Compare commits
9 Commits
01c5c277be
...
0.01
Author | SHA1 | Date | |
---|---|---|---|
d36e1d1077 | |||
82183d3df7 | |||
c86db9b6ba | |||
a0473008a1 | |||
05ee34e355 | |||
6d9db64a48 | |||
3950a8438d | |||
1fa2d49c11 | |||
3c92e754d3 |
@@ -32,7 +32,7 @@ model:
|
||||
ensure_connected: True
|
||||
train:
|
||||
# n_epochs: 5000
|
||||
n_epochs: 10
|
||||
n_epochs: 500
|
||||
batch_size: 1200
|
||||
lr: 0.0002
|
||||
clip_grad: null
|
||||
|
@@ -25,7 +25,9 @@ from sklearn.model_selection import train_test_split
|
||||
import utils as utils
|
||||
from datasets.abstract_dataset import AbstractDatasetInfos, AbstractDataModule
|
||||
from diffusion.distributions import DistributionNodes
|
||||
# from naswot.score_networks import get_nasbench201_idx_score
|
||||
from naswot.score_networks import get_nasbench201_idx_score
|
||||
from naswot import nasspace
|
||||
from naswot import datasets as dt
|
||||
|
||||
import networkx as nx
|
||||
|
||||
@@ -682,7 +684,7 @@ class Dataset(InMemoryDataset):
|
||||
|
||||
data_list = []
|
||||
# len_data = len(self.api)
|
||||
len_data = 1000
|
||||
len_data = 15625
|
||||
def check_valid_graph(nodes, edges):
|
||||
if len(nodes) != edges.shape[0] or len(nodes) != edges.shape[1]:
|
||||
return False
|
||||
@@ -745,11 +747,9 @@ class Dataset(InMemoryDataset):
|
||||
print(f'edges size: {edges.shape}, nodes size: {len(nodes)}')
|
||||
return edges,nodes
|
||||
|
||||
def get_nasbench_201_val(idx):
|
||||
pass
|
||||
|
||||
# def graph_to_graph_data(graph, idx):
|
||||
def graph_to_graph_data(graph):
|
||||
def graph_to_graph_data(graph, idx, train_loader, searchspace, args, device):
|
||||
# def graph_to_graph_data(graph):
|
||||
ops = graph[1]
|
||||
adj = graph[0]
|
||||
nodes = []
|
||||
@@ -770,12 +770,58 @@ class Dataset(InMemoryDataset):
|
||||
edge_index = torch.tensor(edges_list, dtype=torch.long).t()
|
||||
edge_type = torch.tensor(edge_type, dtype=torch.long)
|
||||
edge_attr = edge_type
|
||||
y = torch.tensor([0, 0], dtype=torch.float).view(1, -1)
|
||||
# y = get_nasbench_201_val(idx)
|
||||
data = Data(x=x, edge_index=edge_index, edge_attr=edge_attr, y=y, idx=i)
|
||||
# y = torch.tensor([0, 0], dtype=torch.float).view(1, -1)
|
||||
# y = get_nasbench201_idx_score(idx, train_loader, searchspace, args, device)
|
||||
y = self.swap_scores[idx]
|
||||
print(y, idx)
|
||||
if y > 60000:
|
||||
print(f'idx={idx}, y={y}')
|
||||
y = torch.tensor([1, 1], dtype=torch.float).view(1, -1)
|
||||
data = Data(x=x, edge_index=edge_index, edge_attr=edge_attr, y=y, idx=i)
|
||||
else:
|
||||
print(f'idx={idx}, y={y}')
|
||||
y = torch.tensor([0, 0], dtype=torch.float).view(1, -1)
|
||||
data = Data(x=x, edge_index=edge_index, edge_attr=edge_attr, y=y, idx=i)
|
||||
# return None
|
||||
return data
|
||||
graph_list = []
|
||||
|
||||
class Args:
|
||||
pass
|
||||
args = Args()
|
||||
args.trainval = True
|
||||
args.augtype = 'none'
|
||||
args.repeat = 1
|
||||
args.score = 'hook_logdet'
|
||||
args.sigma = 0.05
|
||||
args.nasspace = 'nasbench201'
|
||||
args.batch_size = 128
|
||||
args.GPU = '0'
|
||||
args.dataset = 'cifar10'
|
||||
args.api_loc = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth'
