use trainer but has bugs
This commit is contained in:
		| @@ -54,7 +54,9 @@ class BasicGraphMetrics(object): | ||||
|         covered_nodes = set() | ||||
|         direct_valid_count = 0 | ||||
|         print(f"generated number: {len(generated)}") | ||||
|         print(f"generated: {generated}") | ||||
|         for graph in generated: | ||||
|             print(f"graph: {graph}") | ||||
|             node_types, edge_types = graph | ||||
|             direct_valid_flag = True | ||||
|             direct_valid_count += 1 | ||||
|   | ||||
| @@ -815,8 +815,8 @@ class Dataset(InMemoryDataset): | ||||
|         train_loader = dt.get_data(args.dataset, args.data_loc, args.trainval, args.batch_size, args.augtype, args.repeat, args) | ||||
|         self.swap_scores = [] | ||||
|         import csv | ||||
|         # with open('/nfs/data3/hanzhang/nasbenchDiT/graph_dit/swap_results.csv', 'r') as f: | ||||
|         with open('/nfs/data3/hanzhang/nasbenchDiT/graph_dit/swap_results_cifar100.csv', 'r') as f: | ||||
|         with open('/nfs/data3/hanzhang/nasbenchDiT/graph_dit/swap_results.csv', 'r') as f: | ||||
|         # with open('/nfs/data3/hanzhang/nasbenchDiT/graph_dit/swap_results_cifar100.csv', 'r') as f: | ||||
|             reader = csv.reader(f) | ||||
|             header = next(reader) | ||||
|             data = [row for row in reader] | ||||
|   | ||||
| @@ -23,6 +23,9 @@ class Graph_DiT(pl.LightningModule): | ||||
|         self.test_only = cfg.general.test_only | ||||
|         self.guidance_target = getattr(cfg.dataset, 'guidance_target', None) | ||||
|  | ||||
|         from nas_201_api import NASBench201API as API | ||||
|         self.api = API('/nfs/data3/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth') | ||||
|  | ||||
|         input_dims = dataset_infos.input_dims | ||||
|         output_dims = dataset_infos.output_dims | ||||
|         nodes_dist = dataset_infos.nodes_dist | ||||
| @@ -79,6 +82,7 @@ class Graph_DiT(pl.LightningModule): | ||||
|         self.node_dist = nodes_dist | ||||
|         self.active_index = active_index | ||||
|         self.dataset_info = dataset_infos | ||||
|         self.cur_epoch = 0 | ||||
|  | ||||
|         self.train_loss = TrainLossDiscrete(self.cfg.model.lambda_train) | ||||
|  | ||||
| @@ -162,25 +166,81 @@ class Graph_DiT(pl.LightningModule): | ||||
|         return pred | ||||
|          | ||||
|     def training_step(self, data, i): | ||||
|         data_x = F.one_hot(data.x, num_classes=12).float()[:, self.active_index] | ||||
|         data_edge_attr = F.one_hot(data.edge_attr, num_classes=2).float() | ||||
|         if self.cfg.general.type != 'accelerator' and self.current_epoch > self.cfg.train.n_epochs / 5 * 4: | ||||
|             samples_left_to_generate = self.cfg.general.samples_to_generate | ||||
|             samples_left_to_save = self.cfg.general.samples_to_save | ||||
|             chains_left_to_save = self.cfg.general.chains_to_save | ||||
|  | ||||
|         dense_data, node_mask = utils.to_dense(data_x, data.edge_index, data_edge_attr, data.batch, self.max_n_nodes) | ||||
|         dense_data = dense_data.mask(node_mask) | ||||
|         X, E = dense_data.X, dense_data.E | ||||
|         noisy_data = self.apply_noise(X, E, data.y, node_mask) | ||||
|         pred = self.forward(noisy_data) | ||||
|         loss = self.train_loss(masked_pred_X=pred.X, masked_pred_E=pred.E, pred_y=pred.y, | ||||
|                             true_X=X, true_E=E, true_y=data.y, node_mask=node_mask, | ||||
|             samples, all_ys, batch_id = [], [], 0 | ||||
|  | ||||
|             def graph_reward_fn(graphs, true_graphs=None, device=None, reward_model='swap'): | ||||
