
								
								graph_dit/naswot/models/cell_searchs/search_model_setn.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,152 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ###################################################################################### | ||||
| # One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019 # | ||||
| ###################################################################################### | ||||
| import torch, random | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from .search_cells     import NAS201SearchCell as SearchCell | ||||
| from .genotypes        import Structure | ||||
|  | ||||
|  | ||||
| class TinyNetworkSETN(nn.Module): | ||||
|  | ||||
|   def __init__(self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats): | ||||
|     super(TinyNetworkSETN, self).__init__() | ||||
|     self._C        = C | ||||
|     self._layerN   = N | ||||
|     self.max_nodes = max_nodes | ||||
|     self.stem = nn.Sequential( | ||||
|                     nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), | ||||
|                     nn.BatchNorm2d(C)) | ||||
|    | ||||
|     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * N + [C*4 ] + [C*4  ] * N     | ||||
|     layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|  | ||||
|     C_prev, num_edge, edge2index = C, None, None | ||||
|     self.cells = nn.ModuleList() | ||||
|     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): | ||||
|       if reduction: | ||||
|         cell = ResNetBasicblock(C_prev, C_curr, 2) | ||||
|       else: | ||||
|         cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space, affine, track_running_stats) | ||||
|         if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|         else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges) | ||||
|       self.cells.append( cell ) | ||||
|       C_prev = cell.out_dim | ||||
|     self.op_names   = deepcopy( search_space ) | ||||
|     self._Layer     = len(self.cells) | ||||
|     self.edge2index = edge2index | ||||
|     self.lastact    = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|     self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|     self.classifier = nn.Linear(C_prev, num_classes) | ||||
|     self.arch_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) | ||||
|     self.mode       = 'urs' | ||||
|     self.dynamic_cell = None | ||||
|      | ||||
|   def set_cal_mode(self, mode, dynamic_cell=None): | ||||
|     assert mode in ['urs', 'joint', 'select', 'dynamic'] | ||||
|     self.mode = mode | ||||
|     if mode == 'dynamic': self.dynamic_cell = deepcopy( dynamic_cell ) | ||||
|     else                : self.dynamic_cell = None | ||||
|  | ||||
|   def get_cal_mode(self): | ||||
|     return self.mode | ||||
|  | ||||
|   def get_weights(self): | ||||
|     xlist = list( self.stem.parameters() ) + list( self.cells.parameters() ) | ||||
|     xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() ) | ||||
|     xlist+= list( self.classifier.parameters() ) | ||||
|     return xlist | ||||
|  | ||||
|   def get_alphas(self): | ||||
|     return [self.arch_parameters] | ||||
|  | ||||
|   def get_message(self): | ||||
|     string = self.extra_repr() | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr()) | ||||
|     return string | ||||
|  | ||||
|   def extra_repr(self): | ||||
|     return ('{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__)) | ||||
|  | ||||
|   def genotype(self): | ||||
|     genotypes = [] | ||||
|     for i in range(1, self.max_nodes): | ||||
|       xlist = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         with torch.no_grad(): | ||||
|           weights = self.arch_parameters[ self.edge2index[node_str] ] | ||||
|           op_name = self.op_names[ weights.argmax().item() ] | ||||
|         xlist.append((op_name, j)) | ||||
|       genotypes.append( tuple(xlist) ) | ||||
|     return Structure( genotypes ) | ||||
|  | ||||
|   def dync_genotype(self, use_random=False): | ||||
|     genotypes = [] | ||||
|     with torch.no_grad(): | ||||
|       alphas_cpu = nn.functional.softmax(self.arch_parameters, dim=-1) | ||||
|     for i in range(1, self.max_nodes): | ||||
|       xlist = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         if use_random: | ||||
|           op_name  = random.choice(self.op_names) | ||||
|         else: | ||||
|           weights  = alphas_cpu[ self.edge2index[node_str] ] | ||||
|           op_index = torch.multinomial(weights, 1).item() | ||||
|           op_name  = self.op_names[ op_index ] | ||||
|         xlist.append((op_name, j)) | ||||
|       genotypes.append( tuple(xlist) ) | ||||
|     return Structure( genotypes ) | ||||
|  | ||||
|   def get_log_prob(self, arch): | ||||
|     with torch.no_grad(): | ||||
|       logits = nn.functional.log_softmax(self.arch_parameters, dim=-1) | ||||
|     select_logits = [] | ||||
|     for i, node_info in enumerate(arch.nodes): | ||||
|       for op, xin in node_info: | ||||
|         node_str = '{:}<-{:}'.format(i+1, xin) | ||||
|         op_index = self.op_names.index(op) | ||||
|         select_logits.append( logits[self.edge2index[node_str], op_index] ) | ||||
|     return sum(select_logits).item() | ||||
|  | ||||
|  | ||||
|   def return_topK(self, K): | ||||
|     archs = Structure.gen_all(self.op_names, self.max_nodes, False) | ||||
|     pairs = [(self.get_log_prob(arch), arch) for arch in archs] | ||||
|     if K < 0 or K >= len(archs): K = len(archs) | ||||
|     sorted_pairs = sorted(pairs, key=lambda x: -x[0]) | ||||
|     return_pairs = [sorted_pairs[_][1] for _ in range(K)] | ||||
|     return return_pairs | ||||
|  | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     alphas  = nn.functional.softmax(self.arch_parameters, dim=-1) | ||||
|     with torch.no_grad(): | ||||
|       alphas_cpu = alphas.detach().cpu() | ||||
|  | ||||
|     feature = self.stem(inputs) | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       if isinstance(cell, SearchCell): | ||||
|         if self.mode == 'urs': | ||||
|           feature = cell.forward_urs(feature) | ||||
|         elif self.mode == 'select': | ||||
|           feature = cell.forward_select(feature, alphas_cpu) | ||||
|         elif self.mode == 'joint': | ||||
|           feature = cell.forward_joint(feature, alphas) | ||||
|         elif self.mode == 'dynamic': | ||||
|           feature = cell.forward_dynamic(feature, self.dynamic_cell) | ||||
|         else: raise ValueError('invalid mode={:}'.format(self.mode)) | ||||
|       else: feature = cell(feature) | ||||
|  | ||||
|     out = self.lastact(feature) | ||||
|     out = self.global_pooling( out ) | ||||
|     out = out.view(out.size(0), -1) | ||||
|     logits = self.classifier(out) | ||||
|  | ||||
|     return out, logits | ||||
							
								
								
									
										139
									
								
								graph_dit/naswot/models/cell_searchs/search_model_setn_nasnet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										139
									
								
								graph_dit/naswot/models/cell_searchs/search_model_setn_nasnet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,139 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ###################################################################################### | ||||
| # One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019 # | ||||
| ###################################################################################### | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from typing import List, Text, Dict | ||||
| from .search_cells     import NASNetSearchCell as SearchCell | ||||
|  | ||||
|  | ||||
| # The macro structure is based on NASNet | ||||
| class NASNetworkSETN(nn.Module): | ||||
|  | ||||
|   def __init__(self, C: int, N: int, steps: int, multiplier: int, stem_multiplier: int, | ||||
|                num_classes: int, search_space: List[Text], affine: bool, track_running_stats: bool): | ||||
|     super(NASNetworkSETN, self).__init__() | ||||
|     self._C        = C | ||||
|     self._layerN   = N | ||||
|     self._steps    = steps | ||||
|     self._multiplier = multiplier | ||||
|     self.stem = nn.Sequential( | ||||
|                     nn.Conv2d(3, C*stem_multiplier, kernel_size=3, padding=1, bias=False), | ||||
|                     nn.BatchNorm2d(C*stem_multiplier)) | ||||
|    | ||||
|     # config for each layer | ||||
|     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * (N-1) + [C*4 ] + [C*4  ] * (N-1) | ||||
|     layer_reductions = [False] * N + [True] + [False] * (N-1) + [True] + [False] * (N-1) | ||||
|  | ||||
|     num_edge, edge2index = None, None | ||||
|     C_prev_prev, C_prev, C_curr, reduction_prev = C*stem_multiplier, C*stem_multiplier, C, False | ||||
|  | ||||
|     self.cells = nn.ModuleList() | ||||
|     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): | ||||
|       cell = SearchCell(search_space, steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev, affine, track_running_stats) | ||||
|       if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|       else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges) | ||||
|       self.cells.append( cell ) | ||||
|       C_prev_prev, C_prev, reduction_prev = C_prev, multiplier*C_curr, reduction | ||||
|     self.op_names   = deepcopy( search_space ) | ||||
|     self._Layer     = len(self.cells) | ||||
|     self.edge2index = edge2index | ||||
|     self.lastact    = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|     self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|     self.classifier = nn.Linear(C_prev, num_classes) | ||||
|     self.arch_normal_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) | ||||
|     self.arch_reduce_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) | ||||
|     self.mode = 'urs' | ||||
|     self.dynamic_cell = None | ||||
|  | ||||
|   def set_cal_mode(self, mode, dynamic_cell=None): | ||||
|     assert mode in ['urs', 'joint', 'select', 'dynamic'] | ||||
|     self.mode = mode | ||||
|     if mode == 'dynamic': | ||||
|       self.dynamic_cell = deepcopy(dynamic_cell) | ||||
|     else: | ||||
|       self.dynamic_cell = None | ||||
|  | ||||
|   def get_weights(self): | ||||
|     xlist = list( self.stem.parameters() ) + list( self.cells.parameters() ) | ||||
|     xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() ) | ||||
|     xlist+= list( self.classifier.parameters() ) | ||||
|     return xlist | ||||
|  | ||||
|   def get_alphas(self): | ||||
|     return [self.arch_normal_parameters, self.arch_reduce_parameters] | ||||
|  | ||||
|   def show_alphas(self): | ||||
|     with torch.no_grad(): | ||||
|       A = 'arch-normal-parameters :\n{:}'.format( nn.functional.softmax(self.arch_normal_parameters, dim=-1).cpu() ) | ||||
|       B = 'arch-reduce-parameters :\n{:}'.format( nn.functional.softmax(self.arch_reduce_parameters, dim=-1).cpu() ) | ||||
|     return '{:}\n{:}'.format(A, B) | ||||
|  | ||||
|   def get_message(self): | ||||
|     string = self.extra_repr() | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr()) | ||||
|     return string | ||||
|  | ||||
|   def extra_repr(self): | ||||
|     return ('{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__)) | ||||
|  | ||||
|   def dync_genotype(self, use_random=False): | ||||
|     genotypes = [] | ||||
|     with torch.no_grad(): | ||||
|       alphas_cpu = nn.functional.softmax(self.arch_parameters, dim=-1) | ||||
|     for i in range(1, self.max_nodes): | ||||
|       xlist = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         if use_random: | ||||
|           op_name  = random.choice(self.op_names) | ||||
|         else: | ||||
|           weights  = alphas_cpu[ self.edge2index[node_str] ] | ||||
|           op_index = torch.multinomial(weights, 1).item() | ||||
|           op_name  = self.op_names[ op_index ] | ||||
|         xlist.append((op_name, j)) | ||||
|       genotypes.append( tuple(xlist) ) | ||||
|     return Structure( genotypes ) | ||||
|  | ||||
|   def genotype(self): | ||||
|     def _parse(weights): | ||||
|       gene = [] | ||||
|       for i in range(self._steps): | ||||
|         edges = [] | ||||
|         for j in range(2+i): | ||||
|           node_str = '{:}<-{:}'.format(i, j) | ||||
|           ws = weights[ self.edge2index[node_str] ] | ||||
|           for k, op_name in enumerate(self.op_names): | ||||
|             if op_name == 'none': continue | ||||
|             edges.append( (op_name, j, ws[k]) ) | ||||
|         edges = sorted(edges, key=lambda x: -x[-1]) | ||||
|         selected_edges = edges[:2] | ||||
|         gene.append( tuple(selected_edges) ) | ||||
|       return gene | ||||
|     with torch.no_grad(): | ||||
|       gene_normal = _parse(torch.softmax(self.arch_normal_parameters, dim=-1).cpu().numpy()) | ||||
|       gene_reduce = _parse(torch.softmax(self.arch_reduce_parameters, dim=-1).cpu().numpy()) | ||||
|     return {'normal': gene_normal, 'normal_concat': list(range(2+self._steps-self._multiplier, self._steps+2)), | ||||
|             'reduce': gene_reduce, 'reduce_concat': list(range(2+self._steps-self._multiplier, self._steps+2))} | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     normal_hardwts = nn.functional.softmax(self.arch_normal_parameters, dim=-1) | ||||
|     reduce_hardwts = nn.functional.softmax(self.arch_reduce_parameters, dim=-1) | ||||
|  | ||||
|     s0 = s1 = self.stem(inputs) | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       # [TODO] | ||||
|       raise NotImplementedError | ||||
|       if cell.reduction: hardwts, index = reduce_hardwts, reduce_index | ||||
|       else             : hardwts, index = normal_hardwts, normal_index | ||||
|       s0, s1 = s1, cell.forward_gdas(s0, s1, hardwts, index) | ||||
|     out = self.lastact(s1) | ||||
|     out = self.global_pooling( out ) | ||||
|     out = out.view(out.size(0), -1) | ||||
|     logits = self.classifier(out) | ||||
|  | ||||
|     return out, logits | ||||
							
								
								
									
										62
									
								
								graph_dit/naswot/models/clone_weights.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										62
									
								
								graph_dit/naswot/models/clone_weights.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,62 @@ | ||||
| import torch | ||||
| import torch.nn as nn | ||||
|  | ||||
|  | ||||
| def copy_conv(module, init): | ||||
|   assert isinstance(module, nn.Conv2d), 'invalid module : {:}'.format(module) | ||||
|   assert isinstance(init  , nn.Conv2d), 'invalid module : {:}'.format(init) | ||||
|   new_i, new_o = module.in_channels, module.out_channels | ||||
|   module.weight.copy_( init.weight.detach()[:new_o, :new_i] ) | ||||
|   if module.bias is not None: | ||||
|     module.bias.copy_( init.bias.detach()[:new_o] ) | ||||
|  | ||||
| def copy_bn  (module, init): | ||||
|   assert isinstance(module, nn.BatchNorm2d), 'invalid module : {:}'.format(module) | ||||
|   assert isinstance(init  , nn.BatchNorm2d), 'invalid module : {:}'.format(init) | ||||
|   num_features = module.num_features | ||||
|   if module.weight is not None: | ||||
|     module.weight.copy_( init.weight.detach()[:num_features] ) | ||||
|   if module.bias is not None: | ||||
|     module.bias.copy_( init.bias.detach()[:num_features] ) | ||||
|   if module.running_mean is not None: | ||||
|     module.running_mean.copy_( init.running_mean.detach()[:num_features] ) | ||||
|   if module.running_var  is not None: | ||||
|     module.running_var.copy_( init.running_var.detach()[:num_features] ) | ||||
|  | ||||
| def copy_fc  (module, init): | ||||
|   assert isinstance(module, nn.Linear), 'invalid module : {:}'.format(module) | ||||
|   assert isinstance(init  , nn.Linear), 'invalid module : {:}'.format(init) | ||||
|   new_i, new_o = module.in_features, module.out_features | ||||
|   module.weight.copy_( init.weight.detach()[:new_o, :new_i] ) | ||||
|   if module.bias is not None: | ||||
|     module.bias.copy_( init.bias.detach()[:new_o] ) | ||||
|  | ||||
| def copy_base(module, init): | ||||
|   assert type(module).__name__ in ['ConvBNReLU', 'Downsample'], 'invalid module : {:}'.format(module) | ||||
|   assert type(  init).__name__ in ['ConvBNReLU', 'Downsample'], 'invalid module : {:}'.format(  init) | ||||
|   if module.conv is not None: | ||||
|     copy_conv(module.conv, init.conv) | ||||
|   if module.bn is not None: | ||||
|     copy_bn  (module.bn, init.bn) | ||||
|  | ||||
| def copy_basic(module, init): | ||||
|   copy_base(module.conv_a, init.conv_a) | ||||
|   copy_base(module.conv_b, init.conv_b) | ||||
|   if module.downsample is not None: | ||||
|     if init.downsample is not None: | ||||
|       copy_base(module.downsample, init.downsample) | ||||
|     #else: | ||||
|     # import pdb; pdb.set_trace() | ||||
|  | ||||
|  | ||||
| def init_from_model(network, init_model): | ||||
|   with torch.no_grad(): | ||||
|     copy_fc(network.classifier, init_model.classifier) | ||||
|     for base, target in zip(init_model.layers, network.layers): | ||||
|       assert type(base).__name__  == type(target).__name__, 'invalid type : {:} vs {:}'.format(base, target) | ||||
|       if type(base).__name__ == 'ConvBNReLU': | ||||
|         copy_base(target, base) | ||||
|       elif type(base).__name__ == 'ResNetBasicblock': | ||||
|         copy_basic(target, base) | ||||
|       else: | ||||
|         raise ValueError('unknown type name : {:}'.format( type(base).__name__ )) | ||||
							
								
								
									
										18
									
								
								graph_dit/naswot/models/initialization.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										18
									
								
								graph_dit/naswot/models/initialization.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,18 @@ | ||||
| import torch | ||||
| import torch.nn as nn | ||||
|  | ||||
|  | ||||
| def initialize_resnet(m): | ||||
|   if isinstance(m, nn.Conv2d): | ||||
|     nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') | ||||
|     if m.bias is not None: | ||||
|       nn.init.constant_(m.bias, 0) | ||||
|   elif isinstance(m, nn.BatchNorm2d): | ||||
|     nn.init.constant_(m.weight, 1) | ||||
|     if m.bias is not None: | ||||
|       nn.init.constant_(m.bias, 0) | ||||
|   elif isinstance(m, nn.Linear): | ||||
|     nn.init.normal_(m.weight, 0, 0.01) | ||||
|     nn.init.constant_(m.bias, 0) | ||||
|  | ||||
|  | ||||
							
								
								
									
										167
									
								
								graph_dit/naswot/models/shape_infers/InferCifarResNet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										167
									
								
								graph_dit/naswot/models/shape_infers/InferCifarResNet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,167 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ##################################################### | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
| from ..initialization import initialize_resnet | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|    | ||||
|   def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu): | ||||
|     super(ConvBNReLU, self).__init__() | ||||
|     if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) | ||||
|     else       : self.avg = None | ||||
|     self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias) | ||||
|     if has_bn  : self.bn  = nn.BatchNorm2d(nOut) | ||||
|     else       : self.bn  = None | ||||
|     if has_relu: self.relu = nn.ReLU(inplace=True) | ||||
|     else       : self.relu = None | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.avg : out = self.avg( inputs ) | ||||
|     else        : out = inputs | ||||
|     conv = self.conv( out ) | ||||
|     if self.bn  : out = self.bn( conv ) | ||||
|     else        : out = conv | ||||
|     if self.relu: out = self.relu( out ) | ||||
|     else        : out = out | ||||
|  | ||||
|     return out | ||||
|  | ||||
|  | ||||
| class ResNetBasicblock(nn.Module): | ||||
|   num_conv  = 2 | ||||
|   expansion = 1 | ||||
|   def __init__(self, iCs, stride): | ||||
|     super(ResNetBasicblock, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     assert isinstance(iCs, tuple) or isinstance(iCs, list), 'invalid type of iCs : {:}'.format( iCs ) | ||||
|     assert len(iCs) == 3,'invalid lengths of iCs : {:}'.format(iCs) | ||||
|      | ||||
|     self.conv_a = ConvBNReLU(iCs[0], iCs[1], 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_b = ConvBNReLU(iCs[1], iCs[2], 3,      1, 1, False, has_avg=False, has_bn=True, has_relu=False) | ||||
|     residual_in = iCs[0] | ||||
|     if stride == 2: | ||||
|       self.downsample = ConvBNReLU(iCs[0], iCs[2], 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False) | ||||
|       residual_in = iCs[2] | ||||
|     elif iCs[0] != iCs[2]: | ||||
|       self.downsample = ConvBNReLU(iCs[0], iCs[2], 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False) | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     #self.out_dim  = max(residual_in, iCs[2]) | ||||
|     self.out_dim  = iCs[2] | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     basicblock = self.conv_a(inputs) | ||||
|     basicblock = self.conv_b(basicblock) | ||||
|  | ||||
|     if self.downsample is not None: | ||||
|       residual = self.downsample(inputs) | ||||
|     else: | ||||
|       residual = inputs | ||||
|     out = residual + basicblock | ||||
|     return F.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
|  | ||||
| class ResNetBottleneck(nn.Module): | ||||
|   expansion = 4 | ||||
|   num_conv  = 3 | ||||
|   def __init__(self, iCs, stride): | ||||
|     super(ResNetBottleneck, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     assert isinstance(iCs, tuple) or isinstance(iCs, list), 'invalid type of iCs : {:}'.format( iCs ) | ||||
|     assert len(iCs) == 4,'invalid lengths of iCs : {:}'.format(iCs) | ||||
|     self.conv_1x1 = ConvBNReLU(iCs[0], iCs[1], 1,      1, 0, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_3x3 = ConvBNReLU(iCs[1], iCs[2], 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_1x4 = ConvBNReLU(iCs[2], iCs[3], 1,      1, 0, False, has_avg=False, has_bn=True, has_relu=False) | ||||
|     residual_in = iCs[0] | ||||
|     if stride == 2: | ||||
|       self.downsample = ConvBNReLU(iCs[0], iCs[3], 1, 1, 0, False, has_avg=True , has_bn=False, has_relu=False) | ||||
|       residual_in     = iCs[3] | ||||
|     elif iCs[0] != iCs[3]: | ||||
|       self.downsample = ConvBNReLU(iCs[0], iCs[3], 1, 1, 0, False, has_avg=False, has_bn=False, has_relu=False) | ||||
|       residual_in     = iCs[3] | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     #self.out_dim = max(residual_in, iCs[3]) | ||||
|     self.out_dim = iCs[3] | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|  | ||||
|     bottleneck = self.conv_1x1(inputs) | ||||
|     bottleneck = self.conv_3x3(bottleneck) | ||||
|     bottleneck = self.conv_1x4(bottleneck) | ||||
|  | ||||
|     if self.downsample is not None: | ||||
|       residual = self.downsample(inputs) | ||||
|     else: | ||||
|       residual = inputs | ||||
|     out = residual + bottleneck | ||||
|     return F.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
|  | ||||
| class InferCifarResNet(nn.Module): | ||||
|  | ||||
|   def __init__(self, block_name, depth, xblocks, xchannels, num_classes, zero_init_residual): | ||||
|     super(InferCifarResNet, self).__init__() | ||||
|  | ||||
|     #Model type specifies number of layers for CIFAR-10 and CIFAR-100 model | ||||
|     if block_name == 'ResNetBasicblock': | ||||
|       block = ResNetBasicblock | ||||
|       assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110' | ||||
|       layer_blocks = (depth - 2) // 6 | ||||
|     elif block_name == 'ResNetBottleneck': | ||||
|       block = ResNetBottleneck | ||||
|       assert (depth - 2) % 9 == 0, 'depth should be one of 164' | ||||
|       layer_blocks = (depth - 2) // 9 | ||||
|     else: | ||||
|       raise ValueError('invalid block : {:}'.format(block_name)) | ||||
|     assert len(xblocks) == 3, 'invalid xblocks : {:}'.format(xblocks) | ||||
|  | ||||
|     self.message     = 'InferWidthCifarResNet : Depth : {:} , Layers for each block : {:}'.format(depth, layer_blocks) | ||||
|     self.num_classes = num_classes | ||||
|     self.xchannels   = xchannels | ||||
|     self.layers      = nn.ModuleList( [ ConvBNReLU(xchannels[0], xchannels[1], 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] ) | ||||
|     last_channel_idx = 1 | ||||
|     for stage in range(3): | ||||
|       for iL in range(layer_blocks): | ||||
|         num_conv = block.num_conv  | ||||
|         iCs      = self.xchannels[last_channel_idx:last_channel_idx+num_conv+1] | ||||
|         stride   = 2 if stage > 0 and iL == 0 else 1 | ||||
|         module   = block(iCs, stride) | ||||
|         last_channel_idx += num_conv | ||||
|         self.xchannels[last_channel_idx] = module.out_dim | ||||
|         self.layers.append  ( module ) | ||||
|         self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iCs={:}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iCs, module.out_dim, stride) | ||||
|         if iL + 1 == xblocks[stage]: # reach the maximum depth | ||||
|           out_channel = module.out_dim | ||||
|           for iiL in range(iL+1, layer_blocks): | ||||
|             last_channel_idx += num_conv | ||||
|           self.xchannels[last_channel_idx] = module.out_dim | ||||
|           break | ||||
|    | ||||
|     self.avgpool    = nn.AvgPool2d(8) | ||||
|     self.classifier = nn.Linear(self.xchannels[-1], num_classes) | ||||
|      | ||||
|     self.apply(initialize_resnet) | ||||
|     if zero_init_residual: | ||||
|       for m in self.modules(): | ||||
|         if isinstance(m, ResNetBasicblock): | ||||
|           nn.init.constant_(m.conv_b.bn.weight, 0) | ||||
|         elif isinstance(m, ResNetBottleneck): | ||||
|           nn.init.constant_(m.conv_1x4.bn.weight, 0) | ||||
|  | ||||
|   def get_message(self): | ||||
|     return self.message | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     x = inputs | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       x = layer( x ) | ||||
|     features = self.avgpool(x) | ||||
|     features = features.view(features.size(0), -1) | ||||
|     logits   = self.classifier(features) | ||||
|     return features, logits | ||||
							