|
||||
args.data_loc = '../cifardata/'
|
||||
args.seed = 777
|
||||
args.init = ''
|
||||
args.save_loc = 'results'
|
||||
args.save_string = 'naswot'
|
||||
args.dropout = False
|
||||
args.maxofn = 1
|
||||
args.n_samples = 100
|
||||
args.n_runs = 500
|
||||
args.stem_out_channels = 16
|
||||
args.num_stacks = 3
|
||||
args.num_modules_per_stack = 3
|
||||
args.num_labels = 1
|
||||
searchspace = nasspace.get_search_space(args)
|
||||
train_loader = dt.get_data(args.dataset, args.data_loc, args.trainval, args.batch_size, args.augtype, args.repeat, args)
|
||||
self.swap_scores = []
|
||||
import csv
|
||||
# with open('/nfs/data3/hanzhang/nasbenchDiT/graph_dit/swap_results.csv', 'r') as f:
|
||||
with open('/nfs/data3/hanzhang/nasbenchDiT/graph_dit/swap_results_cifar100.csv', 'r') as f:
|
||||
reader = csv.reader(f)
|
||||
header = next(reader)
|
||||
data = [row for row in reader]
|
||||
self.swap_scores = [float(row[0]) for row in data]
|
||||
device = torch.device('cuda:2')
|
||||
with tqdm(total = len_data) as pbar:
|
||||
active_nodes = set()
|
||||
file_path = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/nasbench-201-graph.json'
|
||||
@@ -785,25 +831,17 @@ class Dataset(InMemoryDataset):
|
||||
flex_graph_list = []
|
||||
flex_graph_path = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/flex-nasbench201-graph.json'
|
||||
for graph in graph_list:
|
||||
# arch_info = self.api.query_meta_info_by_index(i)
|
||||
# results = self.api.query_by_index(i, 'cifar100')
|
||||
print(f'iterate every graph in graph_list, here is {i}')
|
||||
arch_info = graph['arch_str']
|
||||
# results =
|
||||
# nodes, edges = parse_architecture_string(arch_info.arch_str)
|
||||
# ops, adj_matrix = parse_architecture_string(arch_info.arch_str, padding=4)
|
||||
ops, adj_matrix, ori_nodes, ori_adj = parse_architecture_string(arch_info, padding=4)
|
||||
# adj_matrix, ops = create_adj_matrix_and_ops(nodes, edges)
|
||||
for op in ops:
|
||||
if op not in active_nodes:
|
||||
active_nodes.add(op)
|
||||
|
||||
data = graph_to_graph_data((adj_matrix, ops))
|
||||
# with open(flex_graph_path, 'a') as f:
|
||||
# flex_graph = {
|
||||
# 'adj_matrix': adj_matrix,
|
||||
# 'ops': ops,
|
||||
# }
|
||||
# json.dump(flex_graph, f)
|
||||
data = graph_to_graph_data((adj_matrix, ops),idx=i, train_loader=train_loader, searchspace=searchspace, args=args, device=device)
|
||||
i += 1
|
||||
if data is None:
|
||||
pbar.update(1)
|
||||
continue
|
||||
flex_graph_list.append({
|
||||
'adj_matrix':adj_matrix,
|
||||
'ops': ops,
|
||||
@@ -816,18 +854,12 @@ class Dataset(InMemoryDataset):
|
||||
f.write(str(data.edge_attr))
|
||||
data_list.append(data)
|
||||
|
||||
new_adj, new_ops = generate_flex_adj_mat(ori_nodes=ori_nodes, ori_edges=ori_adj, max_nodes=12, min_nodes=9, random_ratio=0.5)
|
||||
flex_graph_list.append({
|
||||
'adj_matrix':new_adj.tolist(),
|
||||
'ops': new_ops,
|
||||
})
|
||||
# with open(flex_graph_path, 'w') as f:
|
||||
# flex_graph = {
|
||||
# 'adj_matrix': new_adj.tolist(),
|
||||
# 'ops': new_ops,
|
||||
# }
|
||||
# json.dump(flex_graph, f)
|
||||