|                 rewards = [] | ||||
|                 if reward_model == 'swap': | ||||
|                     import csv | ||||
|                     with open('/nfs/data3/hanzhang/nasbenchDiT/graph_dit/swap_results.csv', 'r') as f: | ||||
|                         reader = csv.reader(f) | ||||
|                         header = next(reader) | ||||
|                         data = [row for row in reader] | ||||
|                         swap_scores = [float(row[0]) for row in data] | ||||
|                         for graph in graphs: | ||||
|                             node_tensor = graph[0] | ||||
|                             node = node_tensor.cpu().numpy().tolist() | ||||
|  | ||||
|                             def nodes_to_arch_str(nodes): | ||||
|                                 num_to_op = ['input', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3', 'skip_connect', 'none', 'output'] | ||||
|                                 nodes_str = [num_to_op[node] for node in nodes] | ||||
|                                 arch_str = '|' + nodes_str[1] + '~0|+' + \ | ||||
|                                         '|' + nodes_str[2] + '~0|' + nodes_str[3] + '~1|+' +\ | ||||
|                                         '|' + nodes_str[4] + '~0|' + nodes_str[5] + '~1|' + nodes_str[6] + '~2|'  | ||||
|                                 return arch_str | ||||
|                              | ||||
|                             arch_str = nodes_to_arch_str(node) | ||||
|                             reward = swap_scores[self.api.query_index_by_arch(arch_str)] | ||||
|                             rewards.append(reward) | ||||
|                 return torch.tensor(rewards, dtype=torch.float32, requires_grad=True).unsqueeze(0).to(device) | ||||
|             old_log_probs = None | ||||
|  | ||||
|             bs = 1 * self.cfg.train.batch_size | ||||
|             to_generate = min(samples_left_to_generate, bs) | ||||
|             to_save = min(samples_left_to_save, bs) | ||||
|             chains_save = min(chains_left_to_save, bs) | ||||
|             # batch_y = test_y_collection[batch_id : batch_id + to_generate] | ||||
|             batch_y = torch.ones(to_generate, self.ydim_output, device=self.device) | ||||
|  | ||||
|             cur_sample, log_probs = self.sample_batch(batch_id, to_generate, batch_y, save_final=to_save, | ||||
|                                             keep_chain=chains_save, number_chain_steps=self.number_chain_steps) | ||||
|             # samples = samples + cur_sample | ||||
|             samples.append(cur_sample)  | ||||
|             reward = graph_reward_fn(cur_sample, device=self.device) | ||||
|             advantages = (reward - torch.mean(reward)) / (torch.std(reward) + 1e-6) #  | ||||
|             if old_log_probs is None: | ||||
|                 old_log_probs = log_probs.clone() | ||||
|             ratio = torch.exp(log_probs - old_log_probs) | ||||
|             print(f"ratio: {ratio.shape}, advantages: {advantages.shape}") | ||||
|             unclipped_loss = -advantages * ratio | ||||
|             clipped_loss = -advantages * torch.clamp(ratio, 1.0 - self.cfg.ppo.clip_param, 1.0 + self.cfg.ppo.clip_param) | ||||
|             loss = torch.mean(torch.max(unclipped_loss, clipped_loss)) | ||||
|             return {'loss': loss} | ||||
|         else: | ||||
|             data_x = F.one_hot(data.x, num_classes=12).float()[:, self.active_index] | ||||
|             data_edge_attr = F.one_hot(data.edge_attr, num_classes=2).float() | ||||
|  | ||||
|             dense_data, node_mask = utils.to_dense(data_x, data.edge_index, data_edge_attr, data.batch, self.max_n_nodes) | ||||
|             dense_data = dense_data.mask(node_mask) | ||||
