Compare commits
	
		
			3 Commits
		
	
	
		
			0.03
			...
			e376f38dcb
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| e376f38dcb | |||
| 7149b49a39 | |||
| 83f9345028 | 
| @@ -70,7 +70,7 @@ class DataModule(AbstractDataModule): | ||||
|         #     base_path = pathlib.Path(os.path.realpath(__file__)).parents[2] | ||||
|         # except NameError: | ||||
|         # base_path = pathlib.Path(os.getcwd()).parent[2] | ||||
|         base_path = '/home/stud/hanzhang/nasbenchDiT' | ||||
|         base_path = '/nfs/data3/hanzhang/nasbenchDiT' | ||||
|         root_path = os.path.join(base_path, self.datadir) | ||||
|         self.root_path = root_path | ||||
|  | ||||
| @@ -408,6 +408,7 @@ def new_graphs_to_json(graphs, filename): | ||||
|         adj = graph[0] | ||||
|  | ||||
|         n_node = len(ops) | ||||
|         print(n_node) | ||||
|         n_edge = len(ops) | ||||
|         n_node_list.append(n_node) | ||||
|         n_edge_list.append(n_edge) | ||||
| @@ -489,7 +490,7 @@ def new_graphs_to_json(graphs, filename): | ||||
|         'transition_E': transition_E.tolist(), | ||||
|     } | ||||
|  | ||||
|     with open(f'/home/stud/hanzhang/nasbenchDiT/graph_dit/nasbench-201-meta.json', 'w') as f: | ||||
|     with open(f'/nfs/data3/hanzhang/nasbenchDiT/graph_dit/nasbench-201-meta.json', 'w') as f: | ||||
|         json.dump(meta_dict, f) | ||||
|      | ||||
|     return meta_dict | ||||
| @@ -655,7 +656,7 @@ def graphs_to_json(graphs, filename): | ||||
| class Dataset(InMemoryDataset): | ||||
|     def __init__(self, source, root, target_prop=None, transform=None, pre_transform=None, pre_filter=None): | ||||
|         self.target_prop = target_prop | ||||
|         source = '/home/stud/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth' | ||||
|         source = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth' | ||||
|         self.source = source | ||||
|         # self.api = API(source)  # Initialize NAS-Bench-201 API | ||||
|         # print('API loaded') | ||||
| @@ -676,8 +677,8 @@ class Dataset(InMemoryDataset): | ||||
|         return [f'{self.source}.pt'] | ||||
|  | ||||
|     def process(self): | ||||
|         source = '/home/stud/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth' | ||||
|         self.api = API(source) | ||||
|         source = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth' | ||||
|         # self.api = API(source) | ||||
|  | ||||
|         data_list = [] | ||||
|         # len_data = len(self.api) | ||||
| @@ -710,14 +711,24 @@ class Dataset(InMemoryDataset): | ||||
|             return True | ||||
|  | ||||
|         def generate_flex_adj_mat(ori_nodes, ori_edges, max_nodes=12, min_nodes=8,random_ratio=0.5): | ||||
|             # print(ori_nodes) | ||||
|             # print(ori_edges) | ||||
|              | ||||
|             ori_edges = np.array(ori_edges) | ||||
|             # ori_nodes = np.array(ori_nodes) | ||||
|             nasbench_201_node_num = 8 | ||||
|             # random.seed(random_seed) | ||||
|             nodes_num = random.randint(min_nodes, max_nodes) | ||||
|             # print(f'arch_str: {arch_str}, \nmax_nodes: {max_nodes}, min_nodes: {min_nodes}, nodes_num: {nodes_num},random_seed: {random_seed},random_ratio: {random_ratio}') | ||||
|             add_num = nodes_num - nasbench_201_node_num | ||||
|             # ori_nodes, ori_edges = parse_architecture_string(arch_str) | ||||
|             add_nodes = [op for op in random.choices(num_to_op[1:-1], k=add_num)] | ||||
|             add_nodes = [] | ||||
|             print(f'add_num: {add_num}') | ||||
|             for i in range(add_num): | ||||
|                 add_nodes.append(random.choice(num_to_op[1:-1])) | ||||
|             # print(add_nodes) | ||||
|             print(f'ori_nodes[:-1]: {ori_nodes[:-1]}, add_nodes: {add_nodes}') | ||||
|             print(f'len(ori_nodes[:-1]): {len(ori_nodes[:-1])}, len(add_nodes): {len(add_nodes)}') | ||||
|             nodes = ori_nodes[:-1] + add_nodes + ['output'] | ||||
|             edges = np.zeros((nodes_num , nodes_num)) | ||||
|             edges[:6, :6] = ori_edges[:6, :6] | ||||
| @@ -727,12 +738,18 @@ class Dataset(InMemoryDataset): | ||||
|                     rand = random.random() | ||||
|                     if rand < random_ratio: | ||||
|                         edges[i, j] = 1 | ||||
|             return nodes, edges | ||||
|             if nodes_num < max_nodes: | ||||
|                 edges = np.pad(edges, ((0, max_nodes - nodes_num), (0, max_nodes - nodes_num)), 'constant',constant_values=0) | ||||
|                 while len(nodes) < max_nodes: | ||||
|                     nodes.append('none') | ||||
|             print(f'edges size: {edges.shape}, nodes size: {len(nodes)}') | ||||
|             return  edges,nodes | ||||
|          | ||||
|         def get_nasbench_201_val(idx): | ||||
|             pass | ||||
|  | ||||