data_list.append(graph_to_graph_data((new_adj, new_ops)))
|
||||
# new_adj, new_ops = generate_flex_adj_mat(ori_nodes=ori_nodes, ori_edges=ori_adj, max_nodes=12, min_nodes=9, random_ratio=0.5)
|
||||
# flex_graph_list.append({
|
||||
# 'adj_matrix':new_adj.tolist(),
|
||||
# 'ops': new_ops,
|
||||
# })
|
||||
# data_list.append(graph_to_graph_data((new_adj, new_ops)))
|
||||
|
||||
# graph_list.append({
|
||||
# "adj_matrix": adj_matrix,
|
||||
@@ -859,6 +891,7 @@ class Dataset(InMemoryDataset):
|
||||
# "seed": seed,
|
||||
# }for seed, result in results.items()]
|
||||
# })
|
||||
# i += 1
|
||||
pbar.update(1)
|
||||
|
||||
for graph in graph_list:
|
||||
@@ -872,8 +905,8 @@ class Dataset(InMemoryDataset):
|
||||
graph['ops'] = ops
|
||||
with open(f'nasbench-201-graph.json', 'w') as f:
|
||||
json.dump(graph_list, f)
|
||||
with open(flex_graph_path, 'w') as f:
|
||||
json.dump(flex_graph_list, f)
|
||||
# with open(flex_graph_path, 'w') as f:
|
||||
# json.dump(flex_graph_list, f)
|
||||
|
||||
torch.save(self.collate(data_list), self.processed_paths[0])
|
||||
|
||||
@@ -1148,7 +1181,8 @@ class DataInfos(AbstractDatasetInfos):
|
||||
# ops_type[op] = len(ops_type)
|
||||
# len_ops.add(len(ops))
|
||||
# graphs.append((adj_matrix, ops))
|
||||
graphs = read_adj_ops_from_json(f'/nfs/data3/hanzhang/nasbenchDiT/graph_dit/flex-nasbench201-graph.json')
|
||||
# graphs = read_adj_ops_from_json(f'/nfs/data3/hanzhang/nasbenchDiT/graph_dit/flex-nasbench201-graph.json')
|
||||
graphs = read_adj_ops_from_json(f'/nfs/data3/hanzhang/nasbenchDiT/graph_dit/nasbench-201-graph.json')
|
||||
|
||||
# check first five graphs
|
||||
for i in range(5):
|
||||
|
@@ -356,7 +356,8 @@ class Graph_DiT(pl.LightningModule):
|
||||
to_generate = min(samples_left_to_generate, bs)
|
||||
to_save = min(samples_left_to_save, bs)
|
||||
chains_save = min(chains_left_to_save, bs)
|
||||
batch_y = test_y_collection[batch_id : batch_id + to_generate]
|
||||
# batch_y = test_y_collection[batch_id : batch_id + to_generate]
|
||||
batch_y = torch.ones(to_generate, self.ydim_output, device=self.device)
|
||||
|
||||
cur_sample = self.sample_batch(batch_id, to_generate, batch_y, save_final=to_save,
|
||||
keep_chain=chains_save, number_chain_steps=self.number_chain_steps)
|
||||
|
BIN
graph_dit/exp_201/barplog.png
Normal file
BIN
graph_dit/exp_201/barplog.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 30 KiB |
85
graph_dit/exp_201/main.py
Normal file
85
graph_dit/exp_201/main.py
Normal file
@@ -0,0 +1,85 @@
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
from nas_201_api import NASBench201API as API
|
||||
# from naswot.score_networks import get_nasbench201_idx_score
|
||||
# from naswot import datasets as dt
|
||||
# from naswot import nasspace
|
||||
|
||||
# class Args():
|
||||
# pass
|
||||
# args = Args()
|
||||
# args.trainval = True
|
||||
# args.augtype = 'none'
|
||||
# args.repeat = 1
|
||||
# args.score = 'hook_logdet'
|
||||
# args.sigma = 0.05
|
||||
# args.nasspace = 'nasbench201'
|
||||
# args.batch_size = 128
|
||||
# args.GPU = '0'
|
||||
# args.dataset = 'cifar10'
|
||||
# args.api_loc = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth'
|
