Compare commits
	
		
			4 Commits
		
	
	
		
			01c5c277be
			...
			6d9db64a48
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| 6d9db64a48 | |||
| 3950a8438d | |||
| 1fa2d49c11 | |||
| 3c92e754d3 | 
| @@ -32,7 +32,7 @@ model: | ||||
|     ensure_connected: True | ||||
| train: | ||||
|     # n_epochs: 5000 | ||||
|     n_epochs: 10 | ||||
|     n_epochs: 500 | ||||
|     batch_size: 1200 | ||||
|     lr: 0.0002 | ||||
|     clip_grad: null | ||||
|   | ||||
| @@ -25,7 +25,9 @@ from sklearn.model_selection import train_test_split | ||||
| import utils as utils | ||||
| from datasets.abstract_dataset import AbstractDatasetInfos, AbstractDataModule | ||||
| from diffusion.distributions import DistributionNodes | ||||
| # from naswot.score_networks import get_nasbench201_idx_score | ||||
| from naswot.score_networks import get_nasbench201_idx_score | ||||
| from naswot import nasspace | ||||
| from naswot import datasets as dt | ||||
|  | ||||
| import networkx as nx | ||||
|  | ||||
| @@ -682,7 +684,7 @@ class Dataset(InMemoryDataset): | ||||
|  | ||||
|         data_list = [] | ||||
|         # len_data = len(self.api) | ||||
|         len_data = 1000 | ||||
|         len_data = 15625 | ||||
|         def check_valid_graph(nodes, edges): | ||||
|             if len(nodes) != edges.shape[0] or len(nodes) != edges.shape[1]: | ||||
|                 return False | ||||
| @@ -745,11 +747,9 @@ class Dataset(InMemoryDataset): | ||||
|             print(f'edges size: {edges.shape}, nodes size: {len(nodes)}') | ||||
|             return  edges,nodes | ||||
|          | ||||
|         def get_nasbench_201_val(idx): | ||||
|             pass | ||||
|  | ||||
|         # def graph_to_graph_data(graph, idx): | ||||
|         def graph_to_graph_data(graph): | ||||
|         def graph_to_graph_data(graph, idx, train_loader, searchspace, args, device): | ||||
|         # def graph_to_graph_data(graph): | ||||
|             ops = graph[1] | ||||
|             adj = graph[0] | ||||
|             nodes = [] | ||||
| @@ -770,12 +770,49 @@ class Dataset(InMemoryDataset): | ||||
|             edge_index = torch.tensor(edges_list, dtype=torch.long).t() | ||||
|             edge_type = torch.tensor(edge_type, dtype=torch.long) | ||||
|             edge_attr = edge_type | ||||
|             y = torch.tensor([0, 0], dtype=torch.float).view(1, -1) | ||||
|             # y = get_nasbench_201_val(idx) | ||||
|             data = Data(x=x, edge_index=edge_index, edge_attr=edge_attr, y=y, idx=i) | ||||
|             # y = torch.tensor([0, 0], dtype=torch.float).view(1, -1) | ||||
|             y = get_nasbench201_idx_score(idx, train_loader, searchspace, args, device) | ||||
|             print(y, idx) | ||||
|             if y > 1600: | ||||
|                 print(f'idx={idx}, y={y}') | ||||
|                 y = torch.tensor([1, 1], dtype=torch.float).view(1, -1) | ||||
|                 data = Data(x=x, edge_index=edge_index, edge_attr=edge_attr, y=y, idx=i) | ||||
|             else: | ||||
|                 print(f'idx={idx}, y={y}') | ||||
|                 y = torch.tensor([0, 0], dtype=torch.float).view(1, -1) | ||||
|                 data = Data(x=x, edge_index=edge_index, edge_attr=edge_attr, y=y, idx=i) | ||||
|                 # return None | ||||
|             return data | ||||
|         graph_list = [] | ||||
|  | ||||
|         class Args: | ||||
|             pass | ||||
|         args = Args() | ||||
|         args.trainval = True | ||||
|         args.augtype = 'none' | ||||
|         args.repeat = 1 | ||||
|         args.score = 'hook_logdet' | ||||
|         args.sigma = 0.05 | ||||
|         args.nasspace = 'nasbench201' | ||||
|         args.batch_size = 128 | ||||
|         args.GPU = '0' | ||||
|         args.dataset = 'cifar10' | ||||
|         args.api_loc = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth' | ||||
|         args.data_loc = '../cifardata/' | ||||
|         args.seed = 777 | ||||
|         args.init = '' | ||||
|         args.save_loc = 'results' | ||||
|         args.save_string = 'naswot' | ||||
|         args.dropout = False | ||||
|         args.maxofn = 1 | ||||
|         args.n_samples = 100 | ||||
|         args.n_runs = 500 | ||||
|         args.stem_out_channels = 16 | ||||
|         args.num_stacks = 3 | ||||
|         args.num_modules_per_stack = 3 | ||||
|         args.num_labels = 1 | ||||
|         searchspace = nasspace.get_search_space(args) | ||||
|         train_loader = dt.get_data(args.dataset, args.data_loc, args.trainval, args.batch_size, args.augtype, args.repeat, args) | ||||
|         device = torch.device('cuda:2') | ||||
|         with tqdm(total = len_data) as pbar: | ||||
|             active_nodes = set() | ||||
|             file_path = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/nasbench-201-graph.json' | ||||
| @@ -785,6 +822,7 @@ class Dataset(InMemoryDataset): | ||||
|             flex_graph_list = [] | ||||
|             flex_graph_path = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/flex-nasbench201-graph.json' | ||||