|         def graph_to_graph_data(graph, idx): | ||||
|         # def graph_to_graph_data(graph, idx): | ||||
|         def graph_to_graph_data(graph): | ||||
|             ops = graph[1] | ||||
|             adj = graph[0] | ||||
|             nodes = [] | ||||
| @@ -753,58 +770,95 @@ class Dataset(InMemoryDataset): | ||||
|             edge_index = torch.tensor(edges_list, dtype=torch.long).t() | ||||
|             edge_type = torch.tensor(edge_type, dtype=torch.long) | ||||
|             edge_attr = edge_type | ||||
|             # y = torch.tensor([0, 0], dtype=torch.float).view(1, -1) | ||||
|             y = get_nasbench_201_val(idx) | ||||
|             y = torch.tensor([0, 0], dtype=torch.float).view(1, -1) | ||||
|             # y = get_nasbench_201_val(idx) | ||||
|             data = Data(x=x, edge_index=edge_index, edge_attr=edge_attr, y=y, idx=i) | ||||
|             return data | ||||
|         graph_list = [] | ||||
|  | ||||
|         with tqdm(total = len_data) as pbar: | ||||
|             active_nodes = set() | ||||
|             for i in range(len_data): | ||||
|                 arch_info = self.api.query_meta_info_by_index(i) | ||||
|                 results = self.api.query_by_index(i, 'cifar100') | ||||
|             file_path = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/nasbench-201-graph.json' | ||||
|             with open(file_path, 'r') as f: | ||||
|                 graph_list = json.load(f) | ||||
|             i = 0 | ||||
|             flex_graph_list = [] | ||||
|             flex_graph_path = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/flex-nasbench201-graph.json' | ||||
|             for graph in graph_list: | ||||
|                 # arch_info = self.api.query_meta_info_by_index(i) | ||||
|                 # results = self.api.query_by_index(i, 'cifar100') | ||||
|                 arch_info = graph['arch_str'] | ||||
|                 # results =  | ||||
|                 # nodes, edges = parse_architecture_string(arch_info.arch_str) | ||||
|                 ops, adj_matrix = parse_architecture_string(arch_info.arch_str) | ||||
|                 # ops, adj_matrix = parse_architecture_string(arch_info.arch_str, padding=4) | ||||
|                 ops, adj_matrix, ori_nodes, ori_adj = parse_architecture_string(arch_info, padding=4) | ||||
|                 # adj_matrix, ops = create_adj_matrix_and_ops(nodes, edges) | ||||
|                 for op in ops: | ||||
|                     if op not in active_nodes: | ||||
|                         active_nodes.add(op) | ||||
|                  | ||||
|                 graph_list.append({ | ||||
|                     "adj_matrix": adj_matrix, | ||||
|                     "ops": ops, | ||||
|                     "idx": i, | ||||
|                     "train": [{ | ||||
|                         "iepoch": result.get_train()['iepoch'], | ||||
|                         "loss": result.get_train()['loss'], | ||||
|                         "accuracy": result.get_train()['accuracy'], | ||||
|                         "cur_time": result.get_train()['cur_time'], | ||||
|                         "all_time": result.get_train()['all_time'], | ||||
|                         "seed": seed, | ||||
|                     }for seed, result in results.items()], | ||||
|                     "valid": [{ | ||||
|                         "iepoch": result.get_eval('x-valid')['iepoch'], | ||||
|                         "loss": result.get_eval('x-valid')['loss'], | ||||
|                         "accuracy": result.get_eval('x-valid')['accuracy'], | ||||
|                         "cur_time": result.get_eval('x-valid')['cur_time'], | ||||
|                         "all_time": result.get_eval('x-valid')['all_time'], | ||||
|                         "seed": seed, | ||||
|                     }for seed, result in results.items()], | ||||
|                     "test": [{ | ||||
|                         "iepoch": result.get_eval('x-test')['iepoch'], | ||||
|                         "loss": result.get_eval('x-test')['loss'], | ||||
|                         "accuracy": result.get_eval('x-test')['accuracy'], | ||||
|                         "cur_time": result.get_eval('x-test')['cur_time'], | ||||
|                         "all_time": result.get_eval('x-test')['all_time'], | ||||
|                         "seed": seed, | ||||
|                     }for seed, result in results.items()] | ||||
|                 }) | ||||
|                 data = graph_to_graph_data((adj_matrix, ops))  | ||||
|                 # with open(flex_graph_path, 'a') as f: | ||||
|                 #     flex_graph = { | ||||
|                 #         'adj_matrix': adj_matrix, | ||||
|                 #         'ops': ops, | ||||
|                 #     } | ||||
|                 #     json.dump(flex_graph, f) | ||||
|                 flex_graph_list.append({ | ||||
|                     'adj_matrix':adj_matrix, | ||||
|                     'ops': ops, | ||||