|             X, E = dense_data.X, dense_data.E | ||||
|             noisy_data = self.apply_noise(X, E, data.y, node_mask) | ||||
|             pred = self.forward(noisy_data) | ||||
|             loss = self.train_loss(masked_pred_X=pred.X, masked_pred_E=pred.E, pred_y=pred.y, | ||||
|                                 true_X=X, true_E=E, true_y=data.y, node_mask=node_mask, | ||||
|                                 log=i % self.log_every_steps == 0) | ||||
|             # print(f'training loss: {loss}, epoch: {self.current_epoch}, batch: {i}\n, pred type: {type(pred)}, pred.X shape: {type(pred.X)}, {pred.X.shape}, pred.E shape: {type(pred.E)}, {pred.E.shape}') | ||||
|             self.train_metrics(masked_pred_X=pred.X, masked_pred_E=pred.E, true_X=X, true_E=E, | ||||
|                             log=i % self.log_every_steps == 0) | ||||
|         # print(f'training loss: {loss}, epoch: {self.current_epoch}, batch: {i}\n, pred type: {type(pred)}, pred.X shape: {type(pred.X)}, {pred.X.shape}, pred.E shape: {type(pred.E)}, {pred.E.shape}') | ||||
|         self.train_metrics(masked_pred_X=pred.X, masked_pred_E=pred.E, true_X=X, true_E=E, | ||||
|                         log=i % self.log_every_steps == 0) | ||||
|         self.log(f'loss', loss, batch_size=X.size(0), sync_dist=True) | ||||
|         print(f"training loss: {loss}") | ||||
|         with open("training-loss.csv", "a") as f: | ||||
|             f.write(f"{loss}, {i}\n") | ||||
|         return {'loss': loss} | ||||
|             self.log(f'loss', loss, batch_size=X.size(0), sync_dist=True) | ||||
|             print(f"training loss: {loss}") | ||||
|             with open("training-loss.csv", "a") as f: | ||||
|                 f.write(f"{loss}, {i}\n") | ||||
|             return {'loss': loss} | ||||
|  | ||||
|  | ||||
|     def configure_optimizers(self): | ||||
| @@ -196,14 +256,15 @@ class Graph_DiT(pl.LightningModule): | ||||
|  | ||||
|     def on_train_epoch_start(self) -> None: | ||||
|         if self.current_epoch / self.trainer.max_epochs in [0.25, 0.5, 0.75, 1.0]: | ||||
|             print("Starting train epoch {}/{}...".format(self.current_epoch, self.trainer.max_epochs)) | ||||
|         # if self.cur_epoch / self.cfg.train.n_epochs in [0.25, 0.5, 0.75, 1.0]: | ||||
|             print("Starting train epoch {}/{}...".format(self.cur_epoch, self.cfg.train.n_epochs)) | ||||
|         self.start_epoch_time = time.time() | ||||
|         self.train_loss.reset() | ||||
|         self.train_metrics.reset() | ||||
|  | ||||
|     def on_train_epoch_end(self) -> None: | ||||
|  | ||||
|         if self.current_epoch / self.trainer.max_epochs in [0.25, 0.5, 0.75, 1.0]: | ||||
|         if self.current_epoch / self.cfg.train.n_epochs in [0.25, 0.5, 0.75, 1.0]: | ||||
|             log = True | ||||
|         else: | ||||
|             log = False | ||||
| @@ -240,6 +301,7 @@ class Graph_DiT(pl.LightningModule): | ||||
|                    self.val_X_logp.compute(), self.val_E_logp.compute()] | ||||
|          | ||||
|         if self.current_epoch / self.trainer.max_epochs in [0.25, 0.5, 0.75, 1.0]: | ||||
|         # if self.cur_epoch / self.cfg.train.n_epochs in [0.25, 0.5, 0.75, 1.0]: | ||||
|             print(f"Epoch {self.current_epoch}: Val NLL {metrics[0] :.2f} -- Val Atom type KL {metrics[1] :.2f} -- ", | ||||
|                 f"Val Edge type KL: {metrics[2] :.2f}", 'Val loss: %.2f \t Best :  %.2f\n' % (metrics[0], self.best_val_nll)) | ||||
|         with open("validation-metrics.csv", "a") as f: | ||||
| @@ -336,7 +398,7 @@ class Graph_DiT(pl.LightningModule): | ||||
|         print(f"Epoch {self.current_epoch}: Test NLL {metrics[0] :.2f} -- Test Atom type KL {metrics[1] :.2f} -- ", | ||||