								
								
									
										150
									
								
								graph_dit/naswot/models/shape_infers/InferCifarResNet_depth.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										150
									
								
								graph_dit/naswot/models/shape_infers/InferCifarResNet_depth.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,150 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ##################################################### | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
| from ..initialization import initialize_resnet | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|    | ||||
|   def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu): | ||||
|     super(ConvBNReLU, self).__init__() | ||||
|     if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) | ||||
|     else       : self.avg = None | ||||
|     self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias) | ||||
|     if has_bn  : self.bn  = nn.BatchNorm2d(nOut) | ||||
|     else       : self.bn  = None | ||||
|     if has_relu: self.relu = nn.ReLU(inplace=True) | ||||
|     else       : self.relu = None | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.avg : out = self.avg( inputs ) | ||||
|     else        : out = inputs | ||||
|     conv = self.conv( out ) | ||||
|     if self.bn  : out = self.bn( conv ) | ||||
|     else        : out = conv | ||||
|     if self.relu: out = self.relu( out ) | ||||
|     else        : out = out | ||||
|  | ||||
|     return out | ||||
|  | ||||
|  | ||||
| class ResNetBasicblock(nn.Module): | ||||
|   num_conv  = 2 | ||||
|   expansion = 1 | ||||
|   def __init__(self, inplanes, planes, stride): | ||||
|     super(ResNetBasicblock, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|      | ||||
|     self.conv_a = ConvBNReLU(inplanes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_b = ConvBNReLU(  planes, planes, 3,      1, 1, False, has_avg=False, has_bn=True, has_relu=False) | ||||
|     if stride == 2: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False) | ||||
|     elif inplanes != planes: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False) | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     self.out_dim  = planes | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     basicblock = self.conv_a(inputs) | ||||
|     basicblock = self.conv_b(basicblock) | ||||
|  | ||||
|     if self.downsample is not None: | ||||
|       residual = self.downsample(inputs) | ||||
|     else: | ||||
|       residual = inputs | ||||
|     out = residual + basicblock | ||||
|     return F.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
|  | ||||
| class ResNetBottleneck(nn.Module): | ||||
|   expansion = 4 | ||||
|   num_conv  = 3 | ||||
|   def __init__(self, inplanes, planes, stride): | ||||
|     super(ResNetBottleneck, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     self.conv_1x1 = ConvBNReLU(inplanes, planes, 1,      1, 0, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_3x3 = ConvBNReLU(  planes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_1x4 = ConvBNReLU(planes, planes*self.expansion, 1,      1, 0, False, has_avg=False, has_bn=True, has_relu=False) | ||||
|     if stride == 2: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=True , has_bn=False, has_relu=False) | ||||
|     elif inplanes != planes*self.expansion: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=False, has_bn=False, has_relu=False) | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     self.out_dim = planes*self.expansion | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|  | ||||
|     bottleneck = self.conv_1x1(inputs) | ||||
|     bottleneck = self.conv_3x3(bottleneck) | ||||
|     bottleneck = self.conv_1x4(bottleneck) | ||||
|  | ||||
|     if self.downsample is not None: | ||||
|       residual = self.downsample(inputs) | ||||
|     else: | ||||
|       residual = inputs | ||||
|     out = residual + bottleneck | ||||
|     return F.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
|  | ||||
| class InferDepthCifarResNet(nn.Module): | ||||
|  | ||||
|   def __init__(self, block_name, depth, xblocks, num_classes, zero_init_residual): | ||||
|     super(InferDepthCifarResNet, self).__init__() | ||||
|  | ||||
|     #Model type specifies number of layers for CIFAR-10 and CIFAR-100 model | ||||
|     if block_name == 'ResNetBasicblock': | ||||
|       block = ResNetBasicblock | ||||
|       assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110' | ||||
|       layer_blocks = (depth - 2) // 6 | ||||
|     elif block_name == 'ResNetBottleneck': | ||||
|       block = ResNetBottleneck | ||||
|       assert (depth - 2) % 9 == 0, 'depth should be one of 164' | ||||
|       layer_blocks = (depth - 2) // 9 | ||||
|     else: | ||||
|       raise ValueError('invalid block : {:}'.format(block_name)) | ||||
|     assert len(xblocks) == 3, 'invalid xblocks : {:}'.format(xblocks) | ||||
|  | ||||
|     self.message     = 'InferWidthCifarResNet : Depth : {:} , Layers for each block : {:}'.format(depth, layer_blocks) | ||||
|     self.num_classes = num_classes | ||||
|     self.layers      = nn.ModuleList( [ ConvBNReLU(3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] ) | ||||
|     self.channels    = [16] | ||||
|     for stage in range(3): | ||||
|       for iL in range(layer_blocks): | ||||
|         iC       = self.channels[-1] | ||||
|         planes = 16 * (2**stage) | ||||
|         stride   = 2 if stage > 0 and iL == 0 else 1 | ||||
|         module   = block(iC, planes, stride) | ||||
|         self.channels.append( module.out_dim ) | ||||
|         self.layers.append  ( module ) | ||||
|         self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, planes, module.out_dim, stride) | ||||
|         if iL + 1 == xblocks[stage]: # reach the maximum depth | ||||
|           break | ||||
|    | ||||
|     self.avgpool    = nn.AvgPool2d(8) | ||||
|     self.classifier = nn.Linear(self.channels[-1], num_classes) | ||||
|      | ||||
|     self.apply(initialize_resnet) | ||||
|     if zero_init_residual: | ||||
|       for m in self.modules(): | ||||
|         if isinstance(m, ResNetBasicblock): | ||||
|           nn.init.constant_(m.conv_b.bn.weight, 0) | ||||
|         elif isinstance(m, ResNetBottleneck): | ||||
|           nn.init.constant_(m.conv_1x4.bn.weight, 0) | ||||
|  | ||||
|   def get_message(self): | ||||
|     return self.message | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     x = inputs | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       x = layer( x ) | ||||
|     features = self.avgpool(x) | ||||
|     features = features.view(features.size(0), -1) | ||||
|     logits   = self.classifier(features) | ||||
|     return features, logits | ||||
							
								
								
									
										160
									
								
								graph_dit/naswot/models/shape_infers/InferCifarResNet_width.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										160
									
								
								graph_dit/naswot/models/shape_infers/InferCifarResNet_width.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,160 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ##################################################### | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
| from ..initialization import initialize_resnet | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|    | ||||
|   def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu): | ||||
|     super(ConvBNReLU, self).__init__() | ||||
|     if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) | ||||
|     else       : self.avg = None | ||||
|     self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias) | ||||
|     if has_bn  : self.bn  = nn.BatchNorm2d(nOut) | ||||
|     else       : self.bn  = None | ||||
|     if has_relu: self.relu = nn.ReLU(inplace=True) | ||||
|     else       : self.relu = None | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.avg : out = self.avg( inputs ) | ||||
|     else        : out = inputs | ||||
|     conv = self.conv( out ) | ||||
|     if self.bn  : out = self.bn( conv ) | ||||
|     else        : out = conv | ||||
|     if self.relu: out = self.relu( out ) | ||||
|     else        : out = out | ||||
|  | ||||
|     return out | ||||
|  | ||||
|  | ||||
| class ResNetBasicblock(nn.Module): | ||||
|   num_conv  = 2 | ||||
|   expansion = 1 | ||||
|   def __init__(self, iCs, stride): | ||||
|     super(ResNetBasicblock, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     assert isinstance(iCs, tuple) or isinstance(iCs, list), 'invalid type of iCs : {:}'.format( iCs ) | ||||
|     assert len(iCs) == 3,'invalid lengths of iCs : {:}'.format(iCs) | ||||
|      | ||||
|     self.conv_a = ConvBNReLU(iCs[0], iCs[1], 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_b = ConvBNReLU(iCs[1], iCs[2], 3,      1, 1, False, has_avg=False, has_bn=True, has_relu=False) | ||||
|     residual_in = iCs[0] | ||||
|     if stride == 2: | ||||
|       self.downsample = ConvBNReLU(iCs[0], iCs[2], 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False) | ||||
|       residual_in = iCs[2] | ||||
|     elif iCs[0] != iCs[2]: | ||||
|       self.downsample = ConvBNReLU(iCs[0], iCs[2], 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False) | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     #self.out_dim  = max(residual_in, iCs[2]) | ||||
|     self.out_dim  = iCs[2] | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     basicblock = self.conv_a(inputs) | ||||
|     basicblock = self.conv_b(basicblock) | ||||
|  | ||||
|     if self.downsample is not None: | ||||
|       residual = self.downsample(inputs) | ||||
|     else: | ||||
|       residual = inputs | ||||
|     out = residual + basicblock | ||||
|     return F.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
|  | ||||
| class ResNetBottleneck(nn.Module): | ||||
|   expansion = 4 | ||||
|   num_conv  = 3 | ||||
|   def __init__(self, iCs, stride): | ||||
|     super(ResNetBottleneck, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     assert isinstance(iCs, tuple) or isinstance(iCs, list), 'invalid type of iCs : {:}'.format( iCs ) | ||||
|     assert len(iCs) == 4,'invalid lengths of iCs : {:}'.format(iCs) | ||||
|     self.conv_1x1 = ConvBNReLU(iCs[0], iCs[1], 1,      1, 0, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_3x3 = ConvBNReLU(iCs[1], iCs[2], 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_1x4 = ConvBNReLU(iCs[2], iCs[3], 1,      1, 0, False, has_avg=False, has_bn=True, has_relu=False) | ||||
|     residual_in = iCs[0] | ||||
|     if stride == 2: | ||||
|       self.downsample = ConvBNReLU(iCs[0], iCs[3], 1, 1, 0, False, has_avg=True , has_bn=False, has_relu=False) | ||||
|       residual_in     = iCs[3] | ||||
|     elif iCs[0] != iCs[3]: | ||||
|       self.downsample = ConvBNReLU(iCs[0], iCs[3], 1, 1, 0, False, has_avg=False, has_bn=False, has_relu=False) | ||||
|       residual_in     = iCs[3] | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     #self.out_dim = max(residual_in, iCs[3]) | ||||
|     self.out_dim = iCs[3] | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|  | ||||
|     bottleneck = self.conv_1x1(inputs) | ||||
|     bottleneck = self.conv_3x3(bottleneck) | ||||
|     bottleneck = self.conv_1x4(bottleneck) | ||||
|  | ||||
|     if self.downsample is not None: | ||||
|       residual = self.downsample(inputs) | ||||
|     else: | ||||
|       residual = inputs | ||||
|     out = residual + bottleneck | ||||
|     return F.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
|  | ||||
| class InferWidthCifarResNet(nn.Module): | ||||
|  | ||||
|   def __init__(self, block_name, depth, xchannels, num_classes, zero_init_residual): | ||||
|     super(InferWidthCifarResNet, self).__init__() | ||||
|  | ||||
|     #Model type specifies number of layers for CIFAR-10 and CIFAR-100 model | ||||
|     if block_name == 'ResNetBasicblock': | ||||
|       block = ResNetBasicblock | ||||
|       assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110' | ||||
|       layer_blocks = (depth - 2) // 6 | ||||
|     elif block_name == 'ResNetBottleneck': | ||||
|       block = ResNetBottleneck | ||||
|       assert (depth - 2) % 9 == 0, 'depth should be one of 164' | ||||
|       layer_blocks = (depth - 2) // 9 | ||||
|     else: | ||||
|       raise ValueError('invalid block : {:}'.format(block_name)) | ||||
|  | ||||
|     self.message     = 'InferWidthCifarResNet : Depth : {:} , Layers for each block : {:}'.format(depth, layer_blocks) | ||||
|     self.num_classes = num_classes | ||||
|     self.xchannels   = xchannels | ||||
|     self.layers      = nn.ModuleList( [ ConvBNReLU(xchannels[0], xchannels[1], 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] ) | ||||
|     last_channel_idx = 1 | ||||
|     for stage in range(3): | ||||
|       for iL in range(layer_blocks): | ||||
|         num_conv = block.num_conv  | ||||
|         iCs      = self.xchannels[last_channel_idx:last_channel_idx+num_conv+1] | ||||
|         stride   = 2 if stage > 0 and iL == 0 else 1 | ||||
|         module   = block(iCs, stride) | ||||
|         last_channel_idx += num_conv | ||||
|         self.xchannels[last_channel_idx] = module.out_dim | ||||
|         self.layers.append  ( module ) | ||||
|         self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iCs={:}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iCs, module.out_dim, stride) | ||||
|    | ||||
|     self.avgpool    = nn.AvgPool2d(8) | ||||
|     self.classifier = nn.Linear(self.xchannels[-1], num_classes) | ||||
|      | ||||
|     self.apply(initialize_resnet) | ||||
|     if zero_init_residual: | ||||
|       for m in self.modules(): | ||||
|         if isinstance(m, ResNetBasicblock): | ||||
|           nn.init.constant_(m.conv_b.bn.weight, 0) | ||||
|         elif isinstance(m, ResNetBottleneck): | ||||
|           nn.init.constant_(m.conv_1x4.bn.weight, 0) | ||||
|  | ||||
|   def get_message(self): | ||||
|     return self.message | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     x = inputs | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       x = layer( x ) | ||||
|     features = self.avgpool(x) | ||||
|     features = features.view(features.size(0), -1) | ||||
|     logits   = self.classifier(features) | ||||
|     return features, logits | ||||
							
								
								
									
										170
									
								
								graph_dit/naswot/models/shape_infers/InferImagenetResNet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										170
									
								
								graph_dit/naswot/models/shape_infers/InferImagenetResNet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,170 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ##################################################### | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
| from ..initialization import initialize_resnet | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|    | ||||
|   num_conv  = 1 | ||||
|   def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu): | ||||
|     super(ConvBNReLU, self).__init__() | ||||
|     if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) | ||||
|     else       : self.avg = None | ||||
|     self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias) | ||||
|     if has_bn  : self.bn  = nn.BatchNorm2d(nOut) | ||||
|     else       : self.bn  = None | ||||
|     if has_relu: self.relu = nn.ReLU(inplace=True) | ||||
|     else       : self.relu = None | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.avg : out = self.avg( inputs ) | ||||
|     else        : out = inputs | ||||
|     conv = self.conv( out ) | ||||
|     if self.bn  : out = self.bn( conv ) | ||||
|     else        : out = conv | ||||
|     if self.relu: out = self.relu( out ) | ||||
|     else        : out = out | ||||
|  | ||||
|     return out | ||||
|  | ||||
|  | ||||
| class ResNetBasicblock(nn.Module): | ||||
|   num_conv  = 2 | ||||
|   expansion = 1 | ||||
|   def __init__(self, iCs, stride): | ||||
|     super(ResNetBasicblock, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     assert isinstance(iCs, tuple) or isinstance(iCs, list), 'invalid type of iCs : {:}'.format( iCs ) | ||||
|     assert len(iCs) == 3,'invalid lengths of iCs : {:}'.format(iCs) | ||||
|      | ||||
|     self.conv_a = ConvBNReLU(iCs[0], iCs[1], 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_b = ConvBNReLU(iCs[1], iCs[2], 3,      1, 1, False, has_avg=False, has_bn=True, has_relu=False) | ||||
|     residual_in = iCs[0] | ||||
|     if stride == 2: | ||||
|       self.downsample = ConvBNReLU(iCs[0], iCs[2], 1, 1, 0, False, has_avg=True, has_bn=True, has_relu=False) | ||||
|       residual_in = iCs[2] | ||||
|     elif iCs[0] != iCs[2]: | ||||
|       self.downsample = ConvBNReLU(iCs[0], iCs[2], 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False) | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     #self.out_dim  = max(residual_in, iCs[2]) | ||||
|     self.out_dim  = iCs[2] | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     basicblock = self.conv_a(inputs) | ||||
|     basicblock = self.conv_b(basicblock) | ||||
|  | ||||
|     if self.downsample is not None: | ||||
|       residual = self.downsample(inputs) | ||||
|     else: | ||||
|       residual = inputs | ||||
|     out = residual + basicblock | ||||
|     return F.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
|  | ||||
| class ResNetBottleneck(nn.Module): | ||||
|   expansion = 4 | ||||
|   num_conv  = 3 | ||||
|   def __init__(self, iCs, stride): | ||||
|     super(ResNetBottleneck, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     assert isinstance(iCs, tuple) or isinstance(iCs, list), 'invalid type of iCs : {:}'.format( iCs ) | ||||
|     assert len(iCs) == 4,'invalid lengths of iCs : {:}'.format(iCs) | ||||
|     self.conv_1x1 = ConvBNReLU(iCs[0], iCs[1], 1,      1, 0, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_3x3 = ConvBNReLU(iCs[1], iCs[2], 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_1x4 = ConvBNReLU(iCs[2], iCs[3], 1,      1, 0, False, has_avg=False, has_bn=True, has_relu=False) | ||||
|     residual_in = iCs[0] | ||||
|     if stride == 2: | ||||
|       self.downsample = ConvBNReLU(iCs[0], iCs[3], 1, 1, 0, False, has_avg=True , has_bn=True, has_relu=False) | ||||
|       residual_in     = iCs[3] | ||||
|     elif iCs[0] != iCs[3]: | ||||
|       self.downsample = ConvBNReLU(iCs[0], iCs[3], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False) | ||||
|       residual_in     = iCs[3] | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     #self.out_dim = max(residual_in, iCs[3]) | ||||
|     self.out_dim = iCs[3] | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|  | ||||
|     bottleneck = self.conv_1x1(inputs) | ||||
|     bottleneck = self.conv_3x3(bottleneck) | ||||
|     bottleneck = self.conv_1x4(bottleneck) | ||||
|  | ||||
|     if self.downsample is not None: | ||||
|       residual = self.downsample(inputs) | ||||
|     else: | ||||
|       residual = inputs | ||||
|     out = residual + bottleneck | ||||
|     return F.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
|  | ||||
| class InferImagenetResNet(nn.Module): | ||||
|  | ||||
|   def __init__(self, block_name, layers, xblocks, xchannels, deep_stem, num_classes, zero_init_residual): | ||||
|     super(InferImagenetResNet, self).__init__() | ||||
|  | ||||
|     #Model type specifies number of layers for CIFAR-10 and CIFAR-100 model | ||||
|     if block_name == 'BasicBlock': | ||||
|       block = ResNetBasicblock | ||||
|     elif block_name == 'Bottleneck': | ||||
|       block = ResNetBottleneck | ||||
|     else: | ||||
|       raise ValueError('invalid block : {:}'.format(block_name)) | ||||
|     assert len(xblocks) == len(layers), 'invalid layers : {:} vs xblocks : {:}'.format(layers, xblocks) | ||||
|  | ||||
|     self.message     = 'InferImagenetResNet : Depth : {:} -> {:}, Layers for each block : {:}'.format(sum(layers)*block.num_conv, sum(xblocks)*block.num_conv, xblocks) | ||||
|     self.num_classes = num_classes | ||||
|     self.xchannels   = xchannels | ||||
|     if not deep_stem: | ||||
|       self.layers      = nn.ModuleList( [ ConvBNReLU(xchannels[0], xchannels[1], 7, 2, 3, False, has_avg=False, has_bn=True, has_relu=True) ] ) | ||||
|       last_channel_idx = 1 | ||||
|     else: | ||||
|       self.layers      = nn.ModuleList( [ ConvBNReLU(xchannels[0], xchannels[1], 3, 2, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|                                          ,ConvBNReLU(xchannels[1], xchannels[2], 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] ) | ||||
|       last_channel_idx = 2 | ||||
|     self.layers.append( nn.MaxPool2d(kernel_size=3, stride=2, padding=1) ) | ||||
|     for stage, layer_blocks in enumerate(layers): | ||||
|       for iL in range(layer_blocks): | ||||
|         num_conv = block.num_conv  | ||||
|         iCs      = self.xchannels[last_channel_idx:last_channel_idx+num_conv+1] | ||||
|         stride   = 2 if stage > 0 and iL == 0 else 1 | ||||
|         module   = block(iCs, stride) | ||||
|         last_channel_idx += num_conv | ||||
|         self.xchannels[last_channel_idx] = module.out_dim | ||||
|         self.layers.append  ( module ) | ||||
|         self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iCs={:}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iCs, module.out_dim, stride) | ||||
|         if iL + 1 == xblocks[stage]: # reach the maximum depth | ||||
|           out_channel = module.out_dim | ||||
|           for iiL in range(iL+1, layer_blocks): | ||||
|             last_channel_idx += num_conv | ||||
|           self.xchannels[last_channel_idx] = module.out_dim | ||||
|           break | ||||
|     assert last_channel_idx + 1 == len(self.xchannels), '{:} vs {:}'.format(last_channel_idx, len(self.xchannels)) | ||||
|     self.avgpool    = nn.AdaptiveAvgPool2d((1,1)) | ||||
|     self.classifier = nn.Linear(self.xchannels[-1], num_classes) | ||||
|      | ||||
|     self.apply(initialize_resnet) | ||||
|     if zero_init_residual: | ||||
|       for m in self.modules(): | ||||
|         if isinstance(m, ResNetBasicblock): | ||||
|           nn.init.constant_(m.conv_b.bn.weight, 0) | ||||
|         elif isinstance(m, ResNetBottleneck): | ||||
|           nn.init.constant_(m.conv_1x4.bn.weight, 0) | ||||
|  | ||||
|   def get_message(self): | ||||
|     return self.message | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     x = inputs | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       x = layer( x ) | ||||
|     features = self.avgpool(x) | ||||
|     features = features.view(features.size(0), -1) | ||||
|     logits   = self.classifier(features) | ||||
|     return features, logits | ||||
							