|                 }) | ||||
|                 if i < 3: | ||||
|                     print(f"i={i}, data={data}") | ||||
|                     with open(f'{i}.json', 'w') as f: | ||||
|                         f.write(str(data.x)) | ||||
|                         f.write(str(data.edge_index)) | ||||
|                         f.write(str(data.edge_attr)) | ||||
|                 data_list.append(data) | ||||
|  | ||||
|                 # new_adj, new_ops = generate_flex_adj_mat(ori_nodes=ops, ori_edges=adj_matrix, max_nodes=12, min_nodes=8,  random_ratio=0.5) | ||||
|                 # data_list.append(graph_to_graph_data((new_adj, new_ops))) | ||||
|                 new_adj, new_ops = generate_flex_adj_mat(ori_nodes=ori_nodes, ori_edges=ori_adj, max_nodes=12, min_nodes=9,  random_ratio=0.5) | ||||
|                 flex_graph_list.append({ | ||||
|                     'adj_matrix':new_adj.tolist(), | ||||
|                     'ops': new_ops, | ||||
|                 }) | ||||
|                 # with open(flex_graph_path, 'w') as f: | ||||
|                 #     flex_graph = { | ||||
|                 #         'adj_matrix': new_adj.tolist(), | ||||
|                 #         'ops': new_ops, | ||||
|                 #     } | ||||
|                 #     json.dump(flex_graph, f) | ||||
|                 data_list.append(graph_to_graph_data((new_adj, new_ops))) | ||||
|                 | ||||
|                 # graph_list.append({ | ||||
|                 #     "adj_matrix": adj_matrix, | ||||
|                 #     "ops": ops, | ||||
|                 #     "arch_str": arch_info.arch_str, | ||||
|                 #     "idx": i, | ||||
|                 #     "train": [{ | ||||
|                 #         "iepoch": result.get_train()['iepoch'], | ||||
|                 #         "loss": result.get_train()['loss'], | ||||
|                 #         "accuracy": result.get_train()['accuracy'], | ||||
|                 #         "cur_time": result.get_train()['cur_time'], | ||||
|                 #         "all_time": result.get_train()['all_time'], | ||||
|                 #         "seed": seed, | ||||
|                 #     }for seed, result in results.items()], | ||||
|                 #     "valid": [{ | ||||
|                 #         "iepoch": result.get_eval('x-valid')['iepoch'], | ||||
|                 #         "loss": result.get_eval('x-valid')['loss'], | ||||
|                 #         "accuracy": result.get_eval('x-valid')['accuracy'], | ||||
|                 #         "cur_time": result.get_eval('x-valid')['cur_time'], | ||||
|                 #         "all_time": result.get_eval('x-valid')['all_time'], | ||||
|                 #         "seed": seed, | ||||
|                 #     }for seed, result in results.items()], | ||||
|                 #     "test": [{ | ||||
|                 #         "iepoch": result.get_eval('x-test')['iepoch'], | ||||
|                 #         "loss": result.get_eval('x-test')['loss'], | ||||
|                 #         "accuracy": result.get_eval('x-test')['accuracy'], | ||||
|                 #         "cur_time": result.get_eval('x-test')['cur_time'], | ||||
|                 #         "all_time": result.get_eval('x-test')['all_time'], | ||||
|                 #         "seed": seed, | ||||
|                 #     }for seed, result in results.items()] | ||||
|                 # }) | ||||
|                 pbar.update(1) | ||||
|          | ||||
|         for graph in graph_list: | ||||
| @@ -818,6 +872,8 @@ class Dataset(InMemoryDataset): | ||||
|                 graph['ops'] = ops | ||||
|         with open(f'nasbench-201-graph.json', 'w') as f: | ||||
|             json.dump(graph_list, f) | ||||
|         with open(flex_graph_path, 'w') as f: | ||||
|             json.dump(flex_graph_list, f) | ||||
|              | ||||
|         torch.save(self.collate(data_list), self.processed_paths[0]) | ||||
|  | ||||
| @@ -981,18 +1037,29 @@ class Dataset_origin(InMemoryDataset): | ||||
|  | ||||
|         torch.save(self.collate(data_list), self.processed_paths[0]) | ||||
|  | ||||
| def parse_architecture_string(arch_str): | ||||
| def parse_architecture_string(arch_str, padding=0): | ||||
|     # print(arch_str) | ||||
|     steps = arch_str.split('+') | ||||
|     nodes = ['input']  # Start with input node | ||||
|     adj_mat = np.array([[0, 1, 1, 0, 1, 0, 0, 0], | ||||
|     ori_adj_mat = [[0, 1, 1, 0, 1, 0, 0, 0], | ||||
|                         [0, 0, 0, 1, 0, 1 ,0 ,0], | ||||
|                         [0, 0, 0, 0, 0, 0, 1, 0], | ||||
|                         [0, 0, 0, 0, 0, 0, 1, 0], | ||||
|                         [0, 0, 0, 0, 0, 0, 0, 1], | ||||
|                         [0, 0, 0, 0, 0, 0, 0, 1], | ||||
|                         [0, 0, 0, 0, 0, 0, 0, 1], | ||||
|                         [0, 0, 0, 0, 0, 0, 0, 0]])  | ||||
|                         # [0, 0, 0, 0, 0, 0, 0, 0]])  | ||||