|               f"Test Edge type KL: {metrics[2] :.2f}") | ||||
|  | ||||
|         ## final epcoh | ||||
|         ## final epoch | ||||
|         samples_left_to_generate = self.cfg.general.final_model_samples_to_generate | ||||
|         samples_left_to_save = self.cfg.general.final_model_samples_to_save | ||||
|         chains_left_to_save = self.cfg.general.final_model_chains_to_save | ||||
| @@ -359,9 +421,9 @@ class Graph_DiT(pl.LightningModule): | ||||
|             # batch_y = test_y_collection[batch_id : batch_id + to_generate] | ||||
|             batch_y = torch.ones(to_generate, self.ydim_output, device=self.device) | ||||
|  | ||||
|             cur_sample = self.sample_batch(batch_id, to_generate, batch_y, save_final=to_save, | ||||
|             cur_sample, log_probs = self.sample_batch(batch_id, to_generate, batch_y, save_final=to_save, | ||||
|                                             keep_chain=chains_save, number_chain_steps=self.number_chain_steps) | ||||
|             samples = samples + cur_sample | ||||
|             samples.append(cur_sample)   | ||||
|              | ||||
|             all_ys.append(batch_y) | ||||
|             batch_id += to_generate | ||||
| @@ -601,6 +663,12 @@ class Graph_DiT(pl.LightningModule): | ||||
|  | ||||
|         assert (E == torch.transpose(E, 1, 2)).all() | ||||
|  | ||||
|         if self.cfg.general.type != 'accelerator': | ||||
|             if self.trainer.training or self.trainer.validating: | ||||
|                 total_log_probs = torch.zeros([self.cfg.general.samples_to_generate, 10], device=self.device) | ||||
|             elif self.trainer.testing: | ||||
|                 total_log_probs = torch.zeros([self.cfg.general.final_model_samples_to_generate, 10], device=self.device) | ||||
|  | ||||
|         # Iteratively sample p(z_s | z_t) for t = 1, ..., T, with s = t - 1. | ||||
|         for s_int in reversed(range(0, self.T)): | ||||
|             s_array = s_int * torch.ones((batch_size, 1)).type_as(y) | ||||
| @@ -609,21 +677,24 @@ class Graph_DiT(pl.LightningModule): | ||||
|             t_norm = t_array / self.T | ||||
|  | ||||
|             # Sample z_s | ||||
|             sampled_s, discrete_sampled_s = self.sample_p_zs_given_zt(s_norm, t_norm, X, E, y, node_mask) | ||||
|             sampled_s, discrete_sampled_s, log_probs = self.sample_p_zs_given_zt(s_norm, t_norm, X, E, y, node_mask) | ||||
|             X, E, y = sampled_s.X, sampled_s.E, sampled_s.y | ||||
|             total_log_probs += log_probs | ||||
|  | ||||
|         # Sample | ||||
|         sampled_s = sampled_s.mask(node_mask, collapse=True) | ||||
|         X, E, y = sampled_s.X, sampled_s.E, sampled_s.y | ||||
|          | ||||
|         molecule_list = [] | ||||
|         graph_list = [] | ||||
|         for i in range(batch_size): | ||||
|             n = n_nodes[i] | ||||
|             atom_types = X[i, :n].cpu() | ||||
|             node_types = X[i, :n].cpu() | ||||
|             edge_types = E[i, :n, :n].cpu() | ||||
|             molecule_list.append([atom_types, edge_types]) | ||||
|             graph_list.append((node_types , edge_types)) | ||||
|          | ||||
|         return molecule_list | ||||
|         total_log_probs = torch.sum(total_log_probs, dim=-1) | ||||
|          | ||||
|         return graph_list, total_log_probs | ||||
|  | ||||
|     def sample_p_zs_given_zt(self, s, t, X_t, E_t, y_t, node_mask): | ||||
|         """Samples from zs ~ p(zs | zt). Only used during sampling. | ||||
| @@ -675,6 +746,14 @@ class Graph_DiT(pl.LightningModule): | ||||
|         # with condition = P_t(A_{t-1} |A_t, y) | ||||
|         prob_X, prob_E, pred = get_prob(noisy_data) | ||||
