use trainer but has bugs
This commit is contained in:
		| @@ -2,20 +2,23 @@ general: | |||||||
|     name: 'graph_dit' |     name: 'graph_dit' | ||||||
|     wandb: 'disabled'  |     wandb: 'disabled'  | ||||||
|     gpus: 1 |     gpus: 1 | ||||||
|     gpu_number: 2 |     gpu_number: 0 | ||||||
|     resume: null |     resume: null | ||||||
|     test_only: null |     test_only: null | ||||||
|     sample_every_val: 2500 |     sample_every_val: 2500 | ||||||
|     samples_to_generate: 512       |     samples_to_generate: 1000 | ||||||
|     samples_to_save: 3 |     samples_to_save: 3 | ||||||
|     chains_to_save: 1 |     chains_to_save: 1 | ||||||
|     log_every_steps: 50 |     log_every_steps: 50 | ||||||
|     number_chain_steps: 8 |     number_chain_steps: 8 | ||||||
|     final_model_samples_to_generate: 100 |     final_model_samples_to_generate: 1000 | ||||||
|     final_model_samples_to_save: 20 |     final_model_samples_to_save: 20 | ||||||
|     final_model_chains_to_save: 1 |     final_model_chains_to_save: 1 | ||||||
|     enable_progress_bar: False |     enable_progress_bar: False | ||||||
|     save_model: True |     save_model: True | ||||||
|  |     log_dir: '/nfs/data3/hanzhang/nasbenchDiT' | ||||||
|  |     number_checkpoint_limit: 3 | ||||||
|  |     type: 'Trainer' | ||||||
| model: | model: | ||||||
|     type: 'discrete' |     type: 'discrete' | ||||||
|     transition: 'marginal'                   |     transition: 'marginal'                   | ||||||
| @@ -32,7 +35,7 @@ model: | |||||||
|     ensure_connected: True |     ensure_connected: True | ||||||
| train: | train: | ||||||
|     # n_epochs: 5000 |     # n_epochs: 5000 | ||||||
|     n_epochs: 500 |     n_epochs: 10 | ||||||
|     batch_size: 1200 |     batch_size: 1200 | ||||||
|     lr: 0.0002 |     lr: 0.0002 | ||||||
|     clip_grad: null |     clip_grad: null | ||||||
| @@ -41,8 +44,11 @@ train: | |||||||
|     seed: 0 |     seed: 0 | ||||||
|     val_check_interval: null |     val_check_interval: null | ||||||
|     check_val_every_n_epoch: 1 |     check_val_every_n_epoch: 1 | ||||||
|  |     gradient_accumulation_steps: 1 | ||||||
| dataset: | dataset: | ||||||
|     datadir: 'data/' |     datadir: 'data/' | ||||||
|     task_name: 'nasbench-201' |     task_name: 'nasbench-201' | ||||||
|     guidance_target: 'nasbench-201' |     guidance_target: 'nasbench-201' | ||||||
|     pin_memory: False |     pin_memory: False | ||||||
|  | ppo: | ||||||
|  |     clip_param: 1 | ||||||
|   | |||||||
| @@ -54,7 +54,9 @@ class BasicGraphMetrics(object): | |||||||
|         covered_nodes = set() |         covered_nodes = set() | ||||||
|         direct_valid_count = 0 |         direct_valid_count = 0 | ||||||
|         print(f"generated number: {len(generated)}") |         print(f"generated number: {len(generated)}") | ||||||
|  |         print(f"generated: {generated}") | ||||||
|         for graph in generated: |         for graph in generated: | ||||||
|  |             print(f"graph: {graph}") | ||||||
|             node_types, edge_types = graph |             node_types, edge_types = graph | ||||||
|             direct_valid_flag = True |             direct_valid_flag = True | ||||||
|             direct_valid_count += 1 |             direct_valid_count += 1 | ||||||
|   | |||||||
| @@ -815,8 +815,8 @@ class Dataset(InMemoryDataset): | |||||||
|         train_loader = dt.get_data(args.dataset, args.data_loc, args.trainval, args.batch_size, args.augtype, args.repeat, args) |         train_loader = dt.get_data(args.dataset, args.data_loc, args.trainval, args.batch_size, args.augtype, args.repeat, args) | ||||||
|         self.swap_scores = [] |         self.swap_scores = [] | ||||||
|         import csv |         import csv | ||||||