|                         [0, 0, 0, 0, 0, 0, 0, 0]]  | ||||
|    # adj_mat = np.array([[0, 1, 1, 0, 1, 0, 0, 0], | ||||
|     adj_mat = [[0, 1, 1, 0, 1, 0, 0, 0], | ||||
|                         [0, 0, 0, 1, 0, 1 ,0 ,0], | ||||
|                         [0, 0, 0, 0, 0, 0, 1, 0], | ||||
|                         [0, 0, 0, 0, 0, 0, 1, 0], | ||||
|                         [0, 0, 0, 0, 0, 0, 0, 1], | ||||
|                         [0, 0, 0, 0, 0, 0, 0, 1], | ||||
|                         [0, 0, 0, 0, 0, 0, 0, 1], | ||||
|                         # [0, 0, 0, 0, 0, 0, 0, 0]])  | ||||
|                         [0, 0, 0, 0, 0, 0, 0, 0]]  | ||||
|     steps = arch_str.split('+') | ||||
|     steps_coding = ['0', '0', '1', '0', '1', '2'] | ||||
|     cont = 0 | ||||
| @@ -1004,7 +1071,21 @@ def parse_architecture_string(arch_str): | ||||
|             cont += 1 | ||||
|             nodes.append(n) | ||||
|     nodes.append('output')  # Add output node | ||||
|     return nodes, adj_mat | ||||
|     ori_nodes = nodes.copy() | ||||
|     if padding > 0: | ||||
|         for i in range(padding): | ||||
|             nodes.append('none') | ||||
|         for adj_row in adj_mat: | ||||
|             for i in range(padding): | ||||
|                 adj_row.append(0) | ||||
|         # adj_mat = np.append(adj_mat, np.zeros((padding, len(nodes)))) | ||||
|         for i in range(padding): | ||||
|             adj_mat.append([0] * len(nodes)) | ||||
|     # print(nodes) | ||||
|     # print(adj_mat) | ||||
|     # print(len(adj_mat)) | ||||
|     # print(f'len(ori_nodes): {len(ori_nodes)}, len(nodes): {len(nodes)}') | ||||
|     return nodes, adj_mat, ori_nodes, ori_adj_mat | ||||
|  | ||||
| def create_adj_matrix_and_ops(nodes, edges): | ||||
|     num_nodes = len(nodes) | ||||
| @@ -1046,6 +1127,7 @@ class DataInfos(AbstractDatasetInfos): | ||||
|  | ||||
|             adj_ops_pairs = [] | ||||
|             for item in data: | ||||
|                 print(item) | ||||
|                 adj_matrix = np.array(item['adj_matrix']) | ||||
|                 ops = item['ops'] | ||||
|                 ops = [op_type[op] for op in ops] | ||||
| @@ -1066,12 +1148,12 @@ class DataInfos(AbstractDatasetInfos): | ||||
|             #         ops_type[op] = len(ops_type) | ||||
|             # len_ops.add(len(ops)) | ||||
|             # graphs.append((adj_matrix, ops)) | ||||
|         graphs = read_adj_ops_from_json(f'/home/stud/hanzhang/nasbenchDiT/graph_dit/nasbench-201-graph.json') | ||||
|         graphs = read_adj_ops_from_json(f'/nfs/data3/hanzhang/nasbenchDiT/graph_dit/flex-nasbench201-graph.json') | ||||
|  | ||||
|         # check first five graphs | ||||
|         for i in range(5): | ||||
|             print(f'graph {i} : {graphs[i]}') | ||||
|         print(f'ops_type: {ops_type}') | ||||
|         # print(f'ops_type: {ops_type}') | ||||
|  | ||||
|         meta_dict = new_graphs_to_json(graphs, 'nasbench-201') | ||||
|         self.base_path = base_path | ||||
| @@ -1280,11 +1362,11 @@ def compute_meta(root, source_name, train_index, test_index): | ||||
|         'transition_E': tansition_E.tolist(), | ||||
|         } | ||||
|  | ||||
|     with open(f'/home/stud/hanzhang/nasbenchDiT/graph_dit/nasbench201.meta.json', "w") as f: | ||||
|     with open(f'/nfs/data3/hanzhang/nasbenchDiT/graph_dit/nasbench201.meta.json', "w") as f: | ||||
|         json.dump(meta_dict, f) | ||||
|      | ||||
|     return meta_dict | ||||
|  | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|     dataset = Dataset(source='nasbench', root='/home/stud/hanzhang/nasbenchDiT/graph-dit', target_prop='Class', transform=None) | ||||
|     dataset = Dataset(source='nasbench', root='/nfs/data3/hanzhang/nasbenchDiT/graph-dit', target_prop='Class', transform=None) | ||||
|   | ||||
| @@ -3,9 +3,9 @@ import torch.nn.functional as F | ||||
| import pytorch_lightning as pl | ||||
| import time | ||||
| import os | ||||
| from naswot.score_networks import get_nasbench201_nodes_score | ||||
| from naswot import nasspace | ||||
| from naswot import datasets | ||||
| # from naswot.score_networks import get_nasbench201_nodes_score | ||||
| # from naswot import nasspace | ||||
| # from naswot import datasets | ||||
| from models.transformer import Denoiser | ||||
| from diffusion.noise_schedule import PredefinedNoiseScheduleDiscrete, MarginalTransition | ||||
|  | ||||
| @@ -41,7 +41,7 @@ class Graph_DiT(pl.LightningModule): | ||||
|         self.args.batch_size = 128 | ||||
|         self.args.GPU = '0' | ||||
|         self.args.dataset = 'cifar10-valid' | ||||
|         self.args.api_loc = '/home/stud/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth' | ||||
|         self.args.api_loc = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth' | ||||
|         self.args.data_loc = '../cifardata/' | ||||
|         self.args.seed = 777 | ||||
|         self.args.init = '' | ||||