|             for graph in graph_list: | ||||
|                 print(f'iterate every graph in graph_list, here is {i}') | ||||
|                 # arch_info = self.api.query_meta_info_by_index(i) | ||||
|                 # results = self.api.query_by_index(i, 'cifar100') | ||||
|                 arch_info = graph['arch_str'] | ||||
| @@ -796,8 +834,11 @@ class Dataset(InMemoryDataset): | ||||
|                 for op in ops: | ||||
|                     if op not in active_nodes: | ||||
|                         active_nodes.add(op) | ||||
|                  | ||||
|                 data = graph_to_graph_data((adj_matrix, ops))  | ||||
|                 data = graph_to_graph_data((adj_matrix, ops),idx=i, train_loader=train_loader, searchspace=searchspace, args=args, device=device)  | ||||
|                 i += 1 | ||||
|                 if data is None: | ||||
|                     pbar.update(1) | ||||
|                     continue | ||||
|                 # with open(flex_graph_path, 'a') as f: | ||||
|                 #     flex_graph = { | ||||
|                 #         'adj_matrix': adj_matrix, | ||||
| @@ -816,18 +857,12 @@ class Dataset(InMemoryDataset): | ||||
|                         f.write(str(data.edge_attr)) | ||||
|                 data_list.append(data) | ||||
|  | ||||
|                 new_adj, new_ops = generate_flex_adj_mat(ori_nodes=ori_nodes, ori_edges=ori_adj, max_nodes=12, min_nodes=9,  random_ratio=0.5) | ||||
|                 flex_graph_list.append({ | ||||
|                     'adj_matrix':new_adj.tolist(), | ||||
|                     'ops': new_ops, | ||||
|                 }) | ||||
|                 # with open(flex_graph_path, 'w') as f: | ||||
|                 #     flex_graph = { | ||||
|                 #         'adj_matrix': new_adj.tolist(), | ||||
|                 #         'ops': new_ops, | ||||
|                 #     } | ||||
|                 #     json.dump(flex_graph, f) | ||||
|                 data_list.append(graph_to_graph_data((new_adj, new_ops))) | ||||
|                 # new_adj, new_ops = generate_flex_adj_mat(ori_nodes=ori_nodes, ori_edges=ori_adj, max_nodes=12, min_nodes=9,  random_ratio=0.5) | ||||
|                 # flex_graph_list.append({ | ||||
|                 #     'adj_matrix':new_adj.tolist(), | ||||
|                 #     'ops': new_ops, | ||||
|                 # }) | ||||
|                 # data_list.append(graph_to_graph_data((new_adj, new_ops))) | ||||
|                 | ||||
|                 # graph_list.append({ | ||||
|                 #     "adj_matrix": adj_matrix, | ||||
| @@ -859,6 +894,7 @@ class Dataset(InMemoryDataset): | ||||
|                 #         "seed": seed, | ||||
|                 #     }for seed, result in results.items()] | ||||
|                 # }) | ||||
|                 # i += 1 | ||||
|                 pbar.update(1) | ||||
|          | ||||
|         for graph in graph_list: | ||||
| @@ -872,8 +908,8 @@ class Dataset(InMemoryDataset): | ||||
|                 graph['ops'] = ops | ||||
|         with open(f'nasbench-201-graph.json', 'w') as f: | ||||
|             json.dump(graph_list, f) | ||||
|         with open(flex_graph_path, 'w') as f: | ||||
|             json.dump(flex_graph_list, f) | ||||
|         # with open(flex_graph_path, 'w') as f: | ||||
|             # json.dump(flex_graph_list, f) | ||||
|              | ||||
|         torch.save(self.collate(data_list), self.processed_paths[0]) | ||||
|  | ||||
| @@ -1148,7 +1184,8 @@ class DataInfos(AbstractDatasetInfos): | ||||
|             #         ops_type[op] = len(ops_type) | ||||
|             # len_ops.add(len(ops)) | ||||
|             # graphs.append((adj_matrix, ops)) | ||||
|         graphs = read_adj_ops_from_json(f'/nfs/data3/hanzhang/nasbenchDiT/graph_dit/flex-nasbench201-graph.json') | ||||
|         # graphs = read_adj_ops_from_json(f'/nfs/data3/hanzhang/nasbenchDiT/graph_dit/flex-nasbench201-graph.json') | ||||
|         graphs = read_adj_ops_from_json(f'/nfs/data3/hanzhang/nasbenchDiT/graph_dit/nasbench-201-graph.json') | ||||
|  | ||||
|         # check first five graphs | ||||
|         for i in range(5): | ||||
|   | ||||
| @@ -356,7 +356,8 @@ class Graph_DiT(pl.LightningModule): | ||||
|             to_generate = min(samples_left_to_generate, bs) | ||||
|             to_save = min(samples_left_to_save, bs) | ||||
|             chains_save = min(chains_left_to_save, bs) | ||||
|             batch_y = test_y_collection[batch_id : batch_id + to_generate] | ||||
|             # batch_y = test_y_collection[batch_id : batch_id + to_generate] | ||||
|             batch_y = torch.ones(to_generate, self.ydim_output, device=self.device) | ||||
|  | ||||
|             cur_sample = self.sample_batch(batch_id, to_generate, batch_y, save_final=to_save, | ||||
|                                             keep_chain=chains_save, number_chain_steps=self.number_chain_steps) | ||||
|   | ||||
							