|         # with open('/nfs/data3/hanzhang/nasbenchDiT/graph_dit/swap_results.csv', 'r') as f: |         with open('/nfs/data3/hanzhang/nasbenchDiT/graph_dit/swap_results.csv', 'r') as f: | ||||||
|         with open('/nfs/data3/hanzhang/nasbenchDiT/graph_dit/swap_results_cifar100.csv', 'r') as f: |         # with open('/nfs/data3/hanzhang/nasbenchDiT/graph_dit/swap_results_cifar100.csv', 'r') as f: | ||||||
|             reader = csv.reader(f) |             reader = csv.reader(f) | ||||||
|             header = next(reader) |             header = next(reader) | ||||||
|             data = [row for row in reader] |             data = [row for row in reader] | ||||||
|   | |||||||
| @@ -23,6 +23,9 @@ class Graph_DiT(pl.LightningModule): | |||||||
|         self.test_only = cfg.general.test_only |         self.test_only = cfg.general.test_only | ||||||
|         self.guidance_target = getattr(cfg.dataset, 'guidance_target', None) |         self.guidance_target = getattr(cfg.dataset, 'guidance_target', None) | ||||||
|  |  | ||||||
|  |         from nas_201_api import NASBench201API as API | ||||||
|  |         self.api = API('/nfs/data3/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth') | ||||||
|  |  | ||||||
|         input_dims = dataset_infos.input_dims |         input_dims = dataset_infos.input_dims | ||||||
|         output_dims = dataset_infos.output_dims |         output_dims = dataset_infos.output_dims | ||||||
|         nodes_dist = dataset_infos.nodes_dist |         nodes_dist = dataset_infos.nodes_dist | ||||||
| @@ -79,6 +82,7 @@ class Graph_DiT(pl.LightningModule): | |||||||
|         self.node_dist = nodes_dist |         self.node_dist = nodes_dist | ||||||
|         self.active_index = active_index |         self.active_index = active_index | ||||||
|         self.dataset_info = dataset_infos |         self.dataset_info = dataset_infos | ||||||
|  |         self.cur_epoch = 0 | ||||||
|  |  | ||||||
|         self.train_loss = TrainLossDiscrete(self.cfg.model.lambda_train) |         self.train_loss = TrainLossDiscrete(self.cfg.model.lambda_train) | ||||||
|  |  | ||||||
| @@ -162,25 +166,81 @@ class Graph_DiT(pl.LightningModule): | |||||||
|         return pred |         return pred | ||||||
|          |          | ||||||
|     def training_step(self, data, i): |     def training_step(self, data, i): | ||||||
|         data_x = F.one_hot(data.x, num_classes=12).float()[:, self.active_index] |         if self.cfg.general.type != 'accelerator' and self.current_epoch > self.cfg.train.n_epochs / 5 * 4: | ||||||
|         data_edge_attr = F.one_hot(data.edge_attr, num_classes=2).float() |             samples_left_to_generate = self.cfg.general.samples_to_generate | ||||||
|  |             samples_left_to_save = self.cfg.general.samples_to_save | ||||||
|  |             chains_left_to_save = self.cfg.general.chains_to_save | ||||||
|  |  | ||||||
|         dense_data, node_mask = utils.to_dense(data_x, data.edge_index, data_edge_attr, data.batch, self.max_n_nodes) |             samples, all_ys, batch_id = [], [], 0 | ||||||
|         dense_data = dense_data.mask(node_mask) |  | ||||||
|         X, E = dense_data.X, dense_data.E |             def graph_reward_fn(graphs, true_graphs=None, device=None, reward_model='swap'): | ||||||
|         noisy_data = self.apply_noise(X, E, data.y, node_mask) |                 rewards = [] | ||||||
|         pred = self.forward(noisy_data) |                 if reward_model == 'swap': | ||||||
|         loss = self.train_loss(masked_pred_X=pred.X, masked_pred_E=pred.E, pred_y=pred.y, |                     import csv | ||||||
|                             true_X=X, true_E=E, true_y=data.y, node_mask=node_mask, |                     with open('/nfs/data3/hanzhang/nasbenchDiT/graph_dit/swap_results.csv', 'r') as f: | ||||||