								
								
									
										122
									
								
								graph_dit/naswot/models/shape_infers/InferMobileNetV2.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										122
									
								
								graph_dit/naswot/models/shape_infers/InferMobileNetV2.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,122 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ##################################################### | ||||
| # MobileNetV2: Inverted Residuals and Linear Bottlenecks, CVPR 2018 | ||||
| from torch import nn | ||||
| from ..initialization import initialize_resnet | ||||
| from ..SharedUtils    import parse_channel_info | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|   def __init__(self, in_planes, out_planes, kernel_size, stride, groups, has_bn=True, has_relu=True): | ||||
|     super(ConvBNReLU, self).__init__() | ||||
|     padding = (kernel_size - 1) // 2 | ||||
|     self.conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False) | ||||
|     if has_bn: self.bn = nn.BatchNorm2d(out_planes) | ||||
|     else     : self.bn = None | ||||
|     if has_relu: self.relu = nn.ReLU6(inplace=True) | ||||
|     else       : self.relu = None | ||||
|    | ||||
|   def forward(self, x): | ||||
|     out = self.conv( x ) | ||||
|     if self.bn:   out = self.bn  ( out ) | ||||
|     if self.relu: out = self.relu( out ) | ||||
|     return out | ||||
|  | ||||
|  | ||||
| class InvertedResidual(nn.Module): | ||||
|   def __init__(self, channels, stride, expand_ratio, additive): | ||||
|     super(InvertedResidual, self).__init__() | ||||
|     self.stride = stride | ||||
|     assert stride in [1, 2], 'invalid stride : {:}'.format(stride) | ||||
|     assert len(channels) in [2, 3], 'invalid channels : {:}'.format(channels) | ||||
|  | ||||
|     if len(channels) == 2: | ||||
|       layers = [] | ||||
|     else: | ||||
|       layers = [ConvBNReLU(channels[0], channels[1], 1, 1, 1)] | ||||
|     layers.extend([ | ||||
|       # dw | ||||
|       ConvBNReLU(channels[-2], channels[-2], 3, stride, channels[-2]), | ||||
|       # pw-linear | ||||
|       ConvBNReLU(channels[-2], channels[-1], 1, 1, 1, True, False), | ||||
|     ]) | ||||
|     self.conv = nn.Sequential(*layers) | ||||
|     self.additive = additive | ||||
|     if self.additive and channels[0] != channels[-1]: | ||||
|       self.shortcut = ConvBNReLU(channels[0], channels[-1], 1, 1, 1, True, False) | ||||
|     else: | ||||
|       self.shortcut = None | ||||
|     self.out_dim  = channels[-1] | ||||
|  | ||||
|   def forward(self, x): | ||||
|     out = self.conv(x) | ||||
|     # if self.additive: return additive_func(out, x) | ||||
|     if self.shortcut: return out + self.shortcut(x) | ||||
|     else            : return out | ||||
|  | ||||
|  | ||||
| class InferMobileNetV2(nn.Module): | ||||
|   def __init__(self, num_classes, xchannels, xblocks, dropout): | ||||
|     super(InferMobileNetV2, self).__init__() | ||||
|     block = InvertedResidual | ||||
|     inverted_residual_setting = [ | ||||
|       # t, c,  n, s | ||||
|       [1, 16 , 1, 1], | ||||
|       [6, 24 , 2, 2], | ||||
|       [6, 32 , 3, 2], | ||||
|       [6, 64 , 4, 2], | ||||
|       [6, 96 , 3, 1], | ||||
|       [6, 160, 3, 2], | ||||
|       [6, 320, 1, 1], | ||||
|     ] | ||||
|     assert len(inverted_residual_setting) == len(xblocks), 'invalid number of layers : {:} vs {:}'.format(len(inverted_residual_setting), len(xblocks)) | ||||
|     for block_num, ir_setting in zip(xblocks, inverted_residual_setting): | ||||
|       assert block_num <= ir_setting[2], '{:} vs {:}'.format(block_num, ir_setting) | ||||
|     xchannels = parse_channel_info(xchannels) | ||||
|     #for i, chs in enumerate(xchannels): | ||||
|     #  if i > 0: assert chs[0] == xchannels[i-1][-1], 'Layer[{:}] is invalid {:} vs {:}'.format(i, xchannels[i-1], chs) | ||||
|     self.xchannels = xchannels | ||||
|     self.message     = 'InferMobileNetV2 : xblocks={:}'.format(xblocks) | ||||
|     # building first layer | ||||
|     features = [ConvBNReLU(xchannels[0][0], xchannels[0][1], 3, 2, 1)] | ||||
|     last_channel_idx = 1 | ||||
|  | ||||
|     # building inverted residual blocks | ||||
|     for stage, (t, c, n, s) in enumerate(inverted_residual_setting): | ||||
|       for i in range(n): | ||||
|         stride = s if i == 0 else 1 | ||||
|         additv = True if i > 0 else False | ||||
|         module = block(self.xchannels[last_channel_idx], stride, t, additv) | ||||
|         features.append(module) | ||||
|         self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, Cs={:}, stride={:}, expand={:}, original-C={:}".format(stage, i, n, len(features), self.xchannels[last_channel_idx], stride, t, c) | ||||
|         last_channel_idx += 1 | ||||
|         if i + 1 == xblocks[stage]: | ||||
|           out_channel = module.out_dim | ||||
|           for iiL in range(i+1, n): | ||||
|             last_channel_idx += 1 | ||||
|           self.xchannels[last_channel_idx][0] = module.out_dim | ||||
|           break | ||||
|     # building last several layers | ||||
|     features.append(ConvBNReLU(self.xchannels[last_channel_idx][0], self.xchannels[last_channel_idx][1], 1, 1, 1)) | ||||
|     assert last_channel_idx + 2 == len(self.xchannels), '{:} vs {:}'.format(last_channel_idx, len(self.xchannels)) | ||||
|     # make it nn.Sequential | ||||
|     self.features = nn.Sequential(*features) | ||||
|  | ||||
|     # building classifier | ||||
|     self.classifier = nn.Sequential( | ||||
|       nn.Dropout(dropout), | ||||
|       nn.Linear(self.xchannels[last_channel_idx][1], num_classes), | ||||
|     ) | ||||
|  | ||||
|     # weight initialization | ||||
|     self.apply( initialize_resnet ) | ||||
|  | ||||
|   def get_message(self): | ||||
|     return self.message | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     features = self.features(inputs) | ||||
|     vectors  = features.mean([2, 3]) | ||||
|     predicts = self.classifier(vectors) | ||||
|     return features, predicts | ||||
							
								
								
									
										58
									
								
								graph_dit/naswot/models/shape_infers/InferTinyCellNet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										58
									
								
								graph_dit/naswot/models/shape_infers/InferTinyCellNet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,58 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ##################################################### | ||||
| from typing import List, Text, Any | ||||
| import torch.nn as nn | ||||
| from models.cell_operations import ResNetBasicblock | ||||
| from models.cell_infers.cells import InferCell | ||||
|  | ||||
|  | ||||
| class DynamicShapeTinyNet(nn.Module): | ||||
|  | ||||
|   def __init__(self, channels: List[int], genotype: Any, num_classes: int): | ||||
|     super(DynamicShapeTinyNet, self).__init__() | ||||
|     self._channels = channels | ||||
|     if len(channels) % 3 != 2: | ||||
|       raise ValueError('invalid number of layers : {:}'.format(len(channels))) | ||||
|     self._num_stage = N = len(channels) // 3 | ||||
|  | ||||
|     self.stem = nn.Sequential( | ||||
|                     nn.Conv2d(3, channels[0], kernel_size=3, padding=1, bias=False), | ||||
|                     nn.BatchNorm2d(channels[0])) | ||||
|  | ||||
|     # layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * N + [C*4 ] + [C*4  ] * N     | ||||
|     layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|  | ||||
|     c_prev = channels[0] | ||||
|     self.cells = nn.ModuleList() | ||||
|     for index, (c_curr, reduction) in enumerate(zip(channels, layer_reductions)): | ||||
|       if reduction : cell = ResNetBasicblock(c_prev, c_curr, 2, True) | ||||
|       else         : cell = InferCell(genotype, c_prev, c_curr, 1) | ||||
|       self.cells.append( cell ) | ||||
|       c_prev = cell.out_dim | ||||
|     self._num_layer = len(self.cells) | ||||
|  | ||||
|     self.lastact = nn.Sequential(nn.BatchNorm2d(c_prev), nn.ReLU(inplace=True)) | ||||
|     self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|     self.classifier = nn.Linear(c_prev, num_classes) | ||||
|  | ||||
|   def get_message(self) -> Text: | ||||
|     string = self.extra_repr() | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr()) | ||||
|     return string | ||||
|  | ||||
|   def extra_repr(self): | ||||
|     return ('{name}(C={_channels}, N={_num_stage}, L={_num_layer})'.format(name=self.__class__.__name__, **self.__dict__)) | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     feature = self.stem(inputs) | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       feature = cell(feature) | ||||
|  | ||||
|     out = self.lastact(feature) | ||||
|     out = self.global_pooling( out ) | ||||
|     out = out.view(out.size(0), -1) | ||||
|     logits = self.classifier(out) | ||||
|  | ||||
|     return out, logits | ||||
							
								
								
									
										9
									
								
								graph_dit/naswot/models/shape_infers/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										9
									
								
								graph_dit/naswot/models/shape_infers/__init__.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,9 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ##################################################### | ||||
| from .InferCifarResNet_width import InferWidthCifarResNet | ||||
| from .InferImagenetResNet import InferImagenetResNet | ||||
| from .InferCifarResNet_depth import InferDepthCifarResNet | ||||
| from .InferCifarResNet import InferCifarResNet | ||||
| from .InferMobileNetV2 import InferMobileNetV2 | ||||
| from .InferTinyCellNet import DynamicShapeTinyNet | ||||
							
								
								
									
										5
									
								
								graph_dit/naswot/models/shape_infers/shared_utils.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										5
									
								
								graph_dit/naswot/models/shape_infers/shared_utils.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,5 @@ | ||||
| def parse_channel_info(xstring): | ||||
|   blocks = xstring.split(' ') | ||||
|   blocks = [x.split('-') for x in blocks] | ||||
|   blocks = [[int(_) for _ in x] for x in blocks] | ||||
|   return blocks | ||||
							
								
								
									
										502
									
								
								graph_dit/naswot/models/shape_searchs/SearchCifarResNet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										502
									