||||
# args.data_loc = '../cifardata/'
|
||||
# args.seed = 777
|
||||
# args.init = ''
|
||||
# args.save_loc = 'results'
|
||||
# args.save_string = 'naswot'
|
||||
# args.dropout = False
|
||||
# args.maxofn = 1
|
||||
# args.n_samples = 100
|
||||
# args.n_runs = 500
|
||||
# args.stem_out_channels = 16
|
||||
# args.num_stacks = 3
|
||||
# args.num_modules_per_stack = 3
|
||||
# args.num_labels = 1
|
||||
# searchspace = nasspace.get_search_space(args)
|
||||
# train_loader = dt.get_data(args.dataset, args.data_loc, args.trainval, args.batch_size, args.augtype, args.repeat, args)
|
||||
# device = torch.device('cuda:2')
|
||||
|
||||
|
||||
source = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth'
|
||||
api = API(source)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# 示例百分数列表,精确到小数点后两位
|
||||
# percentages = [5.12, 15.78, 25.43, 35.22, 45.99, 55.34, 65.12, 75.68, 85.99, 95.25, 23.45, 12.34, 37.89, 58.67, 64.23, 72.15, 81.76, 99.99, 42.11, 61.58, 77.34, 14.56]
|
||||
percentages = []
|
||||
|
||||
len_201 = 15625
|
||||
|
||||
for i in range(len_201):
|
||||
# percentage = get_nasbench201_idx_score(i, train_loader, searchspace, args, device)
|
||||
results = api.query_by_index(i, 'cifar10')
|
||||
result = results[111].get_eval('ori-test')
|
||||
percentages.append(result)
|
||||
|
||||
# 定义10%区间
|
||||
bins = [i for i in range(0, 101, 10)]
|
||||
|
||||
# 对数据进行分箱,计算每个区间的数据量
|
||||
hist, bin_edges = pd.cut(percentages, bins=bins, right=False, retbins=True, include_lowest=True)
|
||||
bin_counts = hist.value_counts().sort_index()
|
||||
|
||||
total_counts = len(percentages)
|
||||
percentages_in_bins = (bin_counts / total_counts) * 100
|
||||
|
||||
# 绘制条形图
|
||||
plt.figure(figsize=(10, 6))
|
||||
bars = plt.bar(bin_counts.index.astype(str), bin_counts.values, width=0.9, color='skyblue')
|
||||
|
||||
for bar, percentage in zip(bars, percentages_in_bins):
|
||||
plt.text(bar.get_x() + bar.get_width() / 2, bar.get_height(),
|
||||
f'{percentage:.2f}%', ha='center', va='bottom')
|
||||
|
||||
# 添加标题和标签
|
||||
plt.title('Distribution of Percentages in 10% Intervals')
|
||||
plt.xlabel('Percentage Interval')
|
||||
plt.ylabel('Count')
|
||||
|
||||
# 显示图表
|
||||
plt.xticks(rotation=45)
|
||||
plt.savefig('barplog.png')
|
||||
|
1
graph_dit/nasbench-201-meta.json
Normal file
1
graph_dit/nasbench-201-meta.json
Normal file
@@ -0,0 +1 @@
|
||||
{"source": "nasbench-201", "num_graph": 15625, "n_nodes_per_graph": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], "max_n_nodes": 8, "max_n_edges": 8, "node_type_list": [0.125, 0.15, 0.15, 0.15, 0.15, 0.15, 0.125, 0.0], "edge_type_list": [0.6666666666666666, 0.3333333333333333], "valencies": [0.125, 0.15, 0.15, 0.15, 0.15, 0.15, 0.125, 0.0], "active_nodes": ["*", "input", "nor_conv_1x1", "nor_conv_3x3", "avg_pool_3x3", "skip_connect", "none"], "num_active_nodes": 7, "transition_E": [[[1.0, 0.0], [0.5, 0.5], [0.5, 0.5], [0.5, 0.5], [0.5, 0.5], [0.5, 0.5], [1.0, 0.0], [1.0, 0.0]], [[0.5, 0.5], [0.7333333333333333, 0.26666666666666666], [0.7333333333333333, 0.26666666666666666], [0.7333333333333333, 0.26666666666666666], [0.7333333333333333, 