|  |                         reader = csv.reader(f) | ||||||
|  |                         header = next(reader) | ||||||
|  |                         data = [row for row in reader] | ||||||
|  |                         swap_scores = [float(row[0]) for row in data] | ||||||
|  |                         for graph in graphs: | ||||||
|  |                             node_tensor = graph[0] | ||||||
|  |                             node = node_tensor.cpu().numpy().tolist() | ||||||
|  |  | ||||||
|  |                             def nodes_to_arch_str(nodes): | ||||||
|  |                                 num_to_op = ['input', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3', 'skip_connect', 'none', 'output'] | ||||||
|  |                                 nodes_str = [num_to_op[node] for node in nodes] | ||||||
|  |                                 arch_str = '|' + nodes_str[1] + '~0|+' + \ | ||||||
|  |                                         '|' + nodes_str[2] + '~0|' + nodes_str[3] + '~1|+' +\ | ||||||
|  |                                         '|' + nodes_str[4] + '~0|' + nodes_str[5] + '~1|' + nodes_str[6] + '~2|'  | ||||||
|  |                                 return arch_str | ||||||
|  |                              | ||||||
|  |                             arch_str = nodes_to_arch_str(node) | ||||||
|  |                             reward = swap_scores[self.api.query_index_by_arch(arch_str)] | ||||||
|  |                             rewards.append(reward) | ||||||
|  |                 return torch.tensor(rewards, dtype=torch.float32, requires_grad=True).unsqueeze(0).to(device) | ||||||
|  |             old_log_probs = None | ||||||
|  |  | ||||||
|  |             bs = 1 * self.cfg.train.batch_size | ||||||
|  |             to_generate = min(samples_left_to_generate, bs) | ||||||
|  |             to_save = min(samples_left_to_save, bs) | ||||||
|  |             chains_save = min(chains_left_to_save, bs) | ||||||
|  |             # batch_y = test_y_collection[batch_id : batch_id + to_generate] | ||||||
|  |             batch_y = torch.ones(to_generate, self.ydim_output, device=self.device) | ||||||
|  |  | ||||||
|  |             cur_sample, log_probs = self.sample_batch(batch_id, to_generate, batch_y, save_final=to_save, | ||||||
|  |                                             keep_chain=chains_save, number_chain_steps=self.number_chain_steps) | ||||||
|  |             # samples = samples + cur_sample | ||||||
|  |             samples.append(cur_sample)  | ||||||
|  |             reward = graph_reward_fn(cur_sample, device=self.device) | ||||||
|  |             advantages = (reward - torch.mean(reward)) / (torch.std(reward) + 1e-6) #  | ||||||
|  |             if old_log_probs is None: | ||||||
|  |                 old_log_probs = log_probs.clone() | ||||||
|  |             ratio = torch.exp(log_probs - old_log_probs) | ||||||
|  |             print(f"ratio: {ratio.shape}, advantages: {advantages.shape}") | ||||||
|  |             unclipped_loss = -advantages * ratio | ||||||
|  |             clipped_loss = -advantages * torch.clamp(ratio, 1.0 - self.cfg.ppo.clip_param, 1.0 + self.cfg.ppo.clip_param) | ||||||
|  |             loss = torch.mean(torch.max(unclipped_loss, clipped_loss)) | ||||||
|  |             return {'loss': loss} | ||||||
|  |         else: | ||||||
|  |             data_x = F.one_hot(data.x, num_classes=12).float()[:, self.active_index] | ||||||
|  |             data_edge_attr = F.one_hot(data.edge_attr, num_classes=2).float() | ||||||
|  |  | ||||||
|  |             dense_data, node_mask = utils.to_dense(data_x, data.edge_index, data_edge_attr, data.batch, self.max_n_nodes) | ||||||