								
								graph_dit/naswot/models/shape_searchs/SearchCifarResNet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,502 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import math, torch | ||||
| from collections import OrderedDict | ||||
| from bisect import bisect_right | ||||
| import torch.nn as nn | ||||
| from ..initialization import initialize_resnet | ||||
| from ..SharedUtils    import additive_func | ||||
| from .SoftSelect      import select2withP, ChannelWiseInter | ||||
| from .SoftSelect      import linear_forward | ||||
| from .SoftSelect      import get_width_choices | ||||
|  | ||||
|  | ||||
| def get_depth_choices(nDepth, return_num): | ||||
|   if nDepth == 2: | ||||
|     choices = (1, 2) | ||||
|   elif nDepth == 3: | ||||
|     choices = (1, 2, 3) | ||||
|   elif nDepth > 3: | ||||
|     choices = list(range(1, nDepth+1, 2)) | ||||
|     if choices[-1] < nDepth: choices.append(nDepth) | ||||
|   else: | ||||
|     raise ValueError('invalid nDepth : {:}'.format(nDepth)) | ||||
|   if return_num: return len(choices) | ||||
|   else         : return choices | ||||
|    | ||||
|  | ||||
| def conv_forward(inputs, conv, choices): | ||||
|   iC = conv.in_channels | ||||
|   fill_size = list(inputs.size()) | ||||
|   fill_size[1] = iC - fill_size[1] | ||||
|   filled  = torch.zeros(fill_size, device=inputs.device) | ||||
|   xinputs = torch.cat((inputs, filled), dim=1) | ||||
|   outputs = conv(xinputs) | ||||
|   selecteds = [outputs[:,:oC] for oC in choices] | ||||
|   return selecteds | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|   num_conv  = 1 | ||||
|   def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu): | ||||
|     super(ConvBNReLU, self).__init__() | ||||
|     self.InShape  = None | ||||
|     self.OutShape = None | ||||
|     self.choices  = get_width_choices(nOut) | ||||
|     self.register_buffer('choices_tensor', torch.Tensor( self.choices )) | ||||
|  | ||||
|     if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) | ||||
|     else       : self.avg = None | ||||
|     self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias) | ||||
|     #if has_bn  : self.bn  = nn.BatchNorm2d(nOut) | ||||
|     #else       : self.bn  = None | ||||
|     self.has_bn = has_bn | ||||
|     self.BNs  = nn.ModuleList() | ||||
|     for i, _out in enumerate(self.choices): | ||||
|       self.BNs.append(nn.BatchNorm2d(_out)) | ||||
|     if has_relu: self.relu = nn.ReLU(inplace=True) | ||||
|     else       : self.relu = None | ||||
|     self.in_dim   = nIn | ||||
|     self.out_dim  = nOut | ||||
|     self.search_mode = 'basic' | ||||
|  | ||||
|   def get_flops(self, channels, check_range=True, divide=1): | ||||
|     iC, oC = channels | ||||
|     if check_range: assert iC <= self.conv.in_channels and oC <= self.conv.out_channels, '{:} vs {:}  |  {:} vs {:}'.format(iC, self.conv.in_channels, oC, self.conv.out_channels) | ||||
|     assert isinstance(self.InShape, tuple) and len(self.InShape) == 2, 'invalid in-shape : {:}'.format(self.InShape) | ||||
|     assert isinstance(self.OutShape, tuple) and len(self.OutShape) == 2, 'invalid out-shape : {:}'.format(self.OutShape) | ||||
|     #conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups | ||||
|     conv_per_position_flops = (self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups) | ||||
|     all_positions = self.OutShape[0] * self.OutShape[1] | ||||
|     flops = (conv_per_position_flops * all_positions / divide) * iC * oC | ||||
|     if self.conv.bias is not None: flops += all_positions / divide | ||||
|     return flops | ||||
|  | ||||
|   def get_range(self): | ||||
|     return [self.choices] | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.search_mode == 'basic': | ||||
|       return self.basic_forward(inputs) | ||||
|     elif self.search_mode == 'search': | ||||
|       return self.search_forward(inputs) | ||||
|     else: | ||||
|       raise ValueError('invalid search_mode = {:}'.format(self.search_mode)) | ||||
|  | ||||
|   def search_forward(self, tuple_inputs): | ||||
|     assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) ) | ||||
|     inputs, expected_inC, probability, index, prob = tuple_inputs | ||||
|     index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob) | ||||
|     probability = torch.squeeze(probability) | ||||
|     assert len(index) == 2, 'invalid length : {:}'.format(index) | ||||
|     # compute expected flop | ||||
|     #coordinates   = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability) | ||||
|     expected_outC = (self.choices_tensor * probability).sum() | ||||
|     expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6) | ||||
|     if self.avg : out = self.avg( inputs ) | ||||
|     else        : out = inputs | ||||
|     # convolutional layer | ||||
|     out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index]) | ||||
|     out_bns   = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)] | ||||
|     # merge | ||||
|     out_channel = max([x.size(1) for x in out_bns]) | ||||
|     outA = ChannelWiseInter(out_bns[0], out_channel) | ||||
|     outB = ChannelWiseInter(out_bns[1], out_channel) | ||||
|     out  = outA * prob[0] + outB * prob[1] | ||||
|     #out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1]) | ||||
|  | ||||
|     if self.relu: out = self.relu( out ) | ||||
|     else        : out = out | ||||
|     return out, expected_outC, expected_flop | ||||
|  | ||||
|   def basic_forward(self, inputs): | ||||
|     if self.avg : out = self.avg( inputs ) | ||||
|     else        : out = inputs | ||||
|     conv = self.conv( out ) | ||||
|     if self.has_bn:out= self.BNs[-1]( conv ) | ||||
|     else        : out = conv | ||||
|     if self.relu: out = self.relu( out ) | ||||
|     else        : out = out | ||||
|     if self.InShape is None: | ||||
|       self.InShape  = (inputs.size(-2), inputs.size(-1)) | ||||
|       self.OutShape = (out.size(-2)   , out.size(-1)) | ||||
|     return out | ||||
|  | ||||
|  | ||||
| class ResNetBasicblock(nn.Module): | ||||
|   expansion = 1 | ||||
|   num_conv  = 2 | ||||
|   def __init__(self, inplanes, planes, stride): | ||||
|     super(ResNetBasicblock, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     self.conv_a = ConvBNReLU(inplanes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_b = ConvBNReLU(  planes, planes, 3,      1, 1, False, has_avg=False, has_bn=True, has_relu=False) | ||||
|     if stride == 2: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False) | ||||
|     elif inplanes != planes: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False) | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     self.out_dim     = planes | ||||
|     self.search_mode = 'basic' | ||||
|  | ||||
|   def get_range(self): | ||||
|     return self.conv_a.get_range() + self.conv_b.get_range() | ||||
|  | ||||
|   def get_flops(self, channels): | ||||
|     assert len(channels) == 3, 'invalid channels : {:}'.format(channels) | ||||
|     flop_A = self.conv_a.get_flops([channels[0], channels[1]]) | ||||
|     flop_B = self.conv_b.get_flops([channels[1], channels[2]]) | ||||
|     if hasattr(self.downsample, 'get_flops'): | ||||
|       flop_C = self.downsample.get_flops([channels[0], channels[-1]]) | ||||
|     else: | ||||
|       flop_C = 0 | ||||
|     if channels[0] != channels[-1] and self.downsample is None: # this short-cut will be added during the infer-train | ||||
|       flop_C = channels[0] * channels[-1] * self.conv_b.OutShape[0] * self.conv_b.OutShape[1] | ||||
|     return flop_A + flop_B + flop_C | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.search_mode == 'basic'   : return self.basic_forward(inputs) | ||||
|     elif self.search_mode == 'search': return self.search_forward(inputs) | ||||
|     else: raise ValueError('invalid search_mode = {:}'.format(self.search_mode)) | ||||
|  | ||||
|   def search_forward(self, tuple_inputs): | ||||
|     assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) ) | ||||
|     inputs, expected_inC, probability, indexes, probs = tuple_inputs | ||||
|     assert indexes.size(0) == 2 and probs.size(0) == 2 and probability.size(0) == 2 | ||||
|     out_a, expected_inC_a, expected_flop_a = self.conv_a( (inputs, expected_inC  , probability[0], indexes[0], probs[0]) ) | ||||
|     out_b, expected_inC_b, expected_flop_b = self.conv_b( (out_a , expected_inC_a, probability[1], indexes[1], probs[1]) ) | ||||
|     if self.downsample is not None: | ||||
|       residual, _, expected_flop_c = self.downsample( (inputs, expected_inC  , probability[1], indexes[1], probs[1]) ) | ||||
|     else: | ||||
|       residual, expected_flop_c = inputs, 0 | ||||
|     out = additive_func(residual, out_b) | ||||
|     return nn.functional.relu(out, inplace=True), expected_inC_b, sum([expected_flop_a, expected_flop_b, expected_flop_c]) | ||||
|  | ||||
|   def basic_forward(self, inputs): | ||||
|     basicblock = self.conv_a(inputs) | ||||
|     basicblock = self.conv_b(basicblock) | ||||
|     if self.downsample is not None: residual = self.downsample(inputs) | ||||
|     else                          : residual = inputs | ||||
|     out = additive_func(residual, basicblock) | ||||
|     return nn.functional.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
|  | ||||
| class ResNetBottleneck(nn.Module): | ||||
|   expansion = 4 | ||||
|   num_conv  = 3 | ||||
|   def __init__(self, inplanes, planes, stride): | ||||
|     super(ResNetBottleneck, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     self.conv_1x1 = ConvBNReLU(inplanes, planes, 1,      1, 0, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_3x3 = ConvBNReLU(  planes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_1x4 = ConvBNReLU(planes, planes*self.expansion, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False) | ||||
|     if stride == 2: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False) | ||||
|     elif inplanes != planes*self.expansion: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False) | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     self.out_dim     = planes * self.expansion | ||||
|     self.search_mode = 'basic' | ||||
|  | ||||
|   def get_range(self): | ||||
|     return self.conv_1x1.get_range() + self.conv_3x3.get_range() + self.conv_1x4.get_range() | ||||
|  | ||||
|   def get_flops(self, channels): | ||||
|     assert len(channels) == 4, 'invalid channels : {:}'.format(channels) | ||||
|     flop_A = self.conv_1x1.get_flops([channels[0], channels[1]]) | ||||
|     flop_B = self.conv_3x3.get_flops([channels[1], channels[2]]) | ||||
|     flop_C = self.conv_1x4.get_flops([channels[2], channels[3]]) | ||||
|     if hasattr(self.downsample, 'get_flops'): | ||||
|       flop_D = self.downsample.get_flops([channels[0], channels[-1]]) | ||||
|     else: | ||||
|       flop_D = 0 | ||||
|     if channels[0] != channels[-1] and self.downsample is None: # this short-cut will be added during the infer-train | ||||
|       flop_D = channels[0] * channels[-1] * self.conv_1x4.OutShape[0] * self.conv_1x4.OutShape[1] | ||||
|     return flop_A + flop_B + flop_C + flop_D | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.search_mode == 'basic'   : return self.basic_forward(inputs) | ||||
|     elif self.search_mode == 'search': return self.search_forward(inputs) | ||||
|     else: raise ValueError('invalid search_mode = {:}'.format(self.search_mode)) | ||||
|  | ||||
|   def basic_forward(self, inputs): | ||||
|     bottleneck = self.conv_1x1(inputs) | ||||
|     bottleneck = self.conv_3x3(bottleneck) | ||||
|     bottleneck = self.conv_1x4(bottleneck) | ||||
|     if self.downsample is not None: residual = self.downsample(inputs) | ||||
|     else                          : residual = inputs | ||||
|     out = additive_func(residual, bottleneck) | ||||
|     return nn.functional.relu(out, inplace=True) | ||||
|  | ||||
|   def search_forward(self, tuple_inputs): | ||||
|     assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) ) | ||||
|     inputs, expected_inC, probability, indexes, probs = tuple_inputs | ||||
|     assert indexes.size(0) == 3 and probs.size(0) == 3 and probability.size(0) == 3 | ||||
|     out_1x1, expected_inC_1x1, expected_flop_1x1 = self.conv_1x1( (inputs, expected_inC    , probability[0], indexes[0], probs[0]) ) | ||||
|     out_3x3, expected_inC_3x3, expected_flop_3x3 = self.conv_3x3( (out_1x1,expected_inC_1x1, probability[1], indexes[1], probs[1]) ) | ||||
|     out_1x4, expected_inC_1x4, expected_flop_1x4 = self.conv_1x4( (out_3x3,expected_inC_3x3, probability[2], indexes[2], probs[2]) ) | ||||
|     if self.downsample is not None: | ||||
|       residual, _, expected_flop_c = self.downsample( (inputs, expected_inC  , probability[2], indexes[2], probs[2]) ) | ||||
|     else: | ||||
|       residual, expected_flop_c = inputs, 0 | ||||
|     out = additive_func(residual, out_1x4) | ||||
|     return nn.functional.relu(out, inplace=True), expected_inC_1x4, sum([expected_flop_1x1, expected_flop_3x3, expected_flop_1x4, expected_flop_c]) | ||||
|  | ||||
|  | ||||
| class SearchShapeCifarResNet(nn.Module): | ||||
|  | ||||
|   def __init__(self, block_name, depth, num_classes): | ||||
|     super(SearchShapeCifarResNet, self).__init__() | ||||
|  | ||||
|     #Model type specifies number of layers for CIFAR-10 and CIFAR-100 model | ||||
|     if block_name == 'ResNetBasicblock': | ||||
|       block = ResNetBasicblock | ||||
|       assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110' | ||||
|       layer_blocks = (depth - 2) // 6 | ||||
|     elif block_name == 'ResNetBottleneck': | ||||
|       block = ResNetBottleneck | ||||
|       assert (depth - 2) % 9 == 0, 'depth should be one of 164' | ||||
|       layer_blocks = (depth - 2) // 9 | ||||
|     else: | ||||
|       raise ValueError('invalid block : {:}'.format(block_name)) | ||||
|  | ||||
|     self.message      = 'SearchShapeCifarResNet : Depth : {:} , Layers for each block : {:}'.format(depth, layer_blocks) | ||||
|     self.num_classes  = num_classes | ||||
|     self.channels     = [16] | ||||
|     self.layers       = nn.ModuleList( [ ConvBNReLU(3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] ) | ||||
|     self.InShape      = None | ||||
|     self.depth_info   = OrderedDict() | ||||
|     self.depth_at_i   = OrderedDict() | ||||
|     for stage in range(3): | ||||
|       cur_block_choices = get_depth_choices(layer_blocks, False) | ||||
|       assert cur_block_choices[-1] == layer_blocks, 'stage={:}, {:} vs {:}'.format(stage, cur_block_choices, layer_blocks) | ||||
|       self.message += "\nstage={:} ::: depth-block-choices={:} for {:} blocks.".format(stage, cur_block_choices, layer_blocks) | ||||
|       block_choices, xstart = [], len(self.layers) | ||||
|       for iL in range(layer_blocks): | ||||
|         iC     = self.channels[-1] | ||||
|         planes = 16 * (2**stage) | ||||
|         stride = 2 if stage > 0 and iL == 0 else 1 | ||||
|         module = block(iC, planes, stride) | ||||
|         self.channels.append( module.out_dim ) | ||||
|         self.layers.append  ( module ) | ||||
|         self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iC, module.out_dim, stride) | ||||
|         # added for depth | ||||
|         layer_index = len(self.layers) - 1 | ||||
|         if iL + 1 in cur_block_choices: block_choices.append( layer_index ) | ||||
|         if iL + 1 == layer_blocks: | ||||
|           self.depth_info[layer_index] = {'choices': block_choices, | ||||
|                                           'stage'  : stage, | ||||
|                                           'xstart' : xstart} | ||||
|     self.depth_info_list = [] | ||||
|     for xend, info in self.depth_info.items(): | ||||
|       self.depth_info_list.append( (xend, info) ) | ||||
|       xstart, xstage = info['xstart'], info['stage'] | ||||
|       for ilayer in range(xstart, xend+1): | ||||
|         idx = bisect_right(info['choices'], ilayer-1) | ||||
|         self.depth_at_i[ilayer] = (xstage, idx) | ||||
|  | ||||
|     self.avgpool     = nn.AvgPool2d(8) | ||||
|     self.classifier  = nn.Linear(module.out_dim, num_classes) | ||||
|     self.InShape     = None | ||||
|     self.tau         = -1 | ||||
|     self.search_mode = 'basic' | ||||
|     #assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth) | ||||
|      | ||||
|     # parameters for width | ||||
|     self.Ranges = [] | ||||
|     self.layer2indexRange = [] | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       start_index = len(self.Ranges) | ||||
|       self.Ranges += layer.get_range() | ||||
|       self.layer2indexRange.append( (start_index, len(self.Ranges)) ) | ||||
|     assert len(self.Ranges) + 1 == depth, 'invalid depth check {:} vs {:}'.format(len(self.Ranges) + 1, depth) | ||||
|  | ||||
|     self.register_parameter('width_attentions', nn.Parameter(torch.Tensor(len(self.Ranges), get_width_choices(None)))) | ||||
|     self.register_parameter('depth_attentions', nn.Parameter(torch.Tensor(3, get_depth_choices(layer_blocks, True)))) | ||||
|     nn.init.normal_(self.width_attentions, 0, 0.01) | ||||
|     nn.init.normal_(self.depth_attentions, 0, 0.01) | ||||
|     self.apply(initialize_resnet) | ||||
|  | ||||
|   def arch_parameters(self, LR=None): | ||||
|     if LR is None: | ||||
|       return [self.width_attentions, self.depth_attentions] | ||||
|     else: | ||||
|       return [ | ||||
|                {"params": self.width_attentions, "lr": LR}, | ||||
|                {"params": self.depth_attentions, "lr": LR}, | ||||
|              ] | ||||
|  | ||||
|   def base_parameters(self): | ||||
|     return list(self.layers.parameters()) + list(self.avgpool.parameters()) + list(self.classifier.parameters()) | ||||
|  | ||||
|   def get_flop(self, mode, config_dict, extra_info): | ||||
|     if config_dict is not None: config_dict = config_dict.copy() | ||||
|     # select channels  | ||||
|     channels = [3] | ||||
|     for i, weight in enumerate(self.width_attentions): | ||||
|       if mode == 'genotype': | ||||
|         with torch.no_grad(): | ||||
|           probe = nn.functional.softmax(weight, dim=0) | ||||
|           C = self.Ranges[i][ torch.argmax(probe).item() ] | ||||
|       elif mode == 'max': | ||||
|         C = self.Ranges[i][-1] | ||||
|       elif mode == 'fix': | ||||
|         C = int( math.sqrt( extra_info ) * self.Ranges[i][-1] ) | ||||
|       elif mode == 'random': | ||||
|         assert isinstance(extra_info, float), 'invalid extra_info : {:}'.format(extra_info) | ||||
|         with torch.no_grad(): | ||||
|           prob = nn.functional.softmax(weight, dim=0) | ||||
|           approximate_C = int( math.sqrt( extra_info ) * self.Ranges[i][-1] ) | ||||
|           for j in range(prob.size(0)): | ||||
|             prob[j] = 1 / (abs(j - (approximate_C-self.Ranges[i][j])) + 0.2) | ||||
|           C = self.Ranges[i][ torch.multinomial(prob, 1, False).item() ] | ||||
|       else: | ||||
|         raise ValueError('invalid mode : {:}'.format(mode)) | ||||
|       channels.append( C ) | ||||
|     # select depth | ||||
|     if mode == 'genotype': | ||||
|       with torch.no_grad(): | ||||
|         depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) | ||||
|         choices = torch.argmax(depth_probs, dim=1).cpu().tolist() | ||||
|     elif mode == 'max' or mode == 'fix': | ||||
|       choices = [depth_probs.size(1)-1 for _ in range(depth_probs.size(0))] | ||||
|     elif mode == 'random': | ||||
|       with torch.no_grad(): | ||||
|         depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) | ||||
|         choices = torch.multinomial(depth_probs, 1, False).cpu().tolist() | ||||
|     else: | ||||
|       raise ValueError('invalid mode : {:}'.format(mode)) | ||||
|     selected_layers = [] | ||||
|     for choice, xvalue in zip(choices, self.depth_info_list): | ||||
|       xtemp = xvalue[1]['choices'][choice] - xvalue[1]['xstart'] + 1 | ||||
|       selected_layers.append(xtemp) | ||||
|     flop = 0 | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       s, e = self.layer2indexRange[i] | ||||
|       xchl = tuple( channels[s:e+1] ) | ||||
|       if i in self.depth_at_i: | ||||
|         xstagei, xatti = self.depth_at_i[i] | ||||
|         if xatti <= choices[xstagei]: # leave this depth | ||||
|           flop+= layer.get_flops(xchl) | ||||
|         else: | ||||
|           flop+= 0 # do not use this layer | ||||
|       else: | ||||
|         flop+= layer.get_flops(xchl) | ||||
|     # the last fc layer | ||||
|     flop += channels[-1] * self.classifier.out_features | ||||
|     if config_dict is None: | ||||
|       return flop / 1e6 | ||||
|     else: | ||||
|       config_dict['xchannels']  = channels | ||||
|       config_dict['xblocks']    = selected_layers | ||||
|       config_dict['super_type'] = 'infer-shape' | ||||
|       config_dict['estimated_FLOP'] = flop / 1e6 | ||||
|       return flop / 1e6, config_dict | ||||
|  | ||||
|   def get_arch_info(self): | ||||
|     string = "for depth and width, there are {:} + {:} attention probabilities.".format(len(self.depth_attentions), len(self.width_attentions)) | ||||
|     string+= '\n{:}'.format(self.depth_info) | ||||
|     discrepancy = [] | ||||
|     with torch.no_grad(): | ||||
|       for i, att in enumerate(self.depth_attentions): | ||||
|         prob = nn.functional.softmax(att, dim=0) | ||||
|         prob = prob.cpu() ; selc = prob.argmax().item() ; prob = prob.tolist() | ||||
|         prob = ['{:.3f}'.format(x) for x in prob] | ||||
|         xstring = '{:03d}/{:03d}-th : {:}'.format(i, len(self.depth_attentions), ' '.join(prob)) | ||||
|         logt = ['{:.4f}'.format(x) for x in att.cpu().tolist()] | ||||
|         xstring += '  ||  {:17s}'.format(' '.join(logt)) | ||||
|         prob = sorted( [float(x) for x in prob] ) | ||||
|         disc = prob[-1] - prob[-2] | ||||
|         xstring += '  || discrepancy={:.2f} || select={:}/{:}'.format(disc, selc, len(prob)) | ||||
|         discrepancy.append( disc ) | ||||
|         string += '\n{:}'.format(xstring) | ||||
|       string += '\n-----------------------------------------------' | ||||
|       for i, att in enumerate(self.width_attentions): | ||||
|         prob = nn.functional.softmax(att, dim=0) | ||||
|         prob = prob.cpu() ; selc = prob.argmax().item() ; prob = prob.tolist() | ||||
|         prob = ['{:.3f}'.format(x) for x in prob] | ||||
|         xstring = '{:03d}/{:03d}-th : {:}'.format(i, len(self.width_attentions), ' '.join(prob)) | ||||
|         logt = ['{:.3f}'.format(x) for x in att.cpu().tolist()] | ||||
|         xstring += '  ||  {:52s}'.format(' '.join(logt)) | ||||
|         prob = sorted( [float(x) for x in prob] ) | ||||
|         disc = prob[-1] - prob[-2] | ||||
|         xstring += '  || dis={:.2f} || select={:}/{:}'.format(disc, selc, len(prob)) | ||||
|         discrepancy.append( disc ) | ||||
|         string += '\n{:}'.format(xstring) | ||||
|     return string, discrepancy | ||||
|  | ||||
|   def set_tau(self, tau_max, tau_min, epoch_ratio): | ||||
|     assert epoch_ratio >= 0 and epoch_ratio <= 1, 'invalid epoch-ratio : {:}'.format(epoch_ratio) | ||||
|     tau = tau_min + (tau_max-tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2 | ||||
|     self.tau = tau | ||||
|  | ||||
|   def get_message(self): | ||||
|     return self.message | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.search_mode == 'basic': | ||||
|       return self.basic_forward(inputs) | ||||
|     elif self.search_mode == 'search': | ||||
|       return self.search_forward(inputs) | ||||
|     else: | ||||
|       raise ValueError('invalid search_mode = {:}'.format(self.search_mode)) | ||||
|  | ||||
|   def search_forward(self, inputs): | ||||
|     flop_width_probs = nn.functional.softmax(self.width_attentions, dim=1) | ||||
|     flop_depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) | ||||
|     flop_depth_probs = torch.flip( torch.cumsum( torch.flip(flop_depth_probs, [1]), 1 ), [1] ) | ||||
|     selected_widths, selected_width_probs = select2withP(self.width_attentions, self.tau) | ||||
|     selected_depth_probs = select2withP(self.depth_attentions, self.tau, True) | ||||
|     with torch.no_grad(): | ||||
|       selected_widths = selected_widths.cpu() | ||||
|  | ||||
|     x, last_channel_idx, expected_inC, flops = inputs, 0, 3, [] | ||||
|     feature_maps = [] | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       selected_w_index = selected_widths     [last_channel_idx: last_channel_idx+layer.num_conv] | ||||
|       selected_w_probs = selected_width_probs[last_channel_idx: last_channel_idx+layer.num_conv] | ||||
|       layer_prob       = flop_width_probs    [last_channel_idx: last_channel_idx+layer.num_conv] | ||||
|       x, expected_inC, expected_flop = layer( (x, expected_inC, layer_prob, selected_w_index, selected_w_probs) ) | ||||
|       feature_maps.append( x ) | ||||
|       last_channel_idx += layer.num_conv | ||||
|       if i in self.depth_info: # aggregate the information | ||||
|         choices = self.depth_info[i]['choices'] | ||||
|         xstagei = self.depth_info[i]['stage'] | ||||
|         #print ('iL={:}, choices={:}, stage={:}, probs={:}'.format(i, choices, xstagei, selected_depth_probs[xstagei].cpu().tolist())) | ||||
|         #for A, W in zip(choices, selected_depth_probs[xstagei]): | ||||
|         #  print('Size = {:}, W = {:}'.format(feature_maps[A].size(), W)) | ||||
|         possible_tensors = [] | ||||
|         max_C = max( feature_maps[A].size(1) for A in choices ) | ||||
|         for tempi, A in enumerate(choices): | ||||
|           xtensor = ChannelWiseInter(feature_maps[A], max_C) | ||||
|           #drop_ratio = 1-(tempi+1.0)/len(choices) | ||||
|           #xtensor = drop_path(xtensor, drop_ratio) | ||||
|           possible_tensors.append( xtensor ) | ||||
|         weighted_sum = sum( xtensor * W for xtensor, W in zip(possible_tensors, selected_depth_probs[xstagei]) ) | ||||
|         x = weighted_sum | ||||
|          | ||||
|       if i in self.depth_at_i: | ||||
|         xstagei, xatti = self.depth_at_i[i] | ||||
|         x_expected_flop = flop_depth_probs[xstagei, xatti] * expected_flop | ||||
|       else: | ||||
|         x_expected_flop = expected_flop | ||||
|       flops.append( x_expected_flop ) | ||||
|     flops.append( expected_inC * (self.classifier.out_features*1.0/1e6) ) | ||||
|     features = self.avgpool(x) | ||||
|     features = features.view(features.size(0), -1) | ||||
|     logits   = linear_forward(features, self.classifier) | ||||
|     return logits, torch.stack( [sum(flops)] ) | ||||
|  | ||||
|   def basic_forward(self, inputs): | ||||
|     if self.InShape is None: self.InShape = (inputs.size(-2), inputs.size(-1)) | ||||
|     x = inputs | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       x = layer( x ) | ||||
|     features = self.avgpool(x) | ||||
|     features = features.view(features.size(0), -1) | ||||
|     logits   = self.classifier(features) | ||||
|     return features, logits | ||||
							
								
								