| @@ -59,10 +59,10 @@ class Graph_DiT(pl.LightningModule): | ||||
|         if 'valid' in self.args.dataset: | ||||
|             self.args.dataset = self.args.dataset.replace('-valid', '') | ||||
|         print('graph_dit starts to get searchspace of nasbench201') | ||||
|         self.searchspace = nasspace.get_search_space(self.args) | ||||
|         # self.searchspace = nasspace.get_search_space(self.args) | ||||
|         print('searchspace of nasbench201 is obtained') | ||||
|         print('graphdit starts to get train_loader') | ||||
|         self.train_loader = datasets.get_data(self.args.dataset, self.args.data_loc, self.args.trainval, self.args.batch_size, self.args.augtype, self.args.repeat, self.args) | ||||
|         # self.train_loader = datasets.get_data(self.args.dataset, self.args.data_loc, self.args.trainval, self.args.batch_size, self.args.augtype, self.args.repeat, self.args) | ||||
|         print('train_loader is obtained') | ||||
|  | ||||
|         self.cfg = cfg | ||||
| @@ -162,7 +162,7 @@ class Graph_DiT(pl.LightningModule): | ||||
|         return pred | ||||
|          | ||||
|     def training_step(self, data, i): | ||||
|         data_x = F.one_hot(data.x, num_classes=8).float()[:, self.active_index] | ||||
|         data_x = F.one_hot(data.x, num_classes=12).float()[:, self.active_index] | ||||
|         data_edge_attr = F.one_hot(data.edge_attr, num_classes=2).float() | ||||
|  | ||||
|         dense_data, node_mask = utils.to_dense(data_x, data.edge_index, data_edge_attr, data.batch, self.max_n_nodes) | ||||
| @@ -222,7 +222,7 @@ class Graph_DiT(pl.LightningModule): | ||||
|  | ||||
|     @torch.no_grad() | ||||
|     def validation_step(self, data, i): | ||||
|         data_x = F.one_hot(data.x, num_classes=8).float()[:, self.active_index] | ||||
|         data_x = F.one_hot(data.x, num_classes=12).float()[:, self.active_index] | ||||
|         data_edge_attr = F.one_hot(data.edge_attr, num_classes=2).float() | ||||
|         dense_data, node_mask = utils.to_dense(data_x, data.edge_index, data_edge_attr, data.batch, self.max_n_nodes) | ||||
|         dense_data = dense_data.mask(node_mask, collapse=False) | ||||
| @@ -315,7 +315,7 @@ class Graph_DiT(pl.LightningModule): | ||||
|      | ||||
|     @torch.no_grad() | ||||
|     def test_step(self, data, i): | ||||
|         data_x = F.one_hot(data.x, num_classes=8).float()[:, self.active_index] | ||||
|         data_x = F.one_hot(data.x, num_classes=12).float()[:, self.active_index] | ||||
|         data_edge_attr = F.one_hot(data.edge_attr, num_classes=2).float() | ||||
|  | ||||
|         dense_data, node_mask = utils.to_dense(data_x, data.edge_index, data_edge_attr, data.batch, self.max_n_nodes) | ||||
| @@ -686,120 +686,120 @@ class Graph_DiT(pl.LightningModule): | ||||
|         assert ((prob_X.sum(dim=-1) - 1).abs() < 1e-4).all() | ||||
|         assert ((prob_E.sum(dim=-1) - 1).abs() < 1e-4).all() | ||||
|  | ||||
|         # sampled_s = diffusion_utils.sample_discrete_features(prob_X, prob_E, node_mask=node_mask, step=s[0,0].item()) | ||||
|         sampled_s = diffusion_utils.sample_discrete_features(prob_X, prob_E, node_mask=node_mask, step=s[0,0].item()) | ||||
|  | ||||
|         # sample multiple times and get the best score arch... | ||||
|  | ||||
|         num_to_op = ['input', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3', 'skip_connect', 'none', 'output'] | ||||
|         op_type = { | ||||
|             'input': 0, | ||||
|             'nor_conv_1x1': 1, | ||||
|             'nor_conv_3x3': 2, | ||||
|             'avg_pool_3x3': 3, | ||||
|             'skip_connect': 4, | ||||
|             'none': 5, | ||||
|             'output': 6, | ||||
|         } | ||||
|         def check_valid_graph(nodes, edges): | ||||
|             nodes = [num_to_op[i] for i in nodes] | ||||
|             if len(nodes) != edges.shape[0] or len(nodes) != edges.shape[1]: | ||||
|                 return False | ||||
|             if nodes[0] != 'input' or nodes[-1] != 'output': | ||||
|                 return False | ||||
|             for i in range(0, len(nodes)): | ||||
|                 if edges[i][i] == 1: | ||||
|                     return False | ||||
|             for i in range(1, len(nodes) - 1): | ||||
|                 if nodes[i] not in op_type or nodes[i] == 'input' or nodes[i] == 'output': | ||||
|                     return False | ||||
|             for i in range(0, len(nodes)): | ||||
|                 for j in range(i, len(nodes)): | ||||
|                     if edges[i, j] == 1 and nodes[j] == 'input': | ||||
|                         return False | ||||
|             for i in range(0, len(nodes)): | ||||
|                 for j in range(i, len(nodes)): | ||||
|                     if edges[i, j] == 1 and nodes[i] == 'output': | ||||
|                         return False | ||||
|             flag = 0 | ||||
|             for i in range(0,len(nodes)): | ||||