|  | ||||
|         log_prob_X = torch.log(torch.gather(prob_X, -1, X_t.long()).squeeze(-1))  # bs, n | ||||
|         log_prob_E = torch.log(torch.gather(prob_E, -1, E_t.long()).squeeze(-1))  # bs, n, n | ||||
|  | ||||
|         # Sum the log_prob across dimensions for total log_prob | ||||
|         log_prob_X = log_prob_X.sum(dim=-1) | ||||
|         log_prob_E = log_prob_E.sum(dim=(1, 2)) | ||||
|  | ||||
|         log_probs = torch.cat([log_prob_X, log_prob_E], dim=-1) | ||||
|         ### Guidance | ||||
|         if self.guidance_target is not None and self.guide_scale is not None and self.guide_scale != 1: | ||||
|             uncon_prob_X, uncon_prob_E, pred = get_prob(noisy_data, unconditioned=True) | ||||
| @@ -810,4 +889,4 @@ class Graph_DiT(pl.LightningModule): | ||||
|         out_one_hot = utils.PlaceHolder(X=X_s, E=E_s, y=y_t) | ||||
|         out_discrete = utils.PlaceHolder(X=X_s, E=E_s, y=y_t) | ||||
|  | ||||
|         return out_one_hot.mask(node_mask).type_as(y_t), out_discrete.mask(node_mask, collapse=True).type_as(y_t) | ||||
|         return out_one_hot.mask(node_mask).type_as(y_t), out_discrete.mask(node_mask, collapse=True).type_as(y_t), log_probs | ||||
|   | ||||
| @@ -177,32 +177,92 @@ def test(cfg: DictConfig): | ||||
|         os.chdir(cfg.general.resume.split("checkpoints")[0]) | ||||
|     # os.environ["CUDA_VISIBLE_DEVICES"] = cfg.general.gpu_number | ||||
|     model = Graph_DiT(cfg=cfg, **model_kwargs) | ||||
|     trainer = Trainer( | ||||
|         gradient_clip_val=cfg.train.clip_grad, | ||||
|         # accelerator="cpu", | ||||
|         accelerator="gpu" | ||||
|         if torch.cuda.is_available() and cfg.general.gpus > 0 | ||||
|         else "cpu", | ||||
|         devices=[cfg.general.gpu_number] | ||||
|         if torch.cuda.is_available() and cfg.general.gpus > 0 | ||||
|         else None, | ||||
|         max_epochs=cfg.train.n_epochs, | ||||
|         enable_checkpointing=False, | ||||
|         check_val_every_n_epoch=cfg.train.check_val_every_n_epoch, | ||||
|         val_check_interval=cfg.train.val_check_interval, | ||||
|         strategy="ddp" if cfg.general.gpus > 1 else "auto", | ||||
|         enable_progress_bar=cfg.general.enable_progress_bar, | ||||
|         callbacks=[], | ||||
|         reload_dataloaders_every_n_epochs=0, | ||||
|         logger=[], | ||||
|     ) | ||||
|  | ||||
|     if not cfg.general.test_only: | ||||
|         print("start testing fit method") | ||||
|         trainer.fit(model, datamodule=datamodule, ckpt_path=cfg.general.resume) | ||||
|         if cfg.general.save_model: | ||||
|             trainer.save_checkpoint(f"checkpoints/{cfg.general.name}/last.ckpt") | ||||
|         trainer.test(model, datamodule=datamodule) | ||||
|     if cfg.general.type == "accelerator": | ||||
|         graph_dit_model = model | ||||
|  | ||||
|         from accelerate import Accelerator | ||||
|         from accelerate.utils import set_seed, ProjectConfiguration | ||||
|  | ||||
|         accelerator_config = ProjectConfiguration( | ||||
|             project_dir=os.path.join(cfg.general.log_dir, cfg.general.name), | ||||
|             automatic_checkpoint_naming=True, | ||||
|             total_limit=cfg.general.number_checkpoint_limit, | ||||
|         ) | ||||
|         accelerator = Accelerator( | ||||
|             mixed_precision='no', | ||||
|             project_config=accelerator_config, | ||||
|             # gradient_accumulation_steps=cfg.train.gradient_accumulation_steps * cfg.train.n_epochs, | ||||
|             gradient_accumulation_steps=cfg.train.gradient_accumulation_steps,  | ||||
|         ) | ||||
|  | ||||
|         optimizer = graph_dit_model.configure_optimizers() | ||||