									
										340
									
								
								graph_dit/naswot/models/shape_searchs/SearchCifarResNet_depth.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										340
									
								
								graph_dit/naswot/models/shape_searchs/SearchCifarResNet_depth.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,340 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import math, torch | ||||
| from collections import OrderedDict | ||||
| from bisect import bisect_right | ||||
| import torch.nn as nn | ||||
| from ..initialization import initialize_resnet | ||||
| from ..SharedUtils    import additive_func | ||||
| from .SoftSelect      import select2withP, ChannelWiseInter | ||||
| from .SoftSelect      import linear_forward | ||||
| from .SoftSelect      import get_width_choices | ||||
|  | ||||
|  | ||||
| def get_depth_choices(nDepth, return_num): | ||||
|   if nDepth == 2: | ||||
|     choices = (1, 2) | ||||
|   elif nDepth == 3: | ||||
|     choices = (1, 2, 3) | ||||
|   elif nDepth > 3: | ||||
|     choices = list(range(1, nDepth+1, 2)) | ||||
|     if choices[-1] < nDepth: choices.append(nDepth) | ||||
|   else: | ||||
|     raise ValueError('invalid nDepth : {:}'.format(nDepth)) | ||||
|   if return_num: return len(choices) | ||||
|   else         : return choices | ||||
|  | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|   num_conv  = 1 | ||||
|   def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu): | ||||
|     super(ConvBNReLU, self).__init__() | ||||
|     self.InShape  = None | ||||
|     self.OutShape = None | ||||
|     self.choices  = get_width_choices(nOut) | ||||
|     self.register_buffer('choices_tensor', torch.Tensor( self.choices )) | ||||
|  | ||||
|     if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) | ||||
|     else       : self.avg = None | ||||
|     self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias) | ||||
|     if has_bn  : self.bn  = nn.BatchNorm2d(nOut) | ||||
|     else       : self.bn  = None | ||||
|     if has_relu: self.relu = nn.ReLU(inplace=False) | ||||
|     else       : self.relu = None | ||||
|     self.in_dim   = nIn | ||||
|     self.out_dim  = nOut | ||||
|  | ||||
|   def get_flops(self, divide=1): | ||||
|     iC, oC = self.in_dim, self.out_dim | ||||
|     assert iC <= self.conv.in_channels and oC <= self.conv.out_channels, '{:} vs {:}  |  {:} vs {:}'.format(iC, self.conv.in_channels, oC, self.conv.out_channels) | ||||
|     assert isinstance(self.InShape, tuple) and len(self.InShape) == 2, 'invalid in-shape : {:}'.format(self.InShape) | ||||
|     assert isinstance(self.OutShape, tuple) and len(self.OutShape) == 2, 'invalid out-shape : {:}'.format(self.OutShape) | ||||
|     #conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups | ||||
|     conv_per_position_flops = (self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups) | ||||
|     all_positions = self.OutShape[0] * self.OutShape[1] | ||||
|     flops = (conv_per_position_flops * all_positions / divide) * iC * oC | ||||
|     if self.conv.bias is not None: flops += all_positions / divide | ||||
|     return flops | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.avg : out = self.avg( inputs ) | ||||
|     else        : out = inputs | ||||
|     conv = self.conv( out ) | ||||
|     if self.bn  : out = self.bn( conv ) | ||||
|     else        : out = conv | ||||
|     if self.relu: out = self.relu( out ) | ||||
|     else        : out = out | ||||
|     if self.InShape is None: | ||||
|       self.InShape  = (inputs.size(-2), inputs.size(-1)) | ||||
|       self.OutShape = (out.size(-2)   , out.size(-1)) | ||||
|     return out | ||||
|  | ||||
|  | ||||
| class ResNetBasicblock(nn.Module): | ||||
|   expansion = 1 | ||||
|   num_conv  = 2 | ||||
|   def __init__(self, inplanes, planes, stride): | ||||
|     super(ResNetBasicblock, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     self.conv_a = ConvBNReLU(inplanes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_b = ConvBNReLU(  planes, planes, 3,      1, 1, False, has_avg=False, has_bn=True, has_relu=False) | ||||
|     if stride == 2: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False) | ||||
|     elif inplanes != planes: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False) | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     self.out_dim     = planes | ||||
|     self.search_mode = 'basic' | ||||
|  | ||||
|   def get_flops(self, divide=1): | ||||
|     flop_A = self.conv_a.get_flops(divide) | ||||
|     flop_B = self.conv_b.get_flops(divide) | ||||
|     if hasattr(self.downsample, 'get_flops'): | ||||
|       flop_C = self.downsample.get_flops(divide) | ||||
|     else: | ||||
|       flop_C = 0 | ||||
|     return flop_A + flop_B + flop_C | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     basicblock = self.conv_a(inputs) | ||||
|     basicblock = self.conv_b(basicblock) | ||||
|     if self.downsample is not None: residual = self.downsample(inputs) | ||||
|     else                          : residual = inputs | ||||
|     out = additive_func(residual, basicblock) | ||||
|     return nn.functional.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
|  | ||||
| class ResNetBottleneck(nn.Module): | ||||
|   expansion = 4 | ||||
|   num_conv  = 3 | ||||
|   def __init__(self, inplanes, planes, stride): | ||||
|     super(ResNetBottleneck, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     self.conv_1x1 = ConvBNReLU(inplanes, planes, 1,      1, 0, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_3x3 = ConvBNReLU(  planes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_1x4 = ConvBNReLU(planes, planes*self.expansion, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False) | ||||
|     if stride == 2: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False) | ||||
|     elif inplanes != planes*self.expansion: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False) | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     self.out_dim     = planes * self.expansion | ||||
|     self.search_mode = 'basic' | ||||
|  | ||||
|   def get_range(self): | ||||
|     return self.conv_1x1.get_range() + self.conv_3x3.get_range() + self.conv_1x4.get_range() | ||||
|  | ||||
|   def get_flops(self, divide): | ||||
|     flop_A = self.conv_1x1.get_flops(divide) | ||||
|     flop_B = self.conv_3x3.get_flops(divide) | ||||
|     flop_C = self.conv_1x4.get_flops(divide) | ||||
|     if hasattr(self.downsample, 'get_flops'): | ||||
|       flop_D = self.downsample.get_flops(divide) | ||||
|     else: | ||||
|       flop_D = 0 | ||||
|     return flop_A + flop_B + flop_C + flop_D | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     bottleneck = self.conv_1x1(inputs) | ||||
|     bottleneck = self.conv_3x3(bottleneck) | ||||
|     bottleneck = self.conv_1x4(bottleneck) | ||||
|     if self.downsample is not None: residual = self.downsample(inputs) | ||||
|     else                          : residual = inputs | ||||
|     out = additive_func(residual, bottleneck) | ||||
|     return nn.functional.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
| class SearchDepthCifarResNet(nn.Module): | ||||
|  | ||||
|   def __init__(self, block_name, depth, num_classes): | ||||
|     super(SearchDepthCifarResNet, self).__init__() | ||||
|  | ||||
|     #Model type specifies number of layers for CIFAR-10 and CIFAR-100 model | ||||
|     if block_name == 'ResNetBasicblock': | ||||
|       block = ResNetBasicblock | ||||
|       assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110' | ||||
|       layer_blocks = (depth - 2) // 6 | ||||
|     elif block_name == 'ResNetBottleneck': | ||||
|       block = ResNetBottleneck | ||||
|       assert (depth - 2) % 9 == 0, 'depth should be one of 164' | ||||
|       layer_blocks = (depth - 2) // 9 | ||||
|     else: | ||||
|       raise ValueError('invalid block : {:}'.format(block_name)) | ||||
|  | ||||
|     self.message      = 'SearchShapeCifarResNet : Depth : {:} , Layers for each block : {:}'.format(depth, layer_blocks) | ||||
|     self.num_classes  = num_classes | ||||
|     self.channels     = [16] | ||||
|     self.layers       = nn.ModuleList( [ ConvBNReLU(3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] ) | ||||
|     self.InShape      = None | ||||
|     self.depth_info   = OrderedDict() | ||||
|     self.depth_at_i   = OrderedDict() | ||||
|     for stage in range(3): | ||||
|       cur_block_choices = get_depth_choices(layer_blocks, False) | ||||
|       assert cur_block_choices[-1] == layer_blocks, 'stage={:}, {:} vs {:}'.format(stage, cur_block_choices, layer_blocks) | ||||
|       self.message += "\nstage={:} ::: depth-block-choices={:} for {:} blocks.".format(stage, cur_block_choices, layer_blocks) | ||||
|       block_choices, xstart = [], len(self.layers) | ||||
|       for iL in range(layer_blocks): | ||||
|         iC     = self.channels[-1] | ||||
|         planes = 16 * (2**stage) | ||||
|         stride = 2 if stage > 0 and iL == 0 else 1 | ||||
|         module = block(iC, planes, stride) | ||||
|         self.channels.append( module.out_dim ) | ||||
|         self.layers.append  ( module ) | ||||
|         self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iC, module.out_dim, stride) | ||||
|         # added for depth | ||||
|         layer_index = len(self.layers) - 1 | ||||
|         if iL + 1 in cur_block_choices: block_choices.append( layer_index ) | ||||
|         if iL + 1 == layer_blocks: | ||||
|           self.depth_info[layer_index] = {'choices': block_choices, | ||||
|                                           'stage'  : stage, | ||||
|                                           'xstart' : xstart} | ||||
|     self.depth_info_list = [] | ||||
|     for xend, info in self.depth_info.items(): | ||||
|       self.depth_info_list.append( (xend, info) ) | ||||
|       xstart, xstage = info['xstart'], info['stage'] | ||||
|       for ilayer in range(xstart, xend+1): | ||||
|         idx = bisect_right(info['choices'], ilayer-1) | ||||
|         self.depth_at_i[ilayer] = (xstage, idx) | ||||
|  | ||||
|     self.avgpool     = nn.AvgPool2d(8) | ||||
|     self.classifier  = nn.Linear(module.out_dim, num_classes) | ||||
|     self.InShape     = None | ||||
|     self.tau         = -1 | ||||
|     self.search_mode = 'basic' | ||||
|     #assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth) | ||||
|      | ||||
|  | ||||
|     self.register_parameter('depth_attentions', nn.Parameter(torch.Tensor(3, get_depth_choices(layer_blocks, True)))) | ||||
|     nn.init.normal_(self.depth_attentions, 0, 0.01) | ||||
|     self.apply(initialize_resnet) | ||||
|  | ||||
|   def arch_parameters(self): | ||||
|     return [self.depth_attentions] | ||||
|  | ||||
|   def base_parameters(self): | ||||
|     return list(self.layers.parameters()) + list(self.avgpool.parameters()) + list(self.classifier.parameters()) | ||||
|  | ||||
|   def get_flop(self, mode, config_dict, extra_info): | ||||
|     if config_dict is not None: config_dict = config_dict.copy() | ||||
|     # select depth | ||||
|     if mode == 'genotype': | ||||
|       with torch.no_grad(): | ||||
|         depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) | ||||
|         choices = torch.argmax(depth_probs, dim=1).cpu().tolist() | ||||
|     elif mode == 'max': | ||||
|       choices = [depth_probs.size(1)-1 for _ in range(depth_probs.size(0))] | ||||
|     elif mode == 'random': | ||||
|       with torch.no_grad(): | ||||
|         depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) | ||||
|         choices = torch.multinomial(depth_probs, 1, False).cpu().tolist() | ||||
|     else: | ||||
|       raise ValueError('invalid mode : {:}'.format(mode)) | ||||
|     selected_layers = [] | ||||
|     for choice, xvalue in zip(choices, self.depth_info_list): | ||||
|       xtemp = xvalue[1]['choices'][choice] - xvalue[1]['xstart'] + 1 | ||||
|       selected_layers.append(xtemp) | ||||
|     flop = 0 | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       if i in self.depth_at_i: | ||||
|         xstagei, xatti = self.depth_at_i[i] | ||||
|         if xatti <= choices[xstagei]: # leave this depth | ||||
|           flop+= layer.get_flops() | ||||
|         else: | ||||
|           flop+= 0 # do not use this layer | ||||
|       else: | ||||
|         flop+= layer.get_flops() | ||||
|     # the last fc layer | ||||
|     flop += self.classifier.in_features * self.classifier.out_features | ||||
|     if config_dict is None: | ||||
|       return flop / 1e6 | ||||
|     else: | ||||
|       config_dict['xblocks']    = selected_layers | ||||
|       config_dict['super_type'] = 'infer-depth' | ||||
|       config_dict['estimated_FLOP'] = flop / 1e6 | ||||
|       return flop / 1e6, config_dict | ||||
|  | ||||
|   def get_arch_info(self): | ||||
|     string = "for depth, there are {:} attention probabilities.".format(len(self.depth_attentions)) | ||||
|     string+= '\n{:}'.format(self.depth_info) | ||||
|     discrepancy = [] | ||||
|     with torch.no_grad(): | ||||
|       for i, att in enumerate(self.depth_attentions): | ||||
|         prob = nn.functional.softmax(att, dim=0) | ||||
|         prob = prob.cpu() ; selc = prob.argmax().item() ; prob = prob.tolist() | ||||
|         prob = ['{:.3f}'.format(x) for x in prob] | ||||
|         xstring = '{:03d}/{:03d}-th : {:}'.format(i, len(self.depth_attentions), ' '.join(prob)) | ||||
|         logt = ['{:.4f}'.format(x) for x in att.cpu().tolist()] | ||||
|         xstring += '  ||  {:17s}'.format(' '.join(logt)) | ||||
|         prob = sorted( [float(x) for x in prob] ) | ||||
|         disc = prob[-1] - prob[-2] | ||||
|         xstring += '  || discrepancy={:.2f} || select={:}/{:}'.format(disc, selc, len(prob)) | ||||
|         discrepancy.append( disc ) | ||||
|         string += '\n{:}'.format(xstring) | ||||
|     return string, discrepancy | ||||
|  | ||||
|   def set_tau(self, tau_max, tau_min, epoch_ratio): | ||||
|     assert epoch_ratio >= 0 and epoch_ratio <= 1, 'invalid epoch-ratio : {:}'.format(epoch_ratio) | ||||
|     tau = tau_min + (tau_max-tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2 | ||||
|     self.tau = tau | ||||
|  | ||||
|   def get_message(self): | ||||
|     return self.message | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.search_mode == 'basic': | ||||
|       return self.basic_forward(inputs) | ||||
|     elif self.search_mode == 'search': | ||||
|       return self.search_forward(inputs) | ||||
|     else: | ||||
|       raise ValueError('invalid search_mode = {:}'.format(self.search_mode)) | ||||
|  | ||||
|   def search_forward(self, inputs): | ||||
|     flop_depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) | ||||
|     flop_depth_probs = torch.flip( torch.cumsum( torch.flip(flop_depth_probs, [1]), 1 ), [1] ) | ||||
|     selected_depth_probs = select2withP(self.depth_attentions, self.tau, True) | ||||
|  | ||||
|     x, flops = inputs, [] | ||||
|     feature_maps = [] | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       layer_i = layer( x ) | ||||
|       feature_maps.append( layer_i ) | ||||
|       if i in self.depth_info: # aggregate the information | ||||
|         choices = self.depth_info[i]['choices'] | ||||
|         xstagei = self.depth_info[i]['stage'] | ||||
|         possible_tensors = [] | ||||
|         for tempi, A in enumerate(choices): | ||||
|           xtensor = feature_maps[A] | ||||
|           possible_tensors.append( xtensor ) | ||||
|         weighted_sum = sum( xtensor * W for xtensor, W in zip(possible_tensors, selected_depth_probs[xstagei]) ) | ||||
|         x = weighted_sum | ||||
|       else: | ||||
|         x = layer_i | ||||
|         | ||||
|       if i in self.depth_at_i: | ||||
|         xstagei, xatti = self.depth_at_i[i] | ||||
|         #print ('layer-{:03d}, stage={:}, att={:}, prob={:}, flop={:}'.format(i, xstagei, xatti, flop_depth_probs[xstagei, xatti].item(), layer.get_flops(1e6))) | ||||
|         x_expected_flop = flop_depth_probs[xstagei, xatti] * layer.get_flops(1e6) | ||||
|       else: | ||||
|         x_expected_flop = layer.get_flops(1e6) | ||||
|       flops.append( x_expected_flop ) | ||||
|     flops.append( (self.classifier.in_features * self.classifier.out_features*1.0/1e6) ) | ||||
|  | ||||
|     features = self.avgpool(x) | ||||
|     features = features.view(features.size(0), -1) | ||||
|     logits   = linear_forward(features, self.classifier) | ||||
|     return logits, torch.stack( [sum(flops)] ) | ||||
|  | ||||
|   def basic_forward(self, inputs): | ||||
|     if self.InShape is None: self.InShape = (inputs.size(-2), inputs.size(-1)) | ||||
|     x = inputs | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       x = layer( x ) | ||||
|     features = self.avgpool(x) | ||||
|     features = features.view(features.size(0), -1) | ||||
|     logits   = self.classifier(features) | ||||
|     return features, logits | ||||
							
								
								
									
										393
									
								
								graph_dit/naswot/models/shape_searchs/SearchCifarResNet_width.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										393
									