0.26666666666666666], [0.7333333333333333, 0.26666666666666666], [0.5, 0.5], [1.0, 0.0]], [[0.5, 0.5], [0.7333333333333333, 0.26666666666666666], [0.7333333333333333, 0.26666666666666666], [0.7333333333333333, 0.26666666666666666], [0.7333333333333333, 0.26666666666666666], [0.7333333333333333, 0.26666666666666666], [0.5, 0.5], [1.0, 0.0]], [[0.5, 0.5], [0.7333333333333333, 0.26666666666666666], [0.7333333333333333, 0.26666666666666666], [0.7333333333333333, 0.26666666666666666], [0.7333333333333333, 0.26666666666666666], [0.7333333333333333, 0.26666666666666666], [0.5, 0.5], [1.0, 0.0]], [[0.5, 0.5], [0.7333333333333333, 0.26666666666666666], [0.7333333333333333, 0.26666666666666666], [0.7333333333333333, 0.26666666666666666], [0.7333333333333333, 0.26666666666666666], [0.7333333333333333, 0.26666666666666666], [0.5, 0.5], [1.0, 0.0]], [[0.5, 0.5], [0.7333333333333333, 0.26666666666666666], [0.7333333333333333, 0.26666666666666666], [0.7333333333333333, 0.26666666666666666], [0.7333333333333333, 0.26666666666666666], [0.7333333333333333, 0.26666666666666666], [0.5, 0.5], [1.0, 0.0]], [[1.0, 0.0], [0.5, 0.5], [0.5, 0.5], [0.5, 0.5], [0.5, 0.5], [0.5, 0.5], [1.0, 0.0], [1.0, 0.0]], [[1.0, 0.0], [1.0, 0.0], [1.0, 0.0], [1.0, 0.0], [1.0, 0.0], [1.0, 0.0], [1.0, 0.0], [1.0, 0.0]]]}
|
File diff suppressed because one or more lines are too long
144
graph_dit/test_perf.py
Normal file
144
graph_dit/test_perf.py
Normal file
@@ -0,0 +1,144 @@
|
||||
from nas_201_api import NASBench201API as API
|
||||
import re
|
||||
import pandas as pd
|
||||
import json
|
||||
import numpy as np
|
||||
import argparse
|
||||
|
||||
api = API('./NAS-Bench-201-v1_1-096897.pth')
|
||||
|
||||
parser = argparse.ArgumentParser(description='Process some integers.')
|
||||
|
||||
parser.add_argument('--file_path', type=str, default='211035.txt',)
|
||||
parser.add_argument('--datasets', type=str, default='cifar10',)
|
||||
args = parser.parse_args()
|
||||
|
||||
def process_graph_data(text):
|
||||
# Split the input text into sections for each graph
|
||||
graph_sections = text.strip().split('nodes:')
|
||||
|
||||
# Prepare lists to store data
|
||||
nodes_list = []
|
||||
edges_list = []
|
||||
results_list = []
|
||||
|
||||
for section in graph_sections[1:]:
|
||||
# Extract nodes
|
||||
nodes_section = section.split('edges:')[0]
|
||||
nodes_match = re.search(r'(tensor\(\d+\) ?)+', section)
|
||||
if nodes_match:
|
||||
nodes = re.findall(r'tensor\((\d+)\)', nodes_match.group(0))
|
||||
nodes_list.append(nodes)
|
||||
|
||||
# Extract edges
|
||||
edge_section = section.split('edges:')[1]
|
||||
edges_match = re.search(r'edges:', section)
|
||||
if edges_match:
|
||||
edges = re.findall(r'tensor\((\d+)\)', edge_section)
|
||||
edges_list.append(edges)
|
||||
|
||||
# Extract the last floating point number as a result
|
||||
|
||||
# Create a DataFrame to store the extracted data
|
||||
data = {
|
||||
'nodes': nodes_list,
|
||||
'edges': edges_list,
|
||||
}
|
||||
data['nodes'] = [[int(x) for x in node] for node in data['nodes']]
|
||||
data['edges'] = [[int(x) for x in edge] for edge in data['edges']]
|
||||
def split_list(input_list, chunk_size):
