update the new graph to json function

This commit is contained in:
mhz 2024-06-28 16:29:43 +02:00
parent 222470a43c
commit df26eef77c

View File

@ -39,6 +39,16 @@ op_to_atom = {
'none': 'S', # Sulfur for no operation
'output': 'He' # Helium for output
}
op_type = {
'nor_conv_1x1': 1,
'nor_conv_3x3': 2,
'avg_pool_3x3': 3,
'skip_connect': 4,
'output': 5,
'none': 6,
'input': 7
}
class DataModule(AbstractDataModule):
def __init__(self, cfg):
self.datadir = cfg.dataset.datadir
@ -343,6 +353,121 @@ class DataModule_original(AbstractDataModule):
def test_dataloader(self):
return self.test_loader
def new_graphs_to_json(graphs, filename):
source_name = "nasbench-201"
num_graph = len(graphs)
node_name_list = []
node_count_list = []
for op_name in op_type:
node_name_list.append(op_name)
node_count_list.append(0)
node_name_list.append('*')
node_count_list.append(0)
n_nodes_per_graph = [0] * num_graph
edge_count_list = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
valencies = [0] * (len(op_type) + 1)
transition_E = np.zeros((len(op_type) + 1, len(op_type) + 1, 2))
n_node_list = []
n_edge_list = []
for graph in graphs:
ops = graph[1]
adj = graph[0]
n_node = len(ops)
n_edge = len(ops)
n_node_list.append(n_node)
n_edge_list.append(n_edge)
n_nodes_per_graph[n_node] += 1
cur_node_count_arr = np.zeros(len(op_type) + 1)
for op in ops:
node = op
if node == '*':
node_count_list[-1] += 1
cur_node_count_arr[-1] += 1
else:
node_count_list[op_type[node]] += 1
cur_node_count_arr[op_type[node]] += 1
try:
valencies[int(op_type[node])] += 1
except:
print('int(op_type[node])', int(op_type[node]))
transition_E_temp = np.zeros((len(op_type) + 1, len(op_type) + 1, 2))
for i in range(n_node):
for j in range(n_node):
if i == j or adj[i][j] == 0:
continue
start_node, end_node = i, j
start_index = op_type[ops[start_node]]
end_index = op_type[ops[end_node]]
bond_index = 1
edge_count_list[bond_index] += 2
transition_E[start_index, end_index, bond_index] += 2
transition_E[end_index, start_index, bond_index] += 2
transition_E_temp[start_index, end_index, bond_index] += 2
transition_E_temp[end_index, start_index, bond_index] += 2
edge_count_list[0] += n_node * (n_node - 1) - n_edge * 2
cur_tot_edge = cur_node_count_arr.reshape(-1,1) * cur_node_count_arr.reshape(1,-1) * 2
print(f"cur_tot_edge={cur_tot_edge}, shape: {cur_tot_edge.shape}")
cur_tot_edge = cur_tot_edge - np.diag(cur_node_count_arr) * 2
transition_E[:, :, 0] += cur_tot_edge - transition_E_temp.sum(axis=-1)
assert (cur_tot_edge > transition_E_temp.sum(axis=-1)).sum() >= 0
n_nodes_per_graph = np.array(n_nodes_per_graph) / np.sum(n_nodes_per_graph)
n_nodes_per_graph = n_nodes_per_graph.tolist()[:51]
node_count_list = np.array(node_count_list) / np.sum(node_count_list)
print('processed meta info: ------', filename, '------')
print('len node_count_list', len(node_count_list))
print('len node_name_list', len(node_name_list))
active_nodes = np.array(node_name_list)[node_count_list > 0]
active_nodes = active_nodes.tolist()
node_count_list = node_count_list.tolist()
edge_count_list = np.array(edge_count_list) / np.sum(edge_count_list)
edge_count_list = edge_count_list.tolist()
valencies = np.array(valencies) / np.sum(valencies)
valencies = valencies.tolist()
no_edge = np.sum(transition_E, axis=-1) == 0
first_elt = transition_E[:, :, 0]
first_elt[no_edge] = 1
transition_E[:, :, 0] = first_elt
transition_E = transition_E / np.sum(transition_E, axis=-1, keepdims=True)
meta_dict = {
'source': source_name,
'num_graph': num_graph,