								
								graph_dit/naswot/models/shape_searchs/SearchCifarResNet_width.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,393 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import math, torch | ||||
| import torch.nn as nn | ||||
| from ..initialization import initialize_resnet | ||||
| from ..SharedUtils    import additive_func | ||||
| from .SoftSelect      import select2withP, ChannelWiseInter | ||||
| from .SoftSelect      import linear_forward | ||||
| from .SoftSelect      import get_width_choices as get_choices | ||||
|  | ||||
|  | ||||
| def conv_forward(inputs, conv, choices): | ||||
|   iC = conv.in_channels | ||||
|   fill_size = list(inputs.size()) | ||||
|   fill_size[1] = iC - fill_size[1] | ||||
|   filled  = torch.zeros(fill_size, device=inputs.device) | ||||
|   xinputs = torch.cat((inputs, filled), dim=1) | ||||
|   outputs = conv(xinputs) | ||||
|   selecteds = [outputs[:,:oC] for oC in choices] | ||||
|   return selecteds | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|   num_conv  = 1 | ||||
|   def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu): | ||||
|     super(ConvBNReLU, self).__init__() | ||||
|     self.InShape  = None | ||||
|     self.OutShape = None | ||||
|     self.choices  = get_choices(nOut) | ||||
|     self.register_buffer('choices_tensor', torch.Tensor( self.choices )) | ||||
|  | ||||
|     if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) | ||||
|     else       : self.avg = None | ||||
|     self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias) | ||||
|     #if has_bn  : self.bn  = nn.BatchNorm2d(nOut) | ||||
|     #else       : self.bn  = None | ||||
|     self.has_bn = has_bn | ||||
|     self.BNs  = nn.ModuleList() | ||||
|     for i, _out in enumerate(self.choices): | ||||
|       self.BNs.append(nn.BatchNorm2d(_out)) | ||||
|     if has_relu: self.relu = nn.ReLU(inplace=True) | ||||
|     else       : self.relu = None | ||||
|     self.in_dim   = nIn | ||||
|     self.out_dim  = nOut | ||||
|     self.search_mode = 'basic' | ||||
|  | ||||
|   def get_flops(self, channels, check_range=True, divide=1): | ||||
|     iC, oC = channels | ||||
|     if check_range: assert iC <= self.conv.in_channels and oC <= self.conv.out_channels, '{:} vs {:}  |  {:} vs {:}'.format(iC, self.conv.in_channels, oC, self.conv.out_channels) | ||||
|     assert isinstance(self.InShape, tuple) and len(self.InShape) == 2, 'invalid in-shape : {:}'.format(self.InShape) | ||||
|     assert isinstance(self.OutShape, tuple) and len(self.OutShape) == 2, 'invalid out-shape : {:}'.format(self.OutShape) | ||||
|     #conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups | ||||
|     conv_per_position_flops = (self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups) | ||||
|     all_positions = self.OutShape[0] * self.OutShape[1] | ||||
|     flops = (conv_per_position_flops * all_positions / divide) * iC * oC | ||||
|     if self.conv.bias is not None: flops += all_positions / divide | ||||
|     return flops | ||||
|  | ||||
|   def get_range(self): | ||||
|     return [self.choices] | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.search_mode == 'basic': | ||||
|       return self.basic_forward(inputs) | ||||
|     elif self.search_mode == 'search': | ||||
|       return self.search_forward(inputs) | ||||
|     else: | ||||
|       raise ValueError('invalid search_mode = {:}'.format(self.search_mode)) | ||||
|  | ||||
|   def search_forward(self, tuple_inputs): | ||||
|     assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) ) | ||||
|     inputs, expected_inC, probability, index, prob = tuple_inputs | ||||
|     index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob) | ||||
|     probability = torch.squeeze(probability) | ||||
|     assert len(index) == 2, 'invalid length : {:}'.format(index) | ||||
|     # compute expected flop | ||||
|     #coordinates   = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability) | ||||
|     expected_outC = (self.choices_tensor * probability).sum() | ||||
|     expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6) | ||||
|     if self.avg : out = self.avg( inputs ) | ||||
|     else        : out = inputs | ||||
|     # convolutional layer | ||||
|     out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index]) | ||||
|     out_bns   = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)] | ||||
|     # merge | ||||
|     out_channel = max([x.size(1) for x in out_bns]) | ||||
|     outA = ChannelWiseInter(out_bns[0], out_channel) | ||||
|     outB = ChannelWiseInter(out_bns[1], out_channel) | ||||
|     out  = outA * prob[0] + outB * prob[1] | ||||
|     #out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1]) | ||||
|  | ||||
|     if self.relu: out = self.relu( out ) | ||||
|     else        : out = out | ||||
|     return out, expected_outC, expected_flop | ||||
|  | ||||
|   def basic_forward(self, inputs): | ||||
|     if self.avg : out = self.avg( inputs ) | ||||
|     else        : out = inputs | ||||
|     conv = self.conv( out ) | ||||
|     if self.has_bn:out= self.BNs[-1]( conv ) | ||||
|     else        : out = conv | ||||
|     if self.relu: out = self.relu( out ) | ||||
|     else        : out = out | ||||
|     if self.InShape is None: | ||||
|       self.InShape  = (inputs.size(-2), inputs.size(-1)) | ||||
|       self.OutShape = (out.size(-2)   , out.size(-1)) | ||||
|     return out | ||||
|  | ||||
|  | ||||
| class ResNetBasicblock(nn.Module): | ||||
|   expansion = 1 | ||||
|   num_conv  = 2 | ||||
|   def __init__(self, inplanes, planes, stride): | ||||
|     super(ResNetBasicblock, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     self.conv_a = ConvBNReLU(inplanes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_b = ConvBNReLU(  planes, planes, 3,      1, 1, False, has_avg=False, has_bn=True, has_relu=False) | ||||
|     if stride == 2: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False) | ||||
|     elif inplanes != planes: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False) | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     self.out_dim     = planes | ||||
|     self.search_mode = 'basic' | ||||
|  | ||||
|   def get_range(self): | ||||
|     return self.conv_a.get_range() + self.conv_b.get_range() | ||||
|  | ||||
|   def get_flops(self, channels): | ||||
|     assert len(channels) == 3, 'invalid channels : {:}'.format(channels) | ||||
|     flop_A = self.conv_a.get_flops([channels[0], channels[1]]) | ||||
|     flop_B = self.conv_b.get_flops([channels[1], channels[2]]) | ||||
|     if hasattr(self.downsample, 'get_flops'): | ||||
|       flop_C = self.downsample.get_flops([channels[0], channels[-1]]) | ||||
|     else: | ||||
|       flop_C = 0 | ||||
|     if channels[0] != channels[-1] and self.downsample is None: # this short-cut will be added during the infer-train | ||||
|       flop_C = channels[0] * channels[-1] * self.conv_b.OutShape[0] * self.conv_b.OutShape[1] | ||||
|     return flop_A + flop_B + flop_C | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.search_mode == 'basic'   : return self.basic_forward(inputs) | ||||
|     elif self.search_mode == 'search': return self.search_forward(inputs) | ||||
|     else: raise ValueError('invalid search_mode = {:}'.format(self.search_mode)) | ||||
|  | ||||
|   def search_forward(self, tuple_inputs): | ||||
|     assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) ) | ||||
|     inputs, expected_inC, probability, indexes, probs = tuple_inputs | ||||
|     assert indexes.size(0) == 2 and probs.size(0) == 2 and probability.size(0) == 2 | ||||
|     out_a, expected_inC_a, expected_flop_a = self.conv_a( (inputs, expected_inC  , probability[0], indexes[0], probs[0]) ) | ||||
|     out_b, expected_inC_b, expected_flop_b = self.conv_b( (out_a , expected_inC_a, probability[1], indexes[1], probs[1]) ) | ||||
|     if self.downsample is not None: | ||||
|       residual, _, expected_flop_c = self.downsample( (inputs, expected_inC  , probability[1], indexes[1], probs[1]) ) | ||||
|     else: | ||||
|       residual, expected_flop_c = inputs, 0 | ||||
|     out = additive_func(residual, out_b) | ||||
|     return nn.functional.relu(out, inplace=True), expected_inC_b, sum([expected_flop_a, expected_flop_b, expected_flop_c]) | ||||
|  | ||||
|   def basic_forward(self, inputs): | ||||
|     basicblock = self.conv_a(inputs) | ||||
|     basicblock = self.conv_b(basicblock) | ||||
|     if self.downsample is not None: residual = self.downsample(inputs) | ||||
|     else                          : residual = inputs | ||||
|     out = additive_func(residual, basicblock) | ||||
|     return nn.functional.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
|  | ||||
| class ResNetBottleneck(nn.Module): | ||||
|   expansion = 4 | ||||
|   num_conv  = 3 | ||||
|   def __init__(self, inplanes, planes, stride): | ||||
|     super(ResNetBottleneck, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     self.conv_1x1 = ConvBNReLU(inplanes, planes, 1,      1, 0, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_3x3 = ConvBNReLU(  planes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_1x4 = ConvBNReLU(planes, planes*self.expansion, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False) | ||||
|     if stride == 2: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False) | ||||
|     elif inplanes != planes*self.expansion: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False) | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     self.out_dim     = planes * self.expansion | ||||
|     self.search_mode = 'basic' | ||||
|  | ||||
|   def get_range(self): | ||||
|     return self.conv_1x1.get_range() + self.conv_3x3.get_range() + self.conv_1x4.get_range() | ||||
|  | ||||
|   def get_flops(self, channels): | ||||
|     assert len(channels) == 4, 'invalid channels : {:}'.format(channels) | ||||
|     flop_A = self.conv_1x1.get_flops([channels[0], channels[1]]) | ||||
|     flop_B = self.conv_3x3.get_flops([channels[1], channels[2]]) | ||||
|     flop_C = self.conv_1x4.get_flops([channels[2], channels[3]]) | ||||
|     if hasattr(self.downsample, 'get_flops'): | ||||
|       flop_D = self.downsample.get_flops([channels[0], channels[-1]]) | ||||
|     else: | ||||
|       flop_D = 0 | ||||
|     if channels[0] != channels[-1] and self.downsample is None: # this short-cut will be added during the infer-train | ||||
|       flop_D = channels[0] * channels[-1] * self.conv_1x4.OutShape[0] * self.conv_1x4.OutShape[1] | ||||
|     return flop_A + flop_B + flop_C + flop_D | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.search_mode == 'basic'   : return self.basic_forward(inputs) | ||||
|     elif self.search_mode == 'search': return self.search_forward(inputs) | ||||
|     else: raise ValueError('invalid search_mode = {:}'.format(self.search_mode)) | ||||
|  | ||||
|   def basic_forward(self, inputs): | ||||
|     bottleneck = self.conv_1x1(inputs) | ||||
|     bottleneck = self.conv_3x3(bottleneck) | ||||
|     bottleneck = self.conv_1x4(bottleneck) | ||||
|     if self.downsample is not None: residual = self.downsample(inputs) | ||||
|     else                          : residual = inputs | ||||
|     out = additive_func(residual, bottleneck) | ||||
|     return nn.functional.relu(out, inplace=True) | ||||
|  | ||||
|   def search_forward(self, tuple_inputs): | ||||
|     assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) ) | ||||
|     inputs, expected_inC, probability, indexes, probs = tuple_inputs | ||||
|     assert indexes.size(0) == 3 and probs.size(0) == 3 and probability.size(0) == 3 | ||||
|     out_1x1, expected_inC_1x1, expected_flop_1x1 = self.conv_1x1( (inputs, expected_inC    , probability[0], indexes[0], probs[0]) ) | ||||
|     out_3x3, expected_inC_3x3, expected_flop_3x3 = self.conv_3x3( (out_1x1,expected_inC_1x1, probability[1], indexes[1], probs[1]) ) | ||||
|     out_1x4, expected_inC_1x4, expected_flop_1x4 = self.conv_1x4( (out_3x3,expected_inC_3x3, probability[2], indexes[2], probs[2]) ) | ||||
|     if self.downsample is not None: | ||||
|       residual, _, expected_flop_c = self.downsample( (inputs, expected_inC  , probability[2], indexes[2], probs[2]) ) | ||||
|     else: | ||||
|       residual, expected_flop_c = inputs, 0 | ||||
|     out = additive_func(residual, out_1x4) | ||||
|     return nn.functional.relu(out, inplace=True), expected_inC_1x4, sum([expected_flop_1x1, expected_flop_3x3, expected_flop_1x4, expected_flop_c]) | ||||
|  | ||||
|  | ||||
| class SearchWidthCifarResNet(nn.Module): | ||||
|  | ||||
|   def __init__(self, block_name, depth, num_classes): | ||||
|     super(SearchWidthCifarResNet, self).__init__() | ||||
|  | ||||
|     #Model type specifies number of layers for CIFAR-10 and CIFAR-100 model | ||||
|     if block_name == 'ResNetBasicblock': | ||||
|       block = ResNetBasicblock | ||||
|       assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110' | ||||
|       layer_blocks = (depth - 2) // 6 | ||||
|     elif block_name == 'ResNetBottleneck': | ||||
|       block = ResNetBottleneck | ||||
|       assert (depth - 2) % 9 == 0, 'depth should be one of 164' | ||||
|       layer_blocks = (depth - 2) // 9 | ||||
|     else: | ||||
|       raise ValueError('invalid block : {:}'.format(block_name)) | ||||
|  | ||||
|     self.message     = 'SearchWidthCifarResNet : Depth : {:} , Layers for each block : {:}'.format(depth, layer_blocks) | ||||
|     self.num_classes = num_classes | ||||
|     self.channels    = [16] | ||||
|     self.layers      = nn.ModuleList( [ ConvBNReLU(3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] ) | ||||
|     self.InShape     = None | ||||
|     for stage in range(3): | ||||
|       for iL in range(layer_blocks): | ||||
|         iC     = self.channels[-1] | ||||
|         planes = 16 * (2**stage) | ||||
|         stride = 2 if stage > 0 and iL == 0 else 1 | ||||
|         module = block(iC, planes, stride) | ||||
|         self.channels.append( module.out_dim ) | ||||
|         self.layers.append  ( module ) | ||||
|         self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iC, module.out_dim, stride) | ||||
|    | ||||
|     self.avgpool     = nn.AvgPool2d(8) | ||||
|     self.classifier  = nn.Linear(module.out_dim, num_classes) | ||||
|     self.InShape     = None | ||||
|     self.tau         = -1 | ||||
|     self.search_mode = 'basic' | ||||
|     #assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth) | ||||
|      | ||||
|     # parameters for width | ||||
|     self.Ranges = [] | ||||
|     self.layer2indexRange = [] | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       start_index = len(self.Ranges) | ||||
|       self.Ranges += layer.get_range() | ||||
|       self.layer2indexRange.append( (start_index, len(self.Ranges)) ) | ||||
|     assert len(self.Ranges) + 1 == depth, 'invalid depth check {:} vs {:}'.format(len(self.Ranges) + 1, depth) | ||||
|  | ||||
|     self.register_parameter('width_attentions', nn.Parameter(torch.Tensor(len(self.Ranges), get_choices(None)))) | ||||
|     nn.init.normal_(self.width_attentions, 0, 0.01) | ||||
|     self.apply(initialize_resnet) | ||||
|  | ||||
|   def arch_parameters(self): | ||||
|     return [self.width_attentions] | ||||
|  | ||||
|   def base_parameters(self): | ||||
|     return list(self.layers.parameters()) + list(self.avgpool.parameters()) + list(self.classifier.parameters()) | ||||
|  | ||||
|   def get_flop(self, mode, config_dict, extra_info): | ||||
|     if config_dict is not None: config_dict = config_dict.copy() | ||||
|     #weights = [F.softmax(x, dim=0) for x in self.width_attentions] | ||||
|     channels = [3] | ||||
|     for i, weight in enumerate(self.width_attentions): | ||||
|       if mode == 'genotype': | ||||
|         with torch.no_grad(): | ||||
|           probe = nn.functional.softmax(weight, dim=0) | ||||
|           C = self.Ranges[i][ torch.argmax(probe).item() ] | ||||
|       elif mode == 'max': | ||||
|         C = self.Ranges[i][-1] | ||||
|       elif mode == 'fix': | ||||
|         C = int( math.sqrt( extra_info ) * self.Ranges[i][-1] ) | ||||
|       elif mode == 'random': | ||||
|         assert isinstance(extra_info, float), 'invalid extra_info : {:}'.format(extra_info) | ||||
|         with torch.no_grad(): | ||||
|           prob = nn.functional.softmax(weight, dim=0) | ||||
|           approximate_C = int( math.sqrt( extra_info ) * self.Ranges[i][-1] ) | ||||
|           for j in range(prob.size(0)): | ||||
|             prob[j] = 1 / (abs(j - (approximate_C-self.Ranges[i][j])) + 0.2) | ||||
|           C = self.Ranges[i][ torch.multinomial(prob, 1, False).item() ] | ||||
|       else: | ||||
|         raise ValueError('invalid mode : {:}'.format(mode)) | ||||
|       channels.append( C ) | ||||
|     flop = 0 | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       s, e = self.layer2indexRange[i] | ||||
|       xchl = tuple( channels[s:e+1] ) | ||||
|       flop+= layer.get_flops(xchl) | ||||
|     # the last fc layer | ||||
|     flop += channels[-1] * self.classifier.out_features | ||||
|     if config_dict is None: | ||||
|       return flop / 1e6 | ||||
|     else: | ||||
|       config_dict['xchannels']  = channels | ||||
|       config_dict['super_type'] = 'infer-width' | ||||
|       config_dict['estimated_FLOP'] = flop / 1e6 | ||||
|       return flop / 1e6, config_dict | ||||
|  | ||||
|   def get_arch_info(self): | ||||
|     string = "for width, there are {:} attention probabilities.".format(len(self.width_attentions)) | ||||
|     discrepancy = [] | ||||
|     with torch.no_grad(): | ||||
|       for i, att in enumerate(self.width_attentions): | ||||
|         prob = nn.functional.softmax(att, dim=0) | ||||
|         prob = prob.cpu() ; selc = prob.argmax().item() ; prob = prob.tolist() | ||||
|         prob = ['{:.3f}'.format(x) for x in prob] | ||||
|         xstring = '{:03d}/{:03d}-th : {:}'.format(i, len(self.width_attentions), ' '.join(prob)) | ||||
|         logt = ['{:.3f}'.format(x) for x in att.cpu().tolist()] | ||||
|         xstring += '  ||  {:52s}'.format(' '.join(logt)) | ||||
|         prob = sorted( [float(x) for x in prob] ) | ||||
|         disc = prob[-1] - prob[-2] | ||||
|         xstring += '  || dis={:.2f} || select={:}/{:}'.format(disc, selc, len(prob)) | ||||
|         discrepancy.append( disc ) | ||||
|         string += '\n{:}'.format(xstring) | ||||
|     return string, discrepancy | ||||
|  | ||||
|   def set_tau(self, tau_max, tau_min, epoch_ratio): | ||||
|     assert epoch_ratio >= 0 and epoch_ratio <= 1, 'invalid epoch-ratio : {:}'.format(epoch_ratio) | ||||
|     tau = tau_min + (tau_max-tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2 | ||||
|     self.tau = tau | ||||
|  | ||||
|   def get_message(self): | ||||
|     return self.message | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.search_mode == 'basic': | ||||
|       return self.basic_forward(inputs) | ||||
|     elif self.search_mode == 'search': | ||||
|       return self.search_forward(inputs) | ||||
|     else: | ||||
|       raise ValueError('invalid search_mode = {:}'.format(self.search_mode)) | ||||
|  | ||||
|   def search_forward(self, inputs): | ||||
|     flop_probs = nn.functional.softmax(self.width_attentions, dim=1) | ||||
|     selected_widths, selected_probs = select2withP(self.width_attentions, self.tau) | ||||
|     with torch.no_grad(): | ||||
|       selected_widths = selected_widths.cpu() | ||||
|  | ||||
|     x, last_channel_idx, expected_inC, flops = inputs, 0, 3, [] | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       selected_w_index = selected_widths[last_channel_idx: last_channel_idx+layer.num_conv] | ||||
|       selected_w_probs = selected_probs[last_channel_idx: last_channel_idx+layer.num_conv] | ||||
|       layer_prob       = flop_probs[last_channel_idx: last_channel_idx+layer.num_conv] | ||||
|       x, expected_inC, expected_flop = layer( (x, expected_inC, layer_prob, selected_w_index, selected_w_probs) ) | ||||
|       last_channel_idx += layer.num_conv | ||||
|       flops.append( expected_flop ) | ||||
|     flops.append( expected_inC * (self.classifier.out_features*1.0/1e6) ) | ||||
|     features = self.avgpool(x) | ||||
|     features = features.view(features.size(0), -1) | ||||
|     logits   = linear_forward(features, self.classifier) | ||||
|     return logits, torch.stack( [sum(flops)] ) | ||||
|  | ||||
|   def basic_forward(self, inputs): | ||||
|     if self.InShape is None: self.InShape = (inputs.size(-2), inputs.size(-1)) | ||||
|     x = inputs | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       x = layer( x ) | ||||
|     features = self.avgpool(x) | ||||
|     features = features.view(features.size(0), -1) | ||||
|     logits   = self.classifier(features) | ||||
|     return features, logits | ||||
							
								
								
									
										482
									
								
								graph_dit/naswot/models/shape_searchs/SearchImagenetResNet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										482
									