|  |             dense_data = dense_data.mask(node_mask) | ||||||
|  |             X, E = dense_data.X, dense_data.E | ||||||
|  |             noisy_data = self.apply_noise(X, E, data.y, node_mask) | ||||||
|  |             pred = self.forward(noisy_data) | ||||||
|  |             loss = self.train_loss(masked_pred_X=pred.X, masked_pred_E=pred.E, pred_y=pred.y, | ||||||
|  |                                 true_X=X, true_E=E, true_y=data.y, node_mask=node_mask, | ||||||
|  |                                 log=i % self.log_every_steps == 0) | ||||||
|  |             # print(f'training loss: {loss}, epoch: {self.current_epoch}, batch: {i}\n, pred type: {type(pred)}, pred.X shape: {type(pred.X)}, {pred.X.shape}, pred.E shape: {type(pred.E)}, {pred.E.shape}') | ||||||
|  |             self.train_metrics(masked_pred_X=pred.X, masked_pred_E=pred.E, true_X=X, true_E=E, | ||||||
|                             log=i % self.log_every_steps == 0) |                             log=i % self.log_every_steps == 0) | ||||||
|         # print(f'training loss: {loss}, epoch: {self.current_epoch}, batch: {i}\n, pred type: {type(pred)}, pred.X shape: {type(pred.X)}, {pred.X.shape}, pred.E shape: {type(pred.E)}, {pred.E.shape}') |             self.log(f'loss', loss, batch_size=X.size(0), sync_dist=True) | ||||||
|         self.train_metrics(masked_pred_X=pred.X, masked_pred_E=pred.E, true_X=X, true_E=E, |             print(f"training loss: {loss}") | ||||||
|                         log=i % self.log_every_steps == 0) |             with open("training-loss.csv", "a") as f: | ||||||
|         self.log(f'loss', loss, batch_size=X.size(0), sync_dist=True) |                 f.write(f"{loss}, {i}\n") | ||||||
|         print(f"training loss: {loss}") |             return {'loss': loss} | ||||||
|         with open("training-loss.csv", "a") as f: |  | ||||||
|             f.write(f"{loss}, {i}\n") |  | ||||||
|         return {'loss': loss} |  | ||||||
|  |  | ||||||
|  |  | ||||||
|     def configure_optimizers(self): |     def configure_optimizers(self): | ||||||
| @@ -196,14 +256,15 @@ class Graph_DiT(pl.LightningModule): | |||||||
|  |  | ||||||
|     def on_train_epoch_start(self) -> None: |     def on_train_epoch_start(self) -> None: | ||||||
|         if self.current_epoch / self.trainer.max_epochs in [0.25, 0.5, 0.75, 1.0]: |         if self.current_epoch / self.trainer.max_epochs in [0.25, 0.5, 0.75, 1.0]: | ||||||
|             print("Starting train epoch {}/{}...".format(self.current_epoch, self.trainer.max_epochs)) |         # if self.cur_epoch / self.cfg.train.n_epochs in [0.25, 0.5, 0.75, 1.0]: | ||||||
|  |             print("Starting train epoch {}/{}...".format(self.cur_epoch, self.cfg.train.n_epochs)) | ||||||
|         self.start_epoch_time = time.time() |         self.start_epoch_time = time.time() | ||||||
|         self.train_loss.reset() |         self.train_loss.reset() | ||||||
|         self.train_metrics.reset() |         self.train_metrics.reset() | ||||||
|  |  | ||||||
|     def on_train_epoch_end(self) -> None: |     def on_train_epoch_end(self) -> None: | ||||||
|  |  | ||||||
|         if self.current_epoch / self.trainer.max_epochs in [0.25, 0.5, 0.75, 1.0]: |         if self.current_epoch / self.cfg.train.n_epochs in [0.25, 0.5, 0.75, 1.0]: | ||||||
|             log = True |             log = True | ||||||
|         else: |         else: | ||||||
|             log = False |             log = False | ||||||
| @@ -240,6 +301,7 @@ class Graph_DiT(pl.LightningModule): | |||||||
|                    self.val_X_logp.compute(), self.val_E_logp.compute()] |                    self.val_X_logp.compute(), self.val_E_logp.compute()] | ||||||
|          |          | ||||||