'n_nodes_per_graph': n_nodes_per_graph,
'max_n_nodes': max(n_node_list),
'max_n_edges': max(n_edge_list),
'node_type_list': node_count_list,
'edge_type_list': edge_count_list,
'valencies': valencies,
'active_nodes': active_nodes,
'num_active_nodes': len(active_nodes),
'transition_E': transition_E.tolist(),
}
with open(f'{filename}.meta.json', 'w') as f:
json.dump(meta_dict, f)
return meta_dict
def graphs_to_json(graphs, filename):
bonds = {
'nor_conv_1x1': 1,
@ -490,7 +615,7 @@ def graphs_to_json(graphs, filename):
'atom_type_dist': atom_count_list,
'bond_type_dist': bond_count_list,
'valencies': valencies,
'active_atoms': [atom_name_list[i] for i in range(118) if atom_count_list[i] > 0],
'active_nodes': [atom_name_list[i] for i in range(118) if atom_count_list[i] > 0],
'num_atom_type': len([atom_name_list[i] for i in range(118) if atom_count_list[i] > 0]),
'transition_E': transition_E.tolist(),
}
@ -503,10 +628,10 @@ class Dataset(InMemoryDataset):
self.target_prop = target_prop
source = '/home/stud/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth'
self.source = source
super().__init__(root, transform, pre_transform, pre_filter)
print(self.processed_paths[0]) #/home/stud/hanzhang/Graph-DiT/graph_dit/NAS-Bench-201-v1_1-096897.pth.pt
self.api = API(source) # Initialize NAS-Bench-201 API
print('API loaded')
super().__init__(root, transform, pre_transform, pre_filter)
print(self.processed_paths[0]) #/home/stud/hanzhang/Graph-DiT/graph_dit/NAS-Bench-201-v1_1-096897.pth.pt
print('Dataset initialized')
self.data, self.slices = torch.load(self.processed_paths[0])
self.data.edge_attr = self.data.edge_attr.squeeze()
@ -732,30 +857,35 @@ class DataInfos(AbstractDatasetInfos):
arch_info = self.api.query_meta_info_by_index(i)
nodes, edges = parse_architecture_string(arch_info.arch_str)
adj_matrix, ops = create_adj_matrix_and_ops(nodes, edges)
if i < 5:
print("Adjacency Matrix:")
print(adj_matrix)
print("Operations List:")
print(ops)
# if i < 5:
# print("Adjacency Matrix:")
# print(adj_matrix)
# print("Operations List:")
# print(ops)
for op in ops:
if op not in ops_type:
ops_type[op] = len(ops_type)
len_ops.add(len(ops))
graphs.append((adj_matrix, ops))
meta_dict = graphs_to_json(graphs, 'nasbench-201')
# check first five graphs
for i in range(5):
print(f'graph {i} : {graphs[i]}')
print(f'ops_type: {ops_type}')
meta_dict = new_graphs_to_json(graphs, 'nasbench-201')
self.base_path = base_path
self.active_atoms = meta_dict['active_atoms']
self.max_n_nodes = meta_dict['max_node']
self.original_max_n_nodes = meta_dict['max_node']
self.n_nodes = torch.Tensor(meta_dict['n_atoms_per_mol_dist'])
self.edge_types = torch.Tensor(meta_dict['bond_type_dist'])
self.active_nodes = meta_dict['active_nodes']
self.max_n_nodes = meta_dict['max_n_nodes']
self.original_max_n_nodes = meta_dict['max_n_nodes']
self.n_nodes = torch.Tensor(meta_dict['n_nodes_per_graph'])
self.edge_types = torch.Tensor(meta_dict['edge_type_dist'])
self.transition_E = torch.Tensor(meta_dict['transition_E'])
self.atom_decoder = meta_dict['active_atoms']
node_types = torch.Tensor(meta_dict['atom_type_dist'])
self.node_decoder = meta_dict['active_nodes']
node_types = torch.Tensor(meta_dict['node_type_dist'])
active_index = (node_types > 0).nonzero().squeeze()
self.node_types = torch.Tensor(meta_dict['atom_type_dist'])[active_index]
self.node_types = torch.Tensor(meta_dict['node_type_dist'])[active_index]
self.nodes_dist = DistributionNodes(self.n_nodes)
self.active_index = active_index