|
||||
return [input_list[i:i + chunk_size] for i in range(0, len(input_list), chunk_size)]
|
||||
data['edges'] = [split_list(edge, 8) for edge in data['edges']]
|
||||
|
||||
print(data)
|
||||
df = pd.DataFrame(data)
|
||||
print('df')
|
||||
print(df['nodes'][0], df['edges'][0])
|
||||
return df
|
||||
|
||||
def is_valid_nasbench201(adj, ops):
|
||||
print(ops)
|
||||
if ops[0] != 0 or ops[-1] != 6:
|
||||
return False
|
||||
for i in range(2, len(ops) - 1):
|
||||
if ops[i] not in [1, 2, 3, 4, 5]:
|
||||
return False
|
||||
adj_mat = [ [0, 1, 1, 0, 1, 0, 0, 0],
|
||||
[0, 0, 0, 1, 0, 1 ,0 ,0],
|
||||
[0, 0, 0, 0, 0, 0, 1, 0],
|
||||
[0, 0, 0, 0, 0, 0, 1, 0],
|
||||
[0, 0, 0, 0, 0, 0, 0, 1],
|
||||
[0, 0, 0, 0, 0, 0, 0, 1],
|
||||
[0, 0, 0, 0, 0, 0, 0, 1],
|
||||
[0, 0, 0, 0, 0, 0, 0, 0]]
|
||||
|
||||
for i in range(len(adj)):
|
||||
for j in range(len(adj[i])):
|
||||
if adj[i][j] not in [0, 1]:
|
||||
return False
|
||||
if j > i:
|
||||
if adj[i][j] != adj_mat[i][j]:
|
||||
return False
|
||||
return True
|
||||
|
||||
num_to_op = ['input', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3', 'skip_connect', 'none', 'output']
|
||||
def nodes_to_arch_str(nodes):
|
||||
nodes_str = [num_to_op[node] for node in nodes]
|
||||
arch_str = '|' + nodes_str[1] + '~0|+' + \
|
||||
'|' + nodes_str[2] + '~0|' + nodes_str[3] + '~1|+' +\
|
||||
'|' + nodes_str[4] + '~0|' + nodes_str[5] + '~1|' + nodes_str[6] + '~2|'
|
||||
return arch_str
|
||||
|
||||
filename = args.file_path
|
||||
datasets_name = args.datasets
|
||||
|
||||
with open('./output_graphs/' + filename, 'r') as f:
|
||||
texts = f.read()
|
||||
df = process_graph_data(texts)
|
||||
valid = 0
|
||||
not_valid = 0
|
||||
scores = []
|
||||
|
||||
# 定义分类标准和分布字典的映射
|
||||
thresholds = {
|
||||
'cifar10': [90, 91, 92, 93, 94],
|
||||
'cifar100': [68,69,70, 71, 72, 73]
|
||||
}
|
||||
dist = {f'<{threshold}': 0 for threshold in thresholds[datasets_name]}
|
||||
dist[f'>{thresholds[datasets_name][-1]}'] = 0
|
||||
|
||||
for i in range(len(df)):
|
||||
nodes = df['nodes'][i]
|
||||
edges = df['edges'][i]
|
||||
result = is_valid_nasbench201(edges, nodes)
|
||||
if result:
|
||||
valid += 1
|
||||
arch_str = nodes_to_arch_str(nodes)
|
||||
index = api.query_index_by_arch(arch_str)
|
||||
res = api.get_more_info(index, datasets_name, None, hp=200, is_random=False)
|
||||
acc = res['test-accuracy']
|
||||
scores.append((index, acc))
|
||||
|
||||
# 根据阈值更新分布
|
||||
updated = False
|
||||
for threshold in thresholds[datasets_name]:
|
||||
if acc < threshold:
|
||||
dist[f'<{threshold}'] += 1
|
||||
updated = True
|
||||
break
|
||||
if not updated:
|
||||
dist[f'>{thresholds[datasets_name][-1]}'] += 1
|
||||
else:
|
||||
not_valid += 1
|
||||
|
||||
with open('./output_graphs/' + filename + '_' + datasets_name +'.json', 'w') as f:
|
||||
json.dump(scores, f)
|
||||
|
||||
print(scores)
|
||||
print(valid, not_valid)
|
||||
print(dist)
|
||||
print("mean: ", np.mean([x[1] for x in scores]))
|
||||
print("max: ", np.max([x[1] for x in scores]))
|
||||
print("min: ", np.min([x[1] for x in scores]))
|
||||
|
||||
|
Reference in New Issue
Block a user