|         if self.current_epoch / self.trainer.max_epochs in [0.25, 0.5, 0.75, 1.0]: |         if self.current_epoch / self.trainer.max_epochs in [0.25, 0.5, 0.75, 1.0]: | ||||||
|  |         # if self.cur_epoch / self.cfg.train.n_epochs in [0.25, 0.5, 0.75, 1.0]: | ||||||
|             print(f"Epoch {self.current_epoch}: Val NLL {metrics[0] :.2f} -- Val Atom type KL {metrics[1] :.2f} -- ", |             print(f"Epoch {self.current_epoch}: Val NLL {metrics[0] :.2f} -- Val Atom type KL {metrics[1] :.2f} -- ", | ||||||
|                 f"Val Edge type KL: {metrics[2] :.2f}", 'Val loss: %.2f \t Best :  %.2f\n' % (metrics[0], self.best_val_nll)) |                 f"Val Edge type KL: {metrics[2] :.2f}", 'Val loss: %.2f \t Best :  %.2f\n' % (metrics[0], self.best_val_nll)) | ||||||
|         with open("validation-metrics.csv", "a") as f: |         with open("validation-metrics.csv", "a") as f: | ||||||
| @@ -336,7 +398,7 @@ class Graph_DiT(pl.LightningModule): | |||||||
|         print(f"Epoch {self.current_epoch}: Test NLL {metrics[0] :.2f} -- Test Atom type KL {metrics[1] :.2f} -- ", |         print(f"Epoch {self.current_epoch}: Test NLL {metrics[0] :.2f} -- Test Atom type KL {metrics[1] :.2f} -- ", | ||||||
|               f"Test Edge type KL: {metrics[2] :.2f}") |               f"Test Edge type KL: {metrics[2] :.2f}") | ||||||
|  |  | ||||||
|         ## final epcoh |         ## final epoch | ||||||
|         samples_left_to_generate = self.cfg.general.final_model_samples_to_generate |         samples_left_to_generate = self.cfg.general.final_model_samples_to_generate | ||||||
|         samples_left_to_save = self.cfg.general.final_model_samples_to_save |         samples_left_to_save = self.cfg.general.final_model_samples_to_save | ||||||
|         chains_left_to_save = self.cfg.general.final_model_chains_to_save |         chains_left_to_save = self.cfg.general.final_model_chains_to_save | ||||||
| @@ -359,9 +421,9 @@ class Graph_DiT(pl.LightningModule): | |||||||
|             # batch_y = test_y_collection[batch_id : batch_id + to_generate] |             # batch_y = test_y_collection[batch_id : batch_id + to_generate] | ||||||
|             batch_y = torch.ones(to_generate, self.ydim_output, device=self.device) |             batch_y = torch.ones(to_generate, self.ydim_output, device=self.device) | ||||||
|  |  | ||||||
|             cur_sample = self.sample_batch(batch_id, to_generate, batch_y, save_final=to_save, |             cur_sample, log_probs = self.sample_batch(batch_id, to_generate, batch_y, save_final=to_save, | ||||||
|                                             keep_chain=chains_save, number_chain_steps=self.number_chain_steps) |                                             keep_chain=chains_save, number_chain_steps=self.number_chain_steps) | ||||||
|             samples = samples + cur_sample |             samples.append(cur_sample)   | ||||||
|              |              | ||||||
|             all_ys.append(batch_y) |             all_ys.append(batch_y) | ||||||
|             batch_id += to_generate |             batch_id += to_generate | ||||||
| @@ -601,6 +663,12 @@ class Graph_DiT(pl.LightningModule): | |||||||
|  |  | ||||||
|         assert (E == torch.transpose(E, 1, 2)).all() |         assert (E == torch.transpose(E, 1, 2)).all() | ||||||
|  |  | ||||||
|  |         if self.cfg.general.type != 'accelerator': | ||||||
|  |             if self.trainer.training or self.trainer.validating: | ||||||
|  |                 total_log_probs = torch.zeros([self.cfg.general.samples_to_generate, 10], device=self.device) | ||||||
|  |             elif self.trainer.testing: | ||||||
|  |                 total_log_probs = torch.zeros([self.cfg.general.final_model_samples_to_generate, 10], device=self.device) | ||||||
|  |  | ||||||