								
								graph_dit/naswot/models/shape_searchs/SearchImagenetResNet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,482 @@ | ||||
| import math, torch | ||||
| from collections import OrderedDict | ||||
| from bisect import bisect_right | ||||
| import torch.nn as nn | ||||
| from ..initialization import initialize_resnet | ||||
| from ..SharedUtils    import additive_func | ||||
| from .SoftSelect      import select2withP, ChannelWiseInter | ||||
| from .SoftSelect      import linear_forward | ||||
| from .SoftSelect      import get_width_choices | ||||
|  | ||||
|  | ||||
| def get_depth_choices(layers): | ||||
|   min_depth = min(layers) | ||||
|   info = {'num': min_depth} | ||||
|   for i, depth in enumerate(layers): | ||||
|     choices = [] | ||||
|     for j in range(1, min_depth+1): | ||||
|       choices.append( int( float(depth)*j/min_depth ) ) | ||||
|     info[i] = choices | ||||
|   return info | ||||
|  | ||||
|  | ||||
| def conv_forward(inputs, conv, choices): | ||||
|   iC = conv.in_channels | ||||
|   fill_size = list(inputs.size()) | ||||
|   fill_size[1] = iC - fill_size[1] | ||||
|   filled  = torch.zeros(fill_size, device=inputs.device) | ||||
|   xinputs = torch.cat((inputs, filled), dim=1) | ||||
|   outputs = conv(xinputs) | ||||
|   selecteds = [outputs[:,:oC] for oC in choices] | ||||
|   return selecteds | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|   num_conv  = 1 | ||||
|   def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu, last_max_pool=False): | ||||
|     super(ConvBNReLU, self).__init__() | ||||
|     self.InShape  = None | ||||
|     self.OutShape = None | ||||
|     self.choices  = get_width_choices(nOut) | ||||
|     self.register_buffer('choices_tensor', torch.Tensor( self.choices )) | ||||
|  | ||||
|     if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) | ||||
|     else       : self.avg = None | ||||
|     self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias) | ||||
|     #if has_bn  : self.bn  = nn.BatchNorm2d(nOut) | ||||
|     #else       : self.bn  = None | ||||
|     self.has_bn = has_bn | ||||
|     self.BNs  = nn.ModuleList() | ||||
|     for i, _out in enumerate(self.choices): | ||||
|       self.BNs.append(nn.BatchNorm2d(_out)) | ||||
|     if has_relu: self.relu = nn.ReLU(inplace=True) | ||||
|     else       : self.relu = None | ||||
|    | ||||
|     if last_max_pool: self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | ||||
|     else            : self.maxpool = None | ||||
|     self.in_dim   = nIn | ||||
|     self.out_dim  = nOut | ||||
|     self.search_mode = 'basic' | ||||
|  | ||||
|   def get_flops(self, channels, check_range=True, divide=1): | ||||
|     iC, oC = channels | ||||
|     if check_range: assert iC <= self.conv.in_channels and oC <= self.conv.out_channels, '{:} vs {:}  |  {:} vs {:}'.format(iC, self.conv.in_channels, oC, self.conv.out_channels) | ||||
|     assert isinstance(self.InShape, tuple) and len(self.InShape) == 2, 'invalid in-shape : {:}'.format(self.InShape) | ||||
|     assert isinstance(self.OutShape, tuple) and len(self.OutShape) == 2, 'invalid out-shape : {:}'.format(self.OutShape) | ||||
|     #conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups | ||||
|     conv_per_position_flops = (self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups) | ||||
|     all_positions = self.OutShape[0] * self.OutShape[1] | ||||
|     flops = (conv_per_position_flops * all_positions / divide) * iC * oC | ||||
|     if self.conv.bias is not None: flops += all_positions / divide | ||||
|     return flops | ||||
|  | ||||
|   def get_range(self): | ||||
|     return [self.choices] | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.search_mode == 'basic': | ||||
|       return self.basic_forward(inputs) | ||||
|     elif self.search_mode == 'search': | ||||
|       return self.search_forward(inputs) | ||||
|     else: | ||||
|       raise ValueError('invalid search_mode = {:}'.format(self.search_mode)) | ||||
|  | ||||
|   def search_forward(self, tuple_inputs): | ||||
|     assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) ) | ||||
|     inputs, expected_inC, probability, index, prob = tuple_inputs | ||||
|     index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob) | ||||
|     probability = torch.squeeze(probability) | ||||
|     assert len(index) == 2, 'invalid length : {:}'.format(index) | ||||
|     # compute expected flop | ||||
|     #coordinates   = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability) | ||||
|     expected_outC = (self.choices_tensor * probability).sum() | ||||
|     expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6) | ||||
|     if self.avg : out = self.avg( inputs ) | ||||
|     else        : out = inputs | ||||
|     # convolutional layer | ||||
|     out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index]) | ||||
|     out_bns   = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)] | ||||
|     # merge | ||||
|     out_channel = max([x.size(1) for x in out_bns]) | ||||
|     outA = ChannelWiseInter(out_bns[0], out_channel) | ||||
|     outB = ChannelWiseInter(out_bns[1], out_channel) | ||||
|     out  = outA * prob[0] + outB * prob[1] | ||||
|     #out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1]) | ||||
|  | ||||
|     if self.relu   : out = self.relu( out ) | ||||
|     if self.maxpool: out = self.maxpool(out) | ||||
|     return out, expected_outC, expected_flop | ||||
|  | ||||
|   def basic_forward(self, inputs): | ||||
|     if self.avg : out = self.avg( inputs ) | ||||
|     else        : out = inputs | ||||
|     conv = self.conv( out ) | ||||
|     if self.has_bn:out= self.BNs[-1]( conv ) | ||||
|     else        : out = conv | ||||
|     if self.relu: out = self.relu( out ) | ||||
|     else        : out = out | ||||
|     if self.InShape is None: | ||||
|       self.InShape  = (inputs.size(-2), inputs.size(-1)) | ||||
|       self.OutShape = (out.size(-2)   , out.size(-1)) | ||||
|     if self.maxpool: out = self.maxpool(out) | ||||
|     return out | ||||
|  | ||||
|  | ||||
| class ResNetBasicblock(nn.Module): | ||||
|   expansion = 1 | ||||
|   num_conv  = 2 | ||||
|   def __init__(self, inplanes, planes, stride): | ||||
|     super(ResNetBasicblock, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     self.conv_a = ConvBNReLU(inplanes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_b = ConvBNReLU(  planes, planes, 3,      1, 1, False, has_avg=False, has_bn=True, has_relu=False) | ||||
|     if stride == 2: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=True, has_bn=True, has_relu=False) | ||||
|     elif inplanes != planes: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False,has_bn=True, has_relu=False) | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     self.out_dim     = planes | ||||
|     self.search_mode = 'basic' | ||||
|  | ||||
|   def get_range(self): | ||||
|     return self.conv_a.get_range() + self.conv_b.get_range() | ||||
|  | ||||
|   def get_flops(self, channels): | ||||
|     assert len(channels) == 3, 'invalid channels : {:}'.format(channels) | ||||
|     flop_A = self.conv_a.get_flops([channels[0], channels[1]]) | ||||
|     flop_B = self.conv_b.get_flops([channels[1], channels[2]]) | ||||
|     if hasattr(self.downsample, 'get_flops'): | ||||
|       flop_C = self.downsample.get_flops([channels[0], channels[-1]]) | ||||
|     else: | ||||
|       flop_C = 0 | ||||
|     if channels[0] != channels[-1] and self.downsample is None: # this short-cut will be added during the infer-train | ||||
|       flop_C = channels[0] * channels[-1] * self.conv_b.OutShape[0] * self.conv_b.OutShape[1] | ||||
|     return flop_A + flop_B + flop_C | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.search_mode == 'basic'   : return self.basic_forward(inputs) | ||||
|     elif self.search_mode == 'search': return self.search_forward(inputs) | ||||
|     else: raise ValueError('invalid search_mode = {:}'.format(self.search_mode)) | ||||
|  | ||||
|   def search_forward(self, tuple_inputs): | ||||
|     assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) ) | ||||
|     inputs, expected_inC, probability, indexes, probs = tuple_inputs | ||||
|     assert indexes.size(0) == 2 and probs.size(0) == 2 and probability.size(0) == 2 | ||||
|     #import pdb; pdb.set_trace() | ||||
|     out_a, expected_inC_a, expected_flop_a = self.conv_a( (inputs, expected_inC  , probability[0], indexes[0], probs[0]) ) | ||||
|     out_b, expected_inC_b, expected_flop_b = self.conv_b( (out_a , expected_inC_a, probability[1], indexes[1], probs[1]) ) | ||||
|     if self.downsample is not None: | ||||
|       residual, _, expected_flop_c = self.downsample( (inputs, expected_inC  , probability[1], indexes[1], probs[1]) ) | ||||
|     else: | ||||
|       residual, expected_flop_c = inputs, 0 | ||||
|     out = additive_func(residual, out_b) | ||||
|     return nn.functional.relu(out, inplace=True), expected_inC_b, sum([expected_flop_a, expected_flop_b, expected_flop_c]) | ||||
|  | ||||
|   def basic_forward(self, inputs): | ||||
|     basicblock = self.conv_a(inputs) | ||||
|     basicblock = self.conv_b(basicblock) | ||||
|     if self.downsample is not None: residual = self.downsample(inputs) | ||||
|     else                          : residual = inputs | ||||
|     out = additive_func(residual, basicblock) | ||||
|     return nn.functional.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
|  | ||||
| class ResNetBottleneck(nn.Module): | ||||
|   expansion = 4 | ||||
|   num_conv  = 3 | ||||
|   def __init__(self, inplanes, planes, stride): | ||||
|     super(ResNetBottleneck, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     self.conv_1x1 = ConvBNReLU(inplanes, planes, 1,      1, 0, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_3x3 = ConvBNReLU(  planes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_1x4 = ConvBNReLU(planes, planes*self.expansion, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False) | ||||
|     if stride == 2: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=True, has_bn=True, has_relu=False) | ||||
|     elif inplanes != planes*self.expansion: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=False,has_bn=True, has_relu=False) | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     self.out_dim     = planes * self.expansion | ||||
|     self.search_mode = 'basic' | ||||
|  | ||||
|   def get_range(self): | ||||
|     return self.conv_1x1.get_range() + self.conv_3x3.get_range() + self.conv_1x4.get_range() | ||||
|  | ||||
|   def get_flops(self, channels): | ||||
|     assert len(channels) == 4, 'invalid channels : {:}'.format(channels) | ||||
|     flop_A = self.conv_1x1.get_flops([channels[0], channels[1]]) | ||||
|     flop_B = self.conv_3x3.get_flops([channels[1], channels[2]]) | ||||
|     flop_C = self.conv_1x4.get_flops([channels[2], channels[3]]) | ||||
|     if hasattr(self.downsample, 'get_flops'): | ||||
|       flop_D = self.downsample.get_flops([channels[0], channels[-1]]) | ||||
|     else: | ||||
|       flop_D = 0 | ||||
|     if channels[0] != channels[-1] and self.downsample is None: # this short-cut will be added during the infer-train | ||||
|       flop_D = channels[0] * channels[-1] * self.conv_1x4.OutShape[0] * self.conv_1x4.OutShape[1] | ||||
|     return flop_A + flop_B + flop_C + flop_D | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.search_mode == 'basic'   : return self.basic_forward(inputs) | ||||
|     elif self.search_mode == 'search': return self.search_forward(inputs) | ||||
|     else: raise ValueError('invalid search_mode = {:}'.format(self.search_mode)) | ||||
|  | ||||
|   def basic_forward(self, inputs): | ||||
|     bottleneck = self.conv_1x1(inputs) | ||||
|     bottleneck = self.conv_3x3(bottleneck) | ||||
|     bottleneck = self.conv_1x4(bottleneck) | ||||
|     if self.downsample is not None: residual = self.downsample(inputs) | ||||
|     else                          : residual = inputs | ||||
|     out = additive_func(residual, bottleneck) | ||||
|     return nn.functional.relu(out, inplace=True) | ||||
|  | ||||
|   def search_forward(self, tuple_inputs): | ||||
|     assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) ) | ||||
|     inputs, expected_inC, probability, indexes, probs = tuple_inputs | ||||
|     assert indexes.size(0) == 3 and probs.size(0) == 3 and probability.size(0) == 3 | ||||
|     out_1x1, expected_inC_1x1, expected_flop_1x1 = self.conv_1x1( (inputs, expected_inC    , probability[0], indexes[0], probs[0]) ) | ||||
|     out_3x3, expected_inC_3x3, expected_flop_3x3 = self.conv_3x3( (out_1x1,expected_inC_1x1, probability[1], indexes[1], probs[1]) ) | ||||
|     out_1x4, expected_inC_1x4, expected_flop_1x4 = self.conv_1x4( (out_3x3,expected_inC_3x3, probability[2], indexes[2], probs[2]) ) | ||||
|     if self.downsample is not None: | ||||
|       residual, _, expected_flop_c = self.downsample( (inputs, expected_inC  , probability[2], indexes[2], probs[2]) ) | ||||
|     else: | ||||
|       residual, expected_flop_c = inputs, 0 | ||||
|     out = additive_func(residual, out_1x4) | ||||
|     return nn.functional.relu(out, inplace=True), expected_inC_1x4, sum([expected_flop_1x1, expected_flop_3x3, expected_flop_1x4, expected_flop_c]) | ||||
|  | ||||
|  | ||||
| class SearchShapeImagenetResNet(nn.Module): | ||||
|  | ||||
|   def __init__(self, block_name, layers, deep_stem, num_classes): | ||||
|     super(SearchShapeImagenetResNet, self).__init__() | ||||
|  | ||||
|     #Model type specifies number of layers for CIFAR-10 and CIFAR-100 model | ||||
|     if block_name == 'BasicBlock': | ||||
|       block = ResNetBasicblock | ||||
|     elif block_name == 'Bottleneck': | ||||
|       block = ResNetBottleneck | ||||
|     else: | ||||
|       raise ValueError('invalid block : {:}'.format(block_name)) | ||||
|      | ||||
|     self.message      = 'SearchShapeCifarResNet : Depth : {:} , Layers for each block : {:}'.format(sum(layers)*block.num_conv, layers) | ||||
|     self.num_classes  = num_classes | ||||
|     if not deep_stem: | ||||
|       self.layers       = nn.ModuleList( [ ConvBNReLU(3, 64, 7, 2, 3, False, has_avg=False, has_bn=True, has_relu=True, last_max_pool=True) ] ) | ||||
|       self.channels     = [64] | ||||
|     else: | ||||
|       self.layers       = nn.ModuleList( [ ConvBNReLU(3, 32, 3, 2, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|                                           ,ConvBNReLU(32,64, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True, last_max_pool=True) ] ) | ||||
|       self.channels     = [32, 64] | ||||
|  | ||||
|     meta_depth_info   = get_depth_choices(layers) | ||||
|     self.InShape      = None | ||||
|     self.depth_info   = OrderedDict() | ||||
|     self.depth_at_i   = OrderedDict() | ||||
|     for stage, layer_blocks in enumerate(layers): | ||||
|       cur_block_choices = meta_depth_info[stage] | ||||
|       assert cur_block_choices[-1] == layer_blocks, 'stage={:}, {:} vs {:}'.format(stage, cur_block_choices, layer_blocks) | ||||
|       block_choices, xstart = [], len(self.layers) | ||||
|       for iL in range(layer_blocks): | ||||
|         iC     = self.channels[-1] | ||||
|         planes = 64 * (2**stage) | ||||
|         stride = 2 if stage > 0 and iL == 0 else 1 | ||||
|         module = block(iC, planes, stride) | ||||
|         self.channels.append( module.out_dim ) | ||||
|         self.layers.append  ( module ) | ||||
|         self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iC, module.out_dim, stride) | ||||
|         # added for depth | ||||
|         layer_index = len(self.layers) - 1 | ||||
|         if iL + 1 in cur_block_choices: block_choices.append( layer_index ) | ||||
|         if iL + 1 == layer_blocks: | ||||
|           self.depth_info[layer_index] = {'choices': block_choices, | ||||
|                                           'stage'  : stage, | ||||
|                                           'xstart' : xstart} | ||||
|     self.depth_info_list = [] | ||||
|     for xend, info in self.depth_info.items(): | ||||
|       self.depth_info_list.append( (xend, info) ) | ||||
|       xstart, xstage = info['xstart'], info['stage'] | ||||
|       for ilayer in range(xstart, xend+1): | ||||
|         idx = bisect_right(info['choices'], ilayer-1) | ||||
|         self.depth_at_i[ilayer] = (xstage, idx) | ||||
|  | ||||
|     self.avgpool     = nn.AdaptiveAvgPool2d((1,1)) | ||||
|     self.classifier  = nn.Linear(module.out_dim, num_classes) | ||||
|     self.InShape     = None | ||||
|     self.tau         = -1 | ||||
|     self.search_mode = 'basic' | ||||
|     #assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth) | ||||
|      | ||||
|     # parameters for width | ||||
|     self.Ranges = [] | ||||
|     self.layer2indexRange = [] | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       start_index = len(self.Ranges) | ||||
|       self.Ranges += layer.get_range() | ||||
|       self.layer2indexRange.append( (start_index, len(self.Ranges)) ) | ||||
|  | ||||
|     self.register_parameter('width_attentions', nn.Parameter(torch.Tensor(len(self.Ranges), get_width_choices(None)))) | ||||
|     self.register_parameter('depth_attentions', nn.Parameter(torch.Tensor(len(layers), meta_depth_info['num']))) | ||||
|     nn.init.normal_(self.width_attentions, 0, 0.01) | ||||
|     nn.init.normal_(self.depth_attentions, 0, 0.01) | ||||
|     self.apply(initialize_resnet) | ||||
|  | ||||
|   def arch_parameters(self, LR=None): | ||||
|     if LR is None: | ||||
|       return [self.width_attentions, self.depth_attentions] | ||||
|     else: | ||||
|       return [ | ||||
|                {"params": self.width_attentions, "lr": LR}, | ||||
|                {"params": self.depth_attentions, "lr": LR}, | ||||
|              ] | ||||
|  | ||||
|   def base_parameters(self): | ||||
|     return list(self.layers.parameters()) + list(self.avgpool.parameters()) + list(self.classifier.parameters()) | ||||
|  | ||||
|   def get_flop(self, mode, config_dict, extra_info): | ||||
|     if config_dict is not None: config_dict = config_dict.copy() | ||||
|     # select channels  | ||||
|     channels = [3] | ||||
|     for i, weight in enumerate(self.width_attentions): | ||||
|       if mode == 'genotype': | ||||
|         with torch.no_grad(): | ||||
|           probe = nn.functional.softmax(weight, dim=0) | ||||
|           C = self.Ranges[i][ torch.argmax(probe).item() ] | ||||
|       else: | ||||
|         raise ValueError('invalid mode : {:}'.format(mode)) | ||||
|       channels.append( C ) | ||||
|     # select depth | ||||
|     if mode == 'genotype': | ||||
|       with torch.no_grad(): | ||||
|         depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) | ||||
|         choices = torch.argmax(depth_probs, dim=1).cpu().tolist() | ||||
|     else: | ||||
|       raise ValueError('invalid mode : {:}'.format(mode)) | ||||
|     selected_layers = [] | ||||
|     for choice, xvalue in zip(choices, self.depth_info_list): | ||||
|       xtemp = xvalue[1]['choices'][choice] - xvalue[1]['xstart'] + 1 | ||||
|       selected_layers.append(xtemp) | ||||
|     flop = 0 | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       s, e = self.layer2indexRange[i] | ||||
|       xchl = tuple( channels[s:e+1] ) | ||||
|       if i in self.depth_at_i: | ||||
|         xstagei, xatti = self.depth_at_i[i] | ||||
|         if xatti <= choices[xstagei]: # leave this depth | ||||
|           flop+= layer.get_flops(xchl) | ||||
|         else: | ||||
|           flop+= 0 # do not use this layer | ||||
|       else: | ||||
|         flop+= layer.get_flops(xchl) | ||||
|     # the last fc layer | ||||
|     flop += channels[-1] * self.classifier.out_features | ||||
|     if config_dict is None: | ||||
|       return flop / 1e6 | ||||
|     else: | ||||
|       config_dict['xchannels']  = channels | ||||
|       config_dict['xblocks']    = selected_layers | ||||
|       config_dict['super_type'] = 'infer-shape' | ||||
|       config_dict['estimated_FLOP'] = flop / 1e6 | ||||
|       return flop / 1e6, config_dict | ||||
|  | ||||
|   def get_arch_info(self): | ||||
|     string = "for depth and width, there are {:} + {:} attention probabilities.".format(len(self.depth_attentions), len(self.width_attentions)) | ||||
|     string+= '\n{:}'.format(self.depth_info) | ||||
|     discrepancy = [] | ||||
|     with torch.no_grad(): | ||||
|       for i, att in enumerate(self.depth_attentions): | ||||
|         prob = nn.functional.softmax(att, dim=0) | ||||
|         prob = prob.cpu() ; selc = prob.argmax().item() ; prob = prob.tolist() | ||||
|         prob = ['{:.3f}'.format(x) for x in prob] | ||||
|         xstring = '{:03d}/{:03d}-th : {:}'.format(i, len(self.depth_attentions), ' '.join(prob)) | ||||
|         logt = ['{:.4f}'.format(x) for x in att.cpu().tolist()] | ||||
|         xstring += '  ||  {:17s}'.format(' '.join(logt)) | ||||
|         prob = sorted( [float(x) for x in prob] ) | ||||
|         disc = prob[-1] - prob[-2] | ||||
|         xstring += '  || discrepancy={:.2f} || select={:}/{:}'.format(disc, selc, len(prob)) | ||||
|         discrepancy.append( disc ) | ||||
|         string += '\n{:}'.format(xstring) | ||||
|       string += '\n-----------------------------------------------' | ||||
|       for i, att in enumerate(self.width_attentions): | ||||
|         prob = nn.functional.softmax(att, dim=0) | ||||
|         prob = prob.cpu() ; selc = prob.argmax().item() ; prob = prob.tolist() | ||||
|         prob = ['{:.3f}'.format(x) for x in prob] | ||||
|         xstring = '{:03d}/{:03d}-th : {:}'.format(i, len(self.width_attentions), ' '.join(prob)) | ||||
|         logt = ['{:.3f}'.format(x) for x in att.cpu().tolist()] | ||||
|         xstring += '  ||  {:52s}'.format(' '.join(logt)) | ||||
|         prob = sorted( [float(x) for x in prob] ) | ||||
|         disc = prob[-1] - prob[-2] | ||||
|         xstring += '  || dis={:.2f} || select={:}/{:}'.format(disc, selc, len(prob)) | ||||
|         discrepancy.append( disc ) | ||||
|         string += '\n{:}'.format(xstring) | ||||
|     return string, discrepancy | ||||
|  | ||||
|   def set_tau(self, tau_max, tau_min, epoch_ratio): | ||||
|     assert epoch_ratio >= 0 and epoch_ratio <= 1, 'invalid epoch-ratio : {:}'.format(epoch_ratio) | ||||
|     tau = tau_min + (tau_max-tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2 | ||||
|     self.tau = tau | ||||
|  | ||||
|   def get_message(self): | ||||
|     return self.message | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.search_mode == 'basic': | ||||
|       return self.basic_forward(inputs) | ||||
|     elif self.search_mode == 'search': | ||||
|       return self.search_forward(inputs) | ||||
|     else: | ||||
|       raise ValueError('invalid search_mode = {:}'.format(self.search_mode)) | ||||
|  | ||||
|   def search_forward(self, inputs): | ||||
|     flop_width_probs = nn.functional.softmax(self.width_attentions, dim=1) | ||||
|     flop_depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) | ||||
|     flop_depth_probs = torch.flip( torch.cumsum( torch.flip(flop_depth_probs, [1]), 1 ), [1] ) | ||||
|     selected_widths, selected_width_probs = select2withP(self.width_attentions, self.tau) | ||||
|     selected_depth_probs = select2withP(self.depth_attentions, self.tau, True) | ||||
|     with torch.no_grad(): | ||||
|       selected_widths = selected_widths.cpu() | ||||
|  | ||||
|     x, last_channel_idx, expected_inC, flops = inputs, 0, 3, [] | ||||
|     feature_maps = [] | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       selected_w_index = selected_widths     [last_channel_idx: last_channel_idx+layer.num_conv] | ||||
|       selected_w_probs = selected_width_probs[last_channel_idx: last_channel_idx+layer.num_conv] | ||||
|       layer_prob       = flop_width_probs    [last_channel_idx: last_channel_idx+layer.num_conv] | ||||
|       x, expected_inC, expected_flop = layer( (x, expected_inC, layer_prob, selected_w_index, selected_w_probs) ) | ||||
|       feature_maps.append( x ) | ||||
|       last_channel_idx += layer.num_conv | ||||
|       if i in self.depth_info: # aggregate the information | ||||
|         choices = self.depth_info[i]['choices'] | ||||
|         xstagei = self.depth_info[i]['stage'] | ||||
|         #print ('iL={:}, choices={:}, stage={:}, probs={:}'.format(i, choices, xstagei, selected_depth_probs[xstagei].cpu().tolist())) | ||||
|         #for A, W in zip(choices, selected_depth_probs[xstagei]): | ||||
|         #  print('Size = {:}, W = {:}'.format(feature_maps[A].size(), W)) | ||||
|         possible_tensors = [] | ||||
|         max_C = max( feature_maps[A].size(1) for A in choices ) | ||||
|         for tempi, A in enumerate(choices): | ||||
|           xtensor = ChannelWiseInter(feature_maps[A], max_C) | ||||
|           possible_tensors.append( xtensor ) | ||||
|         weighted_sum = sum( xtensor * W for xtensor, W in zip(possible_tensors, selected_depth_probs[xstagei]) ) | ||||
|         x = weighted_sum | ||||
|          | ||||
|       if i in self.depth_at_i: | ||||
|         xstagei, xatti = self.depth_at_i[i] | ||||
|         x_expected_flop = flop_depth_probs[xstagei, xatti] * expected_flop | ||||
|       else: | ||||
|         x_expected_flop = expected_flop | ||||
|       flops.append( x_expected_flop ) | ||||
|     flops.append( expected_inC * (self.classifier.out_features*1.0/1e6) ) | ||||
|     features = self.avgpool(x) | ||||
|     features = features.view(features.size(0), -1) | ||||
|     logits   = linear_forward(features, self.classifier) | ||||
|     return logits, torch.stack( [sum(flops)] ) | ||||
|  | ||||
|   def basic_forward(self, inputs): | ||||
|     if self.InShape is None: self.InShape = (inputs.size(-2), inputs.size(-1)) | ||||
|     x = inputs | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       x = layer( x ) | ||||
|     features = self.avgpool(x) | ||||
|     features = features.view(features.size(0), -1) | ||||
|     logits   = self.classifier(features) | ||||
|     return features, logits | ||||
							
								
								