|                 if edges[i,-1] == 1: | ||||
|                     flag = 1 | ||||
|                     break | ||||
|             if flag == 0: return False | ||||
|             return True | ||||
|         # num_to_op = ['input', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3', 'skip_connect', 'none', 'output'] | ||||
|         # op_type = { | ||||
|         #     'input': 0, | ||||
|         #     'nor_conv_1x1': 1, | ||||
|         #     'nor_conv_3x3': 2, | ||||
|         #     'avg_pool_3x3': 3, | ||||
|         #     'skip_connect': 4, | ||||
|         #     'none': 5, | ||||
|         #     'output': 6, | ||||
|         # } | ||||
|         # def check_valid_graph(nodes, edges): | ||||
|         #     nodes = [num_to_op[i] for i in nodes] | ||||
|         #     if len(nodes) != edges.shape[0] or len(nodes) != edges.shape[1]: | ||||
|         #         return False | ||||
|         #     if nodes[0] != 'input' or nodes[-1] != 'output': | ||||
|         #         return False | ||||
|         #     for i in range(0, len(nodes)): | ||||
|         #         if edges[i][i] == 1: | ||||
|         #             return False | ||||
|         #     for i in range(1, len(nodes) - 1): | ||||
|         #         if nodes[i] not in op_type or nodes[i] == 'input' or nodes[i] == 'output': | ||||
|         #             return False | ||||
|         #     for i in range(0, len(nodes)): | ||||
|         #         for j in range(i, len(nodes)): | ||||
|         #             if edges[i, j] == 1 and nodes[j] == 'input': | ||||
|         #                 return False | ||||
|         #     for i in range(0, len(nodes)): | ||||
|         #         for j in range(i, len(nodes)): | ||||
|         #             if edges[i, j] == 1 and nodes[i] == 'output': | ||||
|         #                 return False | ||||
|         #     flag = 0 | ||||
|         #     for i in range(0,len(nodes)): | ||||
|         #         if edges[i,-1] == 1: | ||||
|         #             flag = 1 | ||||
|         #             break | ||||
|         #     if flag == 0: return False | ||||
|         #     return True | ||||
|  | ||||
|         class Args: | ||||
|             pass | ||||
|         # class Args: | ||||
|         #     pass | ||||
|  | ||||
|         def get_score(sampled_s): | ||||
|             x_list = sampled_s.X.unbind(dim=0) | ||||
|             e_list = sampled_s.E.unbind(dim=0) | ||||
|             valid_rlt = [check_valid_graph(x_list[i].cpu().numpy(), e_list[i].cpu().numpy()) for i in range(len(x_list))] | ||||
|             from graph_dit.naswot.naswot.score_networks import get_nasbench201_nodes_score | ||||
|             score = [] | ||||
|         # def get_score(sampled_s): | ||||
|         #     x_list = sampled_s.X.unbind(dim=0) | ||||
|         #     e_list = sampled_s.E.unbind(dim=0) | ||||
|         #     valid_rlt = [check_valid_graph(x_list[i].cpu().numpy(), e_list[i].cpu().numpy()) for i in range(len(x_list))] | ||||
|         #     from graph_dit.naswot.naswot.score_networks import get_nasbench201_nodes_score | ||||
|         #     score = [] | ||||
|              | ||||
|             for i in range(len(x_list)): | ||||
|                 if valid_rlt[i]: | ||||
|                     nodes = [num_to_op[j] for j in x_list[i].cpu().numpy()] | ||||
|                     # edges = e_list[i].cpu().numpy() | ||||
|                     score.append(get_nasbench201_nodes_score(nodes,train_loader=self.train_loader,searchspace=self.searchspace,device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu") , args=self.args)) | ||||
|                 else: | ||||
|                     score.append(-1) | ||||
|             return torch.tensor(score, dtype=torch.float32, requires_grad=True).to(x_list[0].device) | ||||
|         #     for i in range(len(x_list)): | ||||
|         #         if valid_rlt[i]: | ||||
|         #             nodes = [num_to_op[j] for j in x_list[i].cpu().numpy()] | ||||
|         #             # edges = e_list[i].cpu().numpy() | ||||
|         #             score.append(get_nasbench201_nodes_score(nodes,train_loader=self.train_loader,searchspace=self.searchspace,device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu") , args=self.args)) | ||||
|         #         else: | ||||
|         #             score.append(-1) | ||||
|         #     return torch.tensor(score, dtype=torch.float32, requires_grad=True).to(x_list[0].device) | ||||
|  | ||||
|         sample_num = 10 | ||||
|         best_arch = None | ||||
|         best_score_int = -1e8 | ||||
|         score = torch.ones(100, dtype=torch.float32, requires_grad=True) * -1e8 | ||||
|         # sample_num = 10 | ||||
|         # best_arch = None | ||||
|         # best_score_int = -1e8 | ||||
|         # score = torch.ones(100, dtype=torch.float32, requires_grad=True) * -1e8 | ||||
|  | ||||
|         for i in range(sample_num): | ||||
|             sampled_s = diffusion_utils.sample_discrete_features(prob_X, prob_E, node_mask=node_mask, step=s[0,0].item()) | ||||