|  | ||||
|         train_dataloader = datamodule.train_dataloader() | ||||
|         train_dataloader = accelerator.prepare(train_dataloader) | ||||
|         val_dataloader = datamodule.val_dataloader() | ||||
|         val_dataloader = accelerator.prepare(val_dataloader) | ||||
|         test_dataloader = datamodule.test_dataloader() | ||||
|         test_dataloader = accelerator.prepare(test_dataloader) | ||||
|  | ||||
|         optimizer, graph_dit_model = accelerator.prepare(optimizer, graph_dit_model) | ||||
|  | ||||
|         # train_epoch | ||||
|         from pytorch_lightning import seed_everything | ||||
|         seed_everything(cfg.train.seed) | ||||
|         for epoch in range(cfg.train.n_epochs): | ||||
|             print(f"Epoch {epoch}") | ||||
|             graph_dit_model.train() | ||||
|             graph_dit_model.cur_epoch = epoch | ||||
|             graph_dit_model.on_train_epoch_start() | ||||
|             for batch in train_dataloader: | ||||
|                 optimizer.zero_grad() | ||||
|                 loss = graph_dit_model.training_step(batch, epoch)['loss'] | ||||
|                 accelerator.backward(loss) | ||||
|                 optimizer.step() | ||||
|             graph_dit_model.on_train_epoch_end() | ||||
|             for batch in val_dataloader: | ||||
|                 if epoch % cfg.train.check_val_every_n_epoch == 0: | ||||
|                     graph_dit_model.eval() | ||||
|                     graph_dit_model.on_validation_epoch_start() | ||||
|                     graph_dit_model.validation_step(batch, epoch) | ||||
|                     graph_dit_model.on_validation_epoch_end() | ||||
|          | ||||
|         # test_epoch | ||||
|  | ||||
|         graph_dit_model.test() | ||||
|         graph_dit_model.on_test_epoch_start() | ||||
|         for batch in test_dataloader: | ||||
|             graph_dit_model.test_step(batch, epoch) | ||||
|         graph_dit_model.on_test_epoch_end() | ||||
|      | ||||
|     elif cfg.general.type == "Trainer":  | ||||
|         trainer = Trainer( | ||||
|             gradient_clip_val=cfg.train.clip_grad, | ||||
|             # accelerator="cpu", | ||||
|             accelerator="gpu" | ||||
|             if torch.cuda.is_available() and cfg.general.gpus > 0 | ||||
|             else "cpu", | ||||
|             devices=[cfg.general.gpu_number] | ||||
|             if torch.cuda.is_available() and cfg.general.gpus > 0 | ||||
|             else None, | ||||
|             max_epochs=cfg.train.n_epochs, | ||||
|             enable_checkpointing=False, | ||||
|             check_val_every_n_epoch=cfg.train.check_val_every_n_epoch, | ||||
|             val_check_interval=cfg.train.val_check_interval, | ||||
|             strategy="ddp" if cfg.general.gpus > 1 else "auto", | ||||
|             enable_progress_bar=cfg.general.enable_progress_bar, | ||||
|             callbacks=[], | ||||
|             reload_dataloaders_every_n_epochs=0, | ||||
|             logger=[], | ||||
|         ) | ||||
|  | ||||
|         if not cfg.general.test_only: | ||||
|             print("start testing fit method") | ||||
|             trainer.fit(model, datamodule=datamodule, ckpt_path=cfg.general.resume) | ||||
|             if cfg.general.save_model: | ||||
|                 trainer.save_checkpoint(f"checkpoints/{cfg.general.name}/last.ckpt") | ||||
|             trainer.test(model, datamodule=datamodule) | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|     test() | ||||
|   | ||||
										
											
												File diff suppressed because one or more lines are too long
											
										
									
								
							
		Reference in New Issue
	
	Block a user