|         # Iteratively sample p(z_s | z_t) for t = 1, ..., T, with s = t - 1. |         # Iteratively sample p(z_s | z_t) for t = 1, ..., T, with s = t - 1. | ||||||
|         for s_int in reversed(range(0, self.T)): |         for s_int in reversed(range(0, self.T)): | ||||||
|             s_array = s_int * torch.ones((batch_size, 1)).type_as(y) |             s_array = s_int * torch.ones((batch_size, 1)).type_as(y) | ||||||
| @@ -609,21 +677,24 @@ class Graph_DiT(pl.LightningModule): | |||||||
|             t_norm = t_array / self.T |             t_norm = t_array / self.T | ||||||
|  |  | ||||||
|             # Sample z_s |             # Sample z_s | ||||||
|             sampled_s, discrete_sampled_s = self.sample_p_zs_given_zt(s_norm, t_norm, X, E, y, node_mask) |             sampled_s, discrete_sampled_s, log_probs = self.sample_p_zs_given_zt(s_norm, t_norm, X, E, y, node_mask) | ||||||
|             X, E, y = sampled_s.X, sampled_s.E, sampled_s.y |             X, E, y = sampled_s.X, sampled_s.E, sampled_s.y | ||||||
|  |             total_log_probs += log_probs | ||||||
|  |  | ||||||
|         # Sample |         # Sample | ||||||
|         sampled_s = sampled_s.mask(node_mask, collapse=True) |         sampled_s = sampled_s.mask(node_mask, collapse=True) | ||||||
|         X, E, y = sampled_s.X, sampled_s.E, sampled_s.y |         X, E, y = sampled_s.X, sampled_s.E, sampled_s.y | ||||||
|          |          | ||||||
|         molecule_list = [] |         graph_list = [] | ||||||
|         for i in range(batch_size): |         for i in range(batch_size): | ||||||
|             n = n_nodes[i] |             n = n_nodes[i] | ||||||
|             atom_types = X[i, :n].cpu() |             node_types = X[i, :n].cpu() | ||||||
|             edge_types = E[i, :n, :n].cpu() |             edge_types = E[i, :n, :n].cpu() | ||||||
|             molecule_list.append([atom_types, edge_types]) |             graph_list.append((node_types , edge_types)) | ||||||
|          |          | ||||||
|         return molecule_list |         total_log_probs = torch.sum(total_log_probs, dim=-1) | ||||||
|  |          | ||||||
|  |         return graph_list, total_log_probs | ||||||
|  |  | ||||||
|     def sample_p_zs_given_zt(self, s, t, X_t, E_t, y_t, node_mask): |     def sample_p_zs_given_zt(self, s, t, X_t, E_t, y_t, node_mask): | ||||||
|         """Samples from zs ~ p(zs | zt). Only used during sampling. |         """Samples from zs ~ p(zs | zt). Only used during sampling. | ||||||
| @@ -675,6 +746,14 @@ class Graph_DiT(pl.LightningModule): | |||||||
|         # with condition = P_t(A_{t-1} |A_t, y) |         # with condition = P_t(A_{t-1} |A_t, y) | ||||||
|         prob_X, prob_E, pred = get_prob(noisy_data) |         prob_X, prob_E, pred = get_prob(noisy_data) | ||||||
|  |  | ||||||
|  |         log_prob_X = torch.log(torch.gather(prob_X, -1, X_t.long()).squeeze(-1))  # bs, n | ||||||
|  |         log_prob_E = torch.log(torch.gather(prob_E, -1, E_t.long()).squeeze(-1))  # bs, n, n | ||||||
|  |  | ||||||
|  |         # Sum the log_prob across dimensions for total log_prob | ||||||
|  |         log_prob_X = log_prob_X.sum(dim=-1) | ||||||
|  |         log_prob_E = log_prob_E.sum(dim=(1, 2)) | ||||||
|  |  | ||||||
|  |         log_probs = torch.cat([log_prob_X, log_prob_E], dim=-1) | ||||||
|         ### Guidance |         ### Guidance | ||||||
|         if self.guidance_target is not None and self.guide_scale is not None and self.guide_scale != 1: |         if self.guidance_target is not None and self.guide_scale is not None and self.guide_scale != 1: | ||||||
|             uncon_prob_X, uncon_prob_E, pred = get_prob(noisy_data, unconditioned=True) |             uncon_prob_X, uncon_prob_E, pred = get_prob(noisy_data, unconditioned=True) | ||||||