|             score = get_score(sampled_s) | ||||
|             print(f'score: {score}') | ||||
|             print(f'score.shape: {score.shape}') | ||||
|             print(f'torch.sum(score): {torch.sum(score)}') | ||||
|             sum_score = torch.sum(score) | ||||
|             print(f'sum_score: {sum_score}') | ||||
|             if sum_score > best_score_int: | ||||
|                 best_score_int = sum_score | ||||
|                 best_score = score | ||||
|                 best_arch = sampled_s | ||||
|         # for i in range(sample_num): | ||||
|         #     sampled_s = diffusion_utils.sample_discrete_features(prob_X, prob_E, node_mask=node_mask, step=s[0,0].item()) | ||||
|         #     score = get_score(sampled_s) | ||||
|         #     print(f'score: {score}') | ||||
|         #     print(f'score.shape: {score.shape}') | ||||
|         #     print(f'torch.sum(score): {torch.sum(score)}') | ||||
|         #     sum_score = torch.sum(score) | ||||
|         #     print(f'sum_score: {sum_score}') | ||||
|         #     if sum_score > best_score_int: | ||||
|         #         best_score_int = sum_score | ||||
|         #         best_score = score | ||||
|         #         best_arch = sampled_s | ||||
|  | ||||
|         # print(f'prob_X: {prob_X.shape}, prob_E: {prob_E.shape}') | ||||
|          | ||||
|         # best_arch = diffusion_utils.sample_discrete_features(prob_X, prob_E, node_mask=node_mask, step=s[0,0].item()) | ||||
|  | ||||
|         # X_s = F.one_hot(sampled_s.X, num_classes=self.Xdim_output).float() | ||||
|         # E_s = F.one_hot(sampled_s.E, num_classes=self.Edim_output).float() | ||||
|         print(f'best_arch.X: {best_arch.X.shape}, best_arch.E: {best_arch.E.shape}') # 100 8 8, bs n n, 100 8 8 2, bs n n 2 | ||||
|         X_s = F.one_hot(sampled_s.X, num_classes=self.Xdim_output).float() | ||||
|         E_s = F.one_hot(sampled_s.E, num_classes=self.Edim_output).float() | ||||
|         # print(f'best_arch.X: {best_arch.X.shape}, best_arch.E: {best_arch.E.shape}') # 100 8 8, bs n n, 100 8 8 2, bs n n 2 | ||||
|  | ||||
|         print(f'best_arch.X: {best_arch.X}, best_arch.E: {best_arch.E}') | ||||
|         X_s = F.one_hot(best_arch.X, num_classes=self.Xdim_output).float() | ||||
|         E_s = F.one_hot(best_arch.E, num_classes=self.Edim_output).float() | ||||
|         print(f'X_s: {X_s}, E_s: {E_s}') | ||||
|         # print(f'best_arch.X: {best_arch.X}, best_arch.E: {best_arch.E}') | ||||
|         # X_s = F.one_hot(best_arch.X, num_classes=self.Xdim_output).float() | ||||
|         # E_s = F.one_hot(best_arch.E, num_classes=self.Edim_output).float() | ||||
|         # print(f'X_s: {X_s}, E_s: {E_s}') | ||||
|  | ||||
|         # NASWOT score | ||||
|         target_score = torch.ones(100, requires_grad=True) * 2000.0 | ||||
|         target_score = target_score.to(X_s.device) | ||||
|         # # NASWOT score | ||||
|         # target_score = torch.ones(100, requires_grad=True) * 2000.0 | ||||
|         # target_score = target_score.to(X_s.device) | ||||
|  | ||||
|         # compute loss mse(cur_score - target_score) | ||||
|         mse_loss = torch.nn.MSELoss() | ||||
|         print(f'best_score: {best_score.shape}, target_score: {target_score.shape}') | ||||
|         print(f'best_score.requires_grad: {best_score.requires_grad}, target_score.requires_grad: {target_score.requires_grad}') | ||||
|         loss = mse_loss(best_score, target_score) | ||||
|         loss.backward(retain_graph=True) | ||||
|         # # compute loss mse(cur_score - target_score) | ||||
|         # mse_loss = torch.nn.MSELoss() | ||||
|         # print(f'best_score: {best_score.shape}, target_score: {target_score.shape}') | ||||
|         # print(f'best_score.requires_grad: {best_score.requires_grad}, target_score.requires_grad: {target_score.requires_grad}') | ||||
|         # loss = mse_loss(best_score, target_score) | ||||
|         # loss.backward(retain_graph=True) | ||||
|  | ||||
|         # loss backward = gradient | ||||
|  | ||||
|         # get prob.X, prob_E gradient | ||||
|         x_grad = pred.X.grad | ||||
|         e_grad = pred.E.grad | ||||
|         # x_grad = pred.X.grad | ||||
|         # e_grad = pred.E.grad | ||||
|  | ||||
|         beta_ratio = 0.5 | ||||
|         # x_current = pred.X - beta_ratio * x_grad | ||||
|         # e_current = pred.E - beta_ratio * e_grad | ||||
|         E_s = pred.X - beta_ratio * x_grad | ||||
|         X_s = pred.E - beta_ratio * e_grad | ||||
|         # beta_ratio = 0.5 | ||||
|         # # x_current = pred.X - beta_ratio * x_grad | ||||
|         # # e_current = pred.E - beta_ratio * e_grad | ||||
|         # E_s = pred.X - beta_ratio * x_grad | ||||
|         # X_s = pred.E - beta_ratio * e_grad | ||||
|  | ||||
|         # update prob.X prob_E with using gradient | ||||
|  | ||||
|   | ||||
							