									
										316
									
								
								graph_dit/naswot/models/shape_searchs/SearchSimResNet_width.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										316
									
								
								graph_dit/naswot/models/shape_searchs/SearchSimResNet_width.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,316 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import math, torch | ||||
| import torch.nn as nn | ||||
| from ..initialization import initialize_resnet | ||||
| from ..SharedUtils    import additive_func | ||||
| from .SoftSelect      import select2withP, ChannelWiseInter | ||||
| from .SoftSelect      import linear_forward | ||||
| from .SoftSelect      import get_width_choices as get_choices | ||||
|  | ||||
|  | ||||
| def conv_forward(inputs, conv, choices): | ||||
|   iC = conv.in_channels | ||||
|   fill_size = list(inputs.size()) | ||||
|   fill_size[1] = iC - fill_size[1] | ||||
|   filled  = torch.zeros(fill_size, device=inputs.device) | ||||
|   xinputs = torch.cat((inputs, filled), dim=1) | ||||
|   outputs = conv(xinputs) | ||||
|   selecteds = [outputs[:,:oC] for oC in choices] | ||||
|   return selecteds | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|   num_conv  = 1 | ||||
|   def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu): | ||||
|     super(ConvBNReLU, self).__init__() | ||||
|     self.InShape  = None | ||||
|     self.OutShape = None | ||||
|     self.choices  = get_choices(nOut) | ||||
|     self.register_buffer('choices_tensor', torch.Tensor( self.choices )) | ||||
|  | ||||
|     if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) | ||||
|     else       : self.avg = None | ||||
|     self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias) | ||||
|     #if has_bn  : self.bn  = nn.BatchNorm2d(nOut) | ||||
|     #else       : self.bn  = None | ||||
|     self.has_bn = has_bn | ||||
|     self.BNs  = nn.ModuleList() | ||||
|     for i, _out in enumerate(self.choices): | ||||
|       self.BNs.append(nn.BatchNorm2d(_out)) | ||||
|     if has_relu: self.relu = nn.ReLU(inplace=True) | ||||
|     else       : self.relu = None | ||||
|     self.in_dim   = nIn | ||||
|     self.out_dim  = nOut | ||||
|     self.search_mode = 'basic' | ||||
|  | ||||
|   def get_flops(self, channels, check_range=True, divide=1): | ||||
|     iC, oC = channels | ||||
|     if check_range: assert iC <= self.conv.in_channels and oC <= self.conv.out_channels, '{:} vs {:}  |  {:} vs {:}'.format(iC, self.conv.in_channels, oC, self.conv.out_channels) | ||||
|     assert isinstance(self.InShape, tuple) and len(self.InShape) == 2, 'invalid in-shape : {:}'.format(self.InShape) | ||||
|     assert isinstance(self.OutShape, tuple) and len(self.OutShape) == 2, 'invalid out-shape : {:}'.format(self.OutShape) | ||||
|     #conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups | ||||
|     conv_per_position_flops = (self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups) | ||||
|     all_positions = self.OutShape[0] * self.OutShape[1] | ||||
|     flops = (conv_per_position_flops * all_positions / divide) * iC * oC | ||||
|     if self.conv.bias is not None: flops += all_positions / divide | ||||
|     return flops | ||||
|  | ||||
|   def get_range(self): | ||||
|     return [self.choices] | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.search_mode == 'basic': | ||||
|       return self.basic_forward(inputs) | ||||
|     elif self.search_mode == 'search': | ||||
|       return self.search_forward(inputs) | ||||
|     else: | ||||
|       raise ValueError('invalid search_mode = {:}'.format(self.search_mode)) | ||||
|  | ||||
|   def search_forward(self, tuple_inputs): | ||||
|     assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) ) | ||||
|     inputs, expected_inC, probability, index, prob = tuple_inputs | ||||
|     index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob) | ||||
|     probability = torch.squeeze(probability) | ||||
|     assert len(index) == 2, 'invalid length : {:}'.format(index) | ||||
|     # compute expected flop | ||||
|     #coordinates   = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability) | ||||
|     expected_outC = (self.choices_tensor * probability).sum() | ||||
|     expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6) | ||||
|     if self.avg : out = self.avg( inputs ) | ||||
|     else        : out = inputs | ||||
|     # convolutional layer | ||||
|     out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index]) | ||||
|     out_bns   = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)] | ||||
|     # merge | ||||
|     out_channel = max([x.size(1) for x in out_bns]) | ||||
|     outA = ChannelWiseInter(out_bns[0], out_channel) | ||||
|     outB = ChannelWiseInter(out_bns[1], out_channel) | ||||
|     out  = outA * prob[0] + outB * prob[1] | ||||
|     #out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1]) | ||||
|  | ||||
|     if self.relu: out = self.relu( out ) | ||||
|     else        : out = out | ||||
|     return out, expected_outC, expected_flop | ||||
|  | ||||
|   def basic_forward(self, inputs): | ||||
|     if self.avg : out = self.avg( inputs ) | ||||
|     else        : out = inputs | ||||
|     conv = self.conv( out ) | ||||
|     if self.has_bn:out= self.BNs[-1]( conv ) | ||||
|     else        : out = conv | ||||
|     if self.relu: out = self.relu( out ) | ||||
|     else        : out = out | ||||
|     if self.InShape is None: | ||||
|       self.InShape  = (inputs.size(-2), inputs.size(-1)) | ||||
|       self.OutShape = (out.size(-2)   , out.size(-1)) | ||||
|     return out | ||||
|  | ||||
|  | ||||
| class SimBlock(nn.Module): | ||||
|   expansion = 1 | ||||
|   num_conv  = 1 | ||||
|   def __init__(self, inplanes, planes, stride): | ||||
|     super(SimBlock, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     self.conv = ConvBNReLU(inplanes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     if stride == 2: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False) | ||||
|     elif inplanes != planes: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False) | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     self.out_dim     = planes | ||||
|     self.search_mode = 'basic' | ||||
|  | ||||
|   def get_range(self): | ||||
|     return self.conv.get_range() | ||||
|  | ||||
|   def get_flops(self, channels): | ||||
|     assert len(channels) == 2, 'invalid channels : {:}'.format(channels) | ||||
|     flop_A = self.conv.get_flops([channels[0], channels[1]]) | ||||
|     if hasattr(self.downsample, 'get_flops'): | ||||
|       flop_C = self.downsample.get_flops([channels[0], channels[-1]]) | ||||
|     else: | ||||
|       flop_C = 0 | ||||
|     if channels[0] != channels[-1] and self.downsample is None: # this short-cut will be added during the infer-train | ||||
|       flop_C = channels[0] * channels[-1] * self.conv.OutShape[0] * self.conv.OutShape[1] | ||||
|     return flop_A + flop_C | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.search_mode == 'basic'   : return self.basic_forward(inputs) | ||||
|     elif self.search_mode == 'search': return self.search_forward(inputs) | ||||
|     else: raise ValueError('invalid search_mode = {:}'.format(self.search_mode)) | ||||
|  | ||||
|   def search_forward(self, tuple_inputs): | ||||
|     assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) ) | ||||
|     inputs, expected_inC, probability, indexes, probs = tuple_inputs | ||||
|     assert indexes.size(0) == 1 and probs.size(0) == 1 and probability.size(0) == 1, 'invalid size : {:}, {:}, {:}'.format(indexes.size(), probs.size(), probability.size()) | ||||
|     out, expected_next_inC, expected_flop = self.conv( (inputs, expected_inC  , probability[0], indexes[0], probs[0]) ) | ||||
|     if self.downsample is not None: | ||||
|       residual, _, expected_flop_c = self.downsample( (inputs, expected_inC  , probability[-1], indexes[-1], probs[-1]) ) | ||||
|     else: | ||||
|       residual, expected_flop_c = inputs, 0 | ||||
|     out = additive_func(residual, out) | ||||
|     return nn.functional.relu(out, inplace=True), expected_next_inC, sum([expected_flop, expected_flop_c]) | ||||
|  | ||||
|   def basic_forward(self, inputs): | ||||
|     basicblock = self.conv(inputs) | ||||
|     if self.downsample is not None: residual = self.downsample(inputs) | ||||
|     else                          : residual = inputs | ||||
|     out = additive_func(residual, basicblock) | ||||
|     return nn.functional.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
|  | ||||
| class SearchWidthSimResNet(nn.Module): | ||||
|  | ||||
|   def __init__(self, depth, num_classes): | ||||
|     super(SearchWidthSimResNet, self).__init__() | ||||
|  | ||||
|     assert (depth - 2) % 3 == 0, 'depth should be one of 5, 8, 11, 14, ... instead of {:}'.format(depth) | ||||
|     layer_blocks = (depth - 2) // 3 | ||||
|     self.message     = 'SearchWidthSimResNet : Depth : {:} , Layers for each block : {:}'.format(depth, layer_blocks) | ||||
|     self.num_classes = num_classes | ||||
|     self.channels    = [16] | ||||
|     self.layers      = nn.ModuleList( [ ConvBNReLU(3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] ) | ||||
|     self.InShape     = None | ||||
|     for stage in range(3): | ||||
|       for iL in range(layer_blocks): | ||||
|         iC     = self.channels[-1] | ||||
|         planes = 16 * (2**stage) | ||||
|         stride = 2 if stage > 0 and iL == 0 else 1 | ||||
|         module = SimBlock(iC, planes, stride) | ||||
|         self.channels.append( module.out_dim ) | ||||
|         self.layers.append  ( module ) | ||||
|         self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iC, module.out_dim, stride) | ||||
|    | ||||
|     self.avgpool     = nn.AvgPool2d(8) | ||||
|     self.classifier  = nn.Linear(module.out_dim, num_classes) | ||||
|     self.InShape     = None | ||||
|     self.tau         = -1 | ||||
|     self.search_mode = 'basic' | ||||
|     #assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth) | ||||
|      | ||||
|     # parameters for width | ||||
|     self.Ranges = [] | ||||
|     self.layer2indexRange = [] | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       start_index = len(self.Ranges) | ||||
|       self.Ranges += layer.get_range() | ||||
|       self.layer2indexRange.append( (start_index, len(self.Ranges)) ) | ||||
|     assert len(self.Ranges) + 1 == depth, 'invalid depth check {:} vs {:}'.format(len(self.Ranges) + 1, depth) | ||||
|  | ||||
|     self.register_parameter('width_attentions', nn.Parameter(torch.Tensor(len(self.Ranges), get_choices(None)))) | ||||
|     nn.init.normal_(self.width_attentions, 0, 0.01) | ||||
|     self.apply(initialize_resnet) | ||||
|  | ||||
|   def arch_parameters(self): | ||||
|     return [self.width_attentions] | ||||
|  | ||||
|   def base_parameters(self): | ||||
|     return list(self.layers.parameters()) + list(self.avgpool.parameters()) + list(self.classifier.parameters()) | ||||
|  | ||||
|   def get_flop(self, mode, config_dict, extra_info): | ||||
|     if config_dict is not None: config_dict = config_dict.copy() | ||||
|     #weights = [F.softmax(x, dim=0) for x in self.width_attentions] | ||||
|     channels = [3] | ||||
|     for i, weight in enumerate(self.width_attentions): | ||||
|       if mode == 'genotype': | ||||
|         with torch.no_grad(): | ||||
|           probe = nn.functional.softmax(weight, dim=0) | ||||
|           C = self.Ranges[i][ torch.argmax(probe).item() ] | ||||
|       elif mode == 'max': | ||||
|         C = self.Ranges[i][-1] | ||||
|       elif mode == 'fix': | ||||
|         C = int( math.sqrt( extra_info ) * self.Ranges[i][-1] ) | ||||
|       elif mode == 'random': | ||||
|         assert isinstance(extra_info, float), 'invalid extra_info : {:}'.format(extra_info) | ||||
|         with torch.no_grad(): | ||||
|           prob = nn.functional.softmax(weight, dim=0) | ||||
|           approximate_C = int( math.sqrt( extra_info ) * self.Ranges[i][-1] ) | ||||
|           for j in range(prob.size(0)): | ||||
|             prob[j] = 1 / (abs(j - (approximate_C-self.Ranges[i][j])) + 0.2) | ||||
|           C = self.Ranges[i][ torch.multinomial(prob, 1, False).item() ] | ||||
|       else: | ||||
|         raise ValueError('invalid mode : {:}'.format(mode)) | ||||
|       channels.append( C ) | ||||
|     flop = 0 | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       s, e = self.layer2indexRange[i] | ||||
|       xchl = tuple( channels[s:e+1] ) | ||||
|       flop+= layer.get_flops(xchl) | ||||
|     # the last fc layer | ||||
|     flop += channels[-1] * self.classifier.out_features | ||||
|     if config_dict is None: | ||||
|       return flop / 1e6 | ||||
|     else: | ||||
|       config_dict['xchannels']  = channels | ||||
|       config_dict['super_type'] = 'infer-width' | ||||
|       config_dict['estimated_FLOP'] = flop / 1e6 | ||||
|       return flop / 1e6, config_dict | ||||
|  | ||||
|   def get_arch_info(self): | ||||
|     string = "for width, there are {:} attention probabilities.".format(len(self.width_attentions)) | ||||
|     discrepancy = [] | ||||
|     with torch.no_grad(): | ||||
|       for i, att in enumerate(self.width_attentions): | ||||
|         prob = nn.functional.softmax(att, dim=0) | ||||
|         prob = prob.cpu() ; selc = prob.argmax().item() ; prob = prob.tolist() | ||||
|         prob = ['{:.3f}'.format(x) for x in prob] | ||||
|         xstring = '{:03d}/{:03d}-th : {:}'.format(i, len(self.width_attentions), ' '.join(prob)) | ||||
|         logt = ['{:.3f}'.format(x) for x in att.cpu().tolist()] | ||||
|         xstring += '  ||  {:52s}'.format(' '.join(logt)) | ||||
|         prob = sorted( [float(x) for x in prob] ) | ||||
|         disc = prob[-1] - prob[-2] | ||||
|         xstring += '  || dis={:.2f} || select={:}/{:}'.format(disc, selc, len(prob)) | ||||
|         discrepancy.append( disc ) | ||||
|         string += '\n{:}'.format(xstring) | ||||
|     return string, discrepancy | ||||
|  | ||||
|   def set_tau(self, tau_max, tau_min, epoch_ratio): | ||||
|     assert epoch_ratio >= 0 and epoch_ratio <= 1, 'invalid epoch-ratio : {:}'.format(epoch_ratio) | ||||
|     tau = tau_min + (tau_max-tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2 | ||||
|     self.tau = tau | ||||
|  | ||||
|   def get_message(self): | ||||
|     return self.message | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.search_mode == 'basic': | ||||
|       return self.basic_forward(inputs) | ||||
|     elif self.search_mode == 'search': | ||||
|       return self.search_forward(inputs) | ||||
|     else: | ||||
|       raise ValueError('invalid search_mode = {:}'.format(self.search_mode)) | ||||
|  | ||||
|   def search_forward(self, inputs): | ||||
|     flop_probs = nn.functional.softmax(self.width_attentions, dim=1) | ||||
|     selected_widths, selected_probs = select2withP(self.width_attentions, self.tau) | ||||
|     with torch.no_grad(): | ||||
|       selected_widths = selected_widths.cpu() | ||||
|  | ||||
|     x, last_channel_idx, expected_inC, flops = inputs, 0, 3, [] | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       selected_w_index = selected_widths[last_channel_idx: last_channel_idx+layer.num_conv] | ||||
|       selected_w_probs = selected_probs[last_channel_idx: last_channel_idx+layer.num_conv] | ||||
|       layer_prob       = flop_probs[last_channel_idx: last_channel_idx+layer.num_conv] | ||||
|       x, expected_inC, expected_flop = layer( (x, expected_inC, layer_prob, selected_w_index, selected_w_probs) ) | ||||
|       last_channel_idx += layer.num_conv | ||||
|       flops.append( expected_flop ) | ||||
|     flops.append( expected_inC * (self.classifier.out_features*1.0/1e6) ) | ||||
|     features = self.avgpool(x) | ||||
|     features = features.view(features.size(0), -1) | ||||
|     logits   = linear_forward(features, self.classifier) | ||||
|     return logits, torch.stack( [sum(flops)] ) | ||||
|  | ||||
|   def basic_forward(self, inputs): | ||||
|     if self.InShape is None: self.InShape = (inputs.size(-2), inputs.size(-1)) | ||||
|     x = inputs | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       x = layer( x ) | ||||
|     features = self.avgpool(x) | ||||
|     features = features.view(features.size(0), -1) | ||||
|     logits   = self.classifier(features) | ||||
|     return features, logits | ||||
							
								
								
									
										111
									
								
								graph_dit/naswot/models/shape_searchs/SoftSelect.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										111
									
								
								graph_dit/naswot/models/shape_searchs/SoftSelect.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,111 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import math, torch | ||||
| import torch.nn as nn | ||||
|  | ||||
|  | ||||
| def select2withP(logits, tau, just_prob=False, num=2, eps=1e-7): | ||||
|   if tau <= 0: | ||||
|     new_logits = logits | ||||
|     probs = nn.functional.softmax(new_logits, dim=1) | ||||
|   else       : | ||||
|     while True: # a trick to avoid the gumbels bug | ||||
|       gumbels = -torch.empty_like(logits).exponential_().log() | ||||
|       new_logits = (logits.log_softmax(dim=1) + gumbels) / tau | ||||
|       probs = nn.functional.softmax(new_logits, dim=1) | ||||
|       if (not torch.isinf(gumbels).any()) and (not torch.isinf(probs).any()) and (not torch.isnan(probs).any()): break | ||||
|  | ||||
|   if just_prob: return probs | ||||
|  | ||||
|   #with torch.no_grad(): # add eps for unexpected torch error | ||||
|   #  probs = nn.functional.softmax(new_logits, dim=1) | ||||
|   #  selected_index = torch.multinomial(probs + eps, 2, False) | ||||
|   with torch.no_grad(): # add eps for unexpected torch error | ||||
|     probs          = probs.cpu() | ||||
|     selected_index = torch.multinomial(probs + eps, num, False).to(logits.device) | ||||
|   selected_logit = torch.gather(new_logits, 1, selected_index) | ||||
|   selcted_probs  = nn.functional.softmax(selected_logit, dim=1) | ||||
|   return selected_index, selcted_probs | ||||
|  | ||||
|  | ||||
| def ChannelWiseInter(inputs, oC, mode='v2'): | ||||
|   if mode == 'v1': | ||||
|     return ChannelWiseInterV1(inputs, oC) | ||||
|   elif mode == 'v2': | ||||
|     return ChannelWiseInterV2(inputs, oC) | ||||
|   else: | ||||
|     raise ValueError('invalid mode : {:}'.format(mode)) | ||||
|  | ||||
|  | ||||
| def ChannelWiseInterV1(inputs, oC): | ||||
|   assert inputs.dim() == 4, 'invalid dimension : {:}'.format(inputs.size()) | ||||
|   def start_index(a, b, c): | ||||
|     return int( math.floor(float(a * c) / b) ) | ||||
|   def end_index(a, b, c): | ||||
|     return int( math.ceil(float((a + 1) * c) / b) ) | ||||
|   batch, iC, H, W = inputs.size() | ||||
|   outputs = torch.zeros((batch, oC, H, W), dtype=inputs.dtype, device=inputs.device) | ||||
|   if iC == oC: return inputs | ||||
|   for ot in range(oC): | ||||
|     istartT, iendT = start_index(ot, oC, iC), end_index(ot, oC, iC) | ||||
|     values = inputs[:, istartT:iendT].mean(dim=1)  | ||||
|     outputs[:, ot, :, :] = values | ||||
|   return outputs | ||||
|  | ||||
|  | ||||
| def ChannelWiseInterV2(inputs, oC): | ||||
|   assert inputs.dim() == 4, 'invalid dimension : {:}'.format(inputs.size()) | ||||
|   batch, C, H, W = inputs.size() | ||||
|   if C == oC: return inputs | ||||
|   else      : return nn.functional.adaptive_avg_pool3d(inputs, (oC,H,W)) | ||||
|   #inputs_5D = inputs.view(batch, 1, C, H, W) | ||||
|   #otputs_5D = nn.functional.interpolate(inputs_5D, (oC,H,W), None, 'area', None) | ||||
|   #otputs    = otputs_5D.view(batch, oC, H, W) | ||||
|   #otputs_5D = nn.functional.interpolate(inputs_5D, (oC,H,W), None, 'trilinear', False) | ||||
|   #return otputs | ||||
|  | ||||
|  | ||||
| def linear_forward(inputs, linear): | ||||
|   if linear is None: return inputs | ||||
|   iC = inputs.size(1) | ||||
|   weight = linear.weight[:, :iC] | ||||
|   if linear.bias is None: bias = None | ||||
|   else                  : bias = linear.bias | ||||
|   return nn.functional.linear(inputs, weight, bias) | ||||
|  | ||||
|  | ||||
| def get_width_choices(nOut): | ||||
|   xsrange = [0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] | ||||
|   if nOut is None: | ||||
|     return len(xsrange) | ||||
|   else: | ||||
|     Xs = [int(nOut * i) for i in xsrange] | ||||
|     #xs = [ int(nOut * i // 10) for i in range(2, 11)] | ||||
|     #Xs = [x for i, x in enumerate(xs) if i+1 == len(xs) or xs[i+1] > x+1] | ||||
|     Xs = sorted( list( set(Xs) ) ) | ||||
|     return tuple(Xs) | ||||
|  | ||||
|  | ||||
| def get_depth_choices(nDepth): | ||||
|   if nDepth is None: | ||||
|     return 3 | ||||
|   else: | ||||
|     assert nDepth >= 3, 'nDepth should be greater than 2 vs {:}'.format(nDepth) | ||||
|     if nDepth == 1  : return (1, 1, 1) | ||||
|     elif nDepth == 2: return (1, 1, 2) | ||||
|     elif nDepth >= 3: | ||||
|       return (nDepth//3, nDepth*2//3, nDepth) | ||||
|     else: | ||||
|       raise ValueError('invalid Depth : {:}'.format(nDepth)) | ||||
|  | ||||
|  | ||||
| def drop_path(x, drop_prob): | ||||
|   if drop_prob > 0.: | ||||
|     keep_prob = 1. - drop_prob | ||||
|     mask = x.new_zeros(x.size(0), 1, 1, 1) | ||||
|     mask = mask.bernoulli_(keep_prob) | ||||
|     x = x * (mask / keep_prob) | ||||
|     #x.div_(keep_prob) | ||||
|     #x.mul_(mask) | ||||
|   return x | ||||
							
								
								
									
										8
									
								
								graph_dit/naswot/models/shape_searchs/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										8
									
								
								graph_dit/naswot/models/shape_searchs/__init__.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,8 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| from .SearchCifarResNet_width import SearchWidthCifarResNet | ||||
| from .SearchCifarResNet_depth import SearchDepthCifarResNet | ||||
| from .SearchCifarResNet       import SearchShapeCifarResNet | ||||
| from .SearchSimResNet_width   import SearchWidthSimResNet | ||||
| from .SearchImagenetResNet    import SearchShapeImagenetResNet | ||||
							
								
								
									
										20
									
								
								graph_dit/naswot/models/shape_searchs/test.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										20
									
								
								graph_dit/naswot/models/shape_searchs/test.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,20 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from SoftSelect import ChannelWiseInter | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|  | ||||
|   tensors = torch.rand((16, 128, 7, 7)) | ||||
|    | ||||
|   for oc in range(200, 210): | ||||
|     out_v1  = ChannelWiseInter(tensors, oc, 'v1') | ||||
|     out_v2  = ChannelWiseInter(tensors, oc, 'v2') | ||||
|     assert (out_v1 == out_v2).any().item() == 1 | ||||
|   for oc in range(48, 160): | ||||
|     out_v1  = ChannelWiseInter(tensors, oc, 'v1') | ||||
|     out_v2  = ChannelWiseInter(tensors, oc, 'v2') | ||||
|     assert (out_v1 == out_v2).any().item() == 1 | ||||
		Reference in New Issue
	
	Block a user