| @@ -810,4 +889,4 @@ class Graph_DiT(pl.LightningModule): | |||||||
|         out_one_hot = utils.PlaceHolder(X=X_s, E=E_s, y=y_t) |         out_one_hot = utils.PlaceHolder(X=X_s, E=E_s, y=y_t) | ||||||
|         out_discrete = utils.PlaceHolder(X=X_s, E=E_s, y=y_t) |         out_discrete = utils.PlaceHolder(X=X_s, E=E_s, y=y_t) | ||||||
|  |  | ||||||
|         return out_one_hot.mask(node_mask).type_as(y_t), out_discrete.mask(node_mask, collapse=True).type_as(y_t) |         return out_one_hot.mask(node_mask).type_as(y_t), out_discrete.mask(node_mask, collapse=True).type_as(y_t), log_probs | ||||||
|   | |||||||
| @@ -177,32 +177,92 @@ def test(cfg: DictConfig): | |||||||
|         os.chdir(cfg.general.resume.split("checkpoints")[0]) |         os.chdir(cfg.general.resume.split("checkpoints")[0]) | ||||||
|     # os.environ["CUDA_VISIBLE_DEVICES"] = cfg.general.gpu_number |     # os.environ["CUDA_VISIBLE_DEVICES"] = cfg.general.gpu_number | ||||||
|     model = Graph_DiT(cfg=cfg, **model_kwargs) |     model = Graph_DiT(cfg=cfg, **model_kwargs) | ||||||
|     trainer = Trainer( |  | ||||||
|         gradient_clip_val=cfg.train.clip_grad, |  | ||||||
|         # accelerator="cpu", |  | ||||||
|         accelerator="gpu" |  | ||||||
|         if torch.cuda.is_available() and cfg.general.gpus > 0 |  | ||||||
|         else "cpu", |  | ||||||
|         devices=[cfg.general.gpu_number] |  | ||||||
|         if torch.cuda.is_available() and cfg.general.gpus > 0 |  | ||||||
|         else None, |  | ||||||
|         max_epochs=cfg.train.n_epochs, |  | ||||||
|         enable_checkpointing=False, |  | ||||||
|         check_val_every_n_epoch=cfg.train.check_val_every_n_epoch, |  | ||||||
|         val_check_interval=cfg.train.val_check_interval, |  | ||||||
|         strategy="ddp" if cfg.general.gpus > 1 else "auto", |  | ||||||
|         enable_progress_bar=cfg.general.enable_progress_bar, |  | ||||||
|         callbacks=[], |  | ||||||
|         reload_dataloaders_every_n_epochs=0, |  | ||||||
|         logger=[], |  | ||||||
|     ) |  | ||||||
|  |  | ||||||
|     if not cfg.general.test_only: |     if cfg.general.type == "accelerator": | ||||||
|         print("start testing fit method") |         graph_dit_model = model | ||||||
|         trainer.fit(model, datamodule=datamodule, ckpt_path=cfg.general.resume) |  | ||||||
|         if cfg.general.save_model: |         from accelerate import Accelerator | ||||||
|             trainer.save_checkpoint(f"checkpoints/{cfg.general.name}/last.ckpt") |         from accelerate.utils import set_seed, ProjectConfiguration | ||||||
|         trainer.test(model, datamodule=datamodule) |  | ||||||
|  |         accelerator_config = ProjectConfiguration( | ||||||
|  |             project_dir=os.path.join(cfg.general.log_dir, cfg.general.name), | ||||||
|  |             automatic_checkpoint_naming=True, | ||||||
|  |             total_limit=cfg.general.number_checkpoint_limit, | ||||||
|  |         ) | ||||||
|  |         accelerator = Accelerator( | ||||||
|  |             mixed_precision='no', | ||||||
|  |             project_config=accelerator_config, | ||||||
|  |             # gradient_accumulation_steps=cfg.train.gradient_accumulation_steps * cfg.train.n_epochs, | ||||||
|  |             gradient_accumulation_steps=cfg.train.gradient_accumulation_steps,  | ||||||
|  |         ) | ||||||
|  |  | ||||||
|  |         optimizer = graph_dit_model.configure_optimizers() | ||||||
|  |  | ||||||
|  |         train_dataloader = datamodule.train_dataloader() | ||||||
|  |         train_dataloader = accelerator.prepare(train_dataloader) | ||||||
|  |         val_dataloader = datamodule.val_dataloader() | ||||||
|  |         val_dataloader = accelerator.prepare(val_dataloader) | ||||||