								
								
									
										1
									
								
								graph_dit/flex-nasbench201-graph.json
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1
									
								
								graph_dit/flex-nasbench201-graph.json
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because one or more lines are too long
											
										
									
								
							
										
											
												File diff suppressed because one or more lines are too long
											
										
									
								
							
							
								
								
									
										1
									
								
								graph_dit/nasbench-201-meta.json
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1
									
								
								graph_dit/nasbench-201-meta.json
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1 @@ | ||||
| {"source": "nasbench-201", "num_graph": 31250, "n_nodes_per_graph": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], "max_n_nodes": 12, "max_n_edges": 12, "node_type_list": [0.08333333333333333, 0.12076, 0.121096, 0.12054933333333333, 0.120808, 0.35012, 0.08333333333333333, 0.0], "edge_type_list": [0.7757650537496, 0.22423494625039994], "valencies": [0.08333333333333333, 0.12076, 0.121096, 0.12054933333333333, 0.120808, 0.35012, 0.08333333333333333, 0.0], "active_nodes": ["*", "input", "nor_conv_1x1", "nor_conv_3x3", "avg_pool_3x3", "skip_connect", "none"], "num_active_nodes": 7, "transition_E": [[[1.0, 0.0], [0.4991939935961135, 0.5008060064038865], [0.5003633480874677, 0.4996366519125322], [0.49935849223554396, 0.500641507764456], [0.5018652186389422, 0.49813478136105777], [0.8275181842415934, 0.17248181575840665], [0.752416, 0.247584], [1.0, 0.0]], [[0.4991939935961135, 0.5008060064038865], [0.6929218744736044, 0.3070781255263956], [0.6891703482219348, 0.3108296517780652], [0.6909309288988885, 0.3090690711011114], [0.6876641745807234, 0.3123358254192766], [0.8913831706500085, 0.10861682934999148], [0.3948327260682345, 0.6051672739317655], [1.0, 0.0]], [[0.5003633480874677, 0.4996366519125322], [0.6891703482219348, 0.3108296517780652], [0.6877141129844832, 0.3122858870155169], [0.6899900524354673, 0.3100099475645327], [0.6869198878799577, 0.3130801121200423], [0.8910209102091021, 0.1089790897908979], [0.39503644491422785, 0.6049635550857722], [1.0, 0.0]], [[0.49935849223554396, 0.500641507764456], [0.6909309288988885, 0.3090690711011114], [0.6899900524354673, 0.3100099475645327], [0.6918940854215279, 0.30810591457847214], [0.6933245431647987, 0.30667545683520125], [0.8933821584543675, 0.10661784154563249], [0.3977348139627483, 0.6022651860372517], [1.0, 0.0]], [[0.5018652186389422, 0.49813478136105777], [0.6876641745807234, 0.3123358254192766], [0.6869198878799577, 0.3130801121200423], [0.6933245431647987, 0.30667545683520125], [0.6879391891891892, 0.31206081081081083], [0.8921497860953153, 0.10785021390468477], [0.39730260689137586, 0.6026973931086241], [1.0, 0.0]], [[0.8275181842415934, 0.17248181575840665], [0.8913831706500085, 0.10861682934999148], [0.8910209102091021, 0.1089790897908979], [0.8933821584543675, 0.10661784154563249], [0.8921497860953153, 0.10785021390468477], [0.9634043948311156, 0.03659560516888434], [0.79138581057923, 0.20861418942077004], [1.0, 0.0]], [[0.752416, 0.247584], [0.3948327260682345, 0.6051672739317655], [0.39503644491422785, 0.6049635550857722], [0.3977348139627483, 0.6022651860372517], [0.39730260689137586, 0.6026973931086241], [0.79138581057923, 0.20861418942077004], [1.0, 0.0], [1.0, 0.0]], [[1.0, 0.0], [1.0, 0.0], [1.0, 0.0], [1.0, 0.0], [1.0, 0.0], [1.0, 0.0], [1.0, 0.0], [1.0, 0.0]]]} | ||||
										
											
												File diff suppressed because one or more lines are too long
											
										
									
								
							
		Reference in New Issue
	
	Block a user