|  |         test_dataloader = datamodule.test_dataloader() | ||||||
|  |         test_dataloader = accelerator.prepare(test_dataloader) | ||||||
|  |  | ||||||
|  |         optimizer, graph_dit_model = accelerator.prepare(optimizer, graph_dit_model) | ||||||
|  |  | ||||||
|  |         # train_epoch | ||||||
|  |         from pytorch_lightning import seed_everything | ||||||
|  |         seed_everything(cfg.train.seed) | ||||||
|  |         for epoch in range(cfg.train.n_epochs): | ||||||
|  |             print(f"Epoch {epoch}") | ||||||
|  |             graph_dit_model.train() | ||||||
|  |             graph_dit_model.cur_epoch = epoch | ||||||
|  |             graph_dit_model.on_train_epoch_start() | ||||||
|  |             for batch in train_dataloader: | ||||||
|  |                 optimizer.zero_grad() | ||||||
|  |                 loss = graph_dit_model.training_step(batch, epoch)['loss'] | ||||||
|  |                 accelerator.backward(loss) | ||||||
|  |                 optimizer.step() | ||||||
|  |             graph_dit_model.on_train_epoch_end() | ||||||
|  |             for batch in val_dataloader: | ||||||
|  |                 if epoch % cfg.train.check_val_every_n_epoch == 0: | ||||||
|  |                     graph_dit_model.eval() | ||||||
|  |                     graph_dit_model.on_validation_epoch_start() | ||||||
|  |                     graph_dit_model.validation_step(batch, epoch) | ||||||
|  |                     graph_dit_model.on_validation_epoch_end() | ||||||
|  |          | ||||||
|  |         # test_epoch | ||||||
|  |  | ||||||
|  |         graph_dit_model.test() | ||||||
|  |         graph_dit_model.on_test_epoch_start() | ||||||
|  |         for batch in test_dataloader: | ||||||
|  |             graph_dit_model.test_step(batch, epoch) | ||||||
|  |         graph_dit_model.on_test_epoch_end() | ||||||
|  |      | ||||||
|  |     elif cfg.general.type == "Trainer":  | ||||||
|  |         trainer = Trainer( | ||||||
|  |             gradient_clip_val=cfg.train.clip_grad, | ||||||
|  |             # accelerator="cpu", | ||||||
|  |             accelerator="gpu" | ||||||
|  |             if torch.cuda.is_available() and cfg.general.gpus > 0 | ||||||
|  |             else "cpu", | ||||||
|  |             devices=[cfg.general.gpu_number] | ||||||
|  |             if torch.cuda.is_available() and cfg.general.gpus > 0 | ||||||
|  |             else None, | ||||||
|  |             max_epochs=cfg.train.n_epochs, | ||||||
|  |             enable_checkpointing=False, | ||||||
|  |             check_val_every_n_epoch=cfg.train.check_val_every_n_epoch, | ||||||
|  |             val_check_interval=cfg.train.val_check_interval, | ||||||
|  |             strategy="ddp" if cfg.general.gpus > 1 else "auto", | ||||||
|  |             enable_progress_bar=cfg.general.enable_progress_bar, | ||||||
|  |             callbacks=[], | ||||||
|  |             reload_dataloaders_every_n_epochs=0, | ||||||
|  |             logger=[], | ||||||
|  |         ) | ||||||
|  |  | ||||||
|  |         if not cfg.general.test_only: | ||||||
|  |             print("start testing fit method") | ||||||
|  |             trainer.fit(model, datamodule=datamodule, ckpt_path=cfg.general.resume) | ||||||
|  |             if cfg.general.save_model: | ||||||
|  |                 trainer.save_checkpoint(f"checkpoints/{cfg.general.name}/last.ckpt") | ||||||
|  |             trainer.test(model, datamodule=datamodule) | ||||||
|  |  | ||||||
| if __name__ == "__main__": | if __name__ == "__main__": | ||||||
|     test() |     test() | ||||||
|   | |||||||
										
											
												File diff suppressed because one or more lines are too long
											
										
									
								
							
		Reference in New Issue
	
	Block a user