								
								
									
										82
									
								
								graph_dit/exp_201/main.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										82
									
								
								graph_dit/exp_201/main.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,82 @@ | ||||
|  | ||||
| import matplotlib.pyplot as plt | ||||
| import pandas as pd | ||||
| from nas_201_api import NASBench201API as API | ||||
| from naswot.score_networks import get_nasbench201_idx_score | ||||
| from naswot import datasets as dt | ||||
| from naswot import nasspace | ||||
|  | ||||
| class Args(): | ||||
|     pass | ||||
| args = Args() | ||||
| args.trainval = True | ||||
| args.augtype = 'none' | ||||
| args.repeat = 1 | ||||
| args.score = 'hook_logdet' | ||||
| args.sigma = 0.05 | ||||
| args.nasspace = 'nasbench201' | ||||
| args.batch_size = 128 | ||||
| args.GPU = '0' | ||||
| args.dataset = 'cifar10' | ||||
| args.api_loc = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth' | ||||
| args.data_loc = '../cifardata/' | ||||
| args.seed = 777 | ||||
| args.init = '' | ||||
| args.save_loc = 'results' | ||||
| args.save_string = 'naswot' | ||||
| args.dropout = False | ||||
| args.maxofn = 1 | ||||
| args.n_samples = 100 | ||||
| args.n_runs = 500 | ||||
| args.stem_out_channels = 16 | ||||
| args.num_stacks = 3 | ||||
| args.num_modules_per_stack = 3 | ||||
| args.num_labels = 1 | ||||
| searchspace = nasspace.get_search_space(args) | ||||
| train_loader = dt.get_data(args.dataset, args.data_loc, args.trainval, args.batch_size, args.augtype, args.repeat, args) | ||||
| device = torch.device('cuda:2') | ||||
|  | ||||
|  | ||||
|           | ||||
| # source = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth' | ||||
| # api = API(source) | ||||
|  | ||||
|  | ||||
|  | ||||
| # 示例百分数列表,精确到小数点后两位 | ||||
| # percentages = [5.12, 15.78, 25.43, 35.22, 45.99, 55.34, 65.12, 75.68, 85.99, 95.25, 23.45, 12.34, 37.89, 58.67, 64.23, 72.15, 81.76, 99.99, 42.11, 61.58, 77.34, 14.56] | ||||
| percentages = [] | ||||
|  | ||||
| len_201 = 15625 | ||||
|  | ||||
| for i in range(len_201): | ||||
|     percentage = get_nasbench201_idx_score(i, train_loader, searchspace, args, device) | ||||
|     percentages.append(percentage) | ||||
|  | ||||
| # 定义10%区间 | ||||
| bins = [i for i in range(0, 101, 10)] | ||||
|  | ||||
| # 对数据进行分箱,计算每个区间的数据量 | ||||
| hist, bin_edges = pd.cut(percentages, bins=bins, right=False, retbins=True, include_lowest=True) | ||||
| bin_counts = hist.value_counts().sort_index() | ||||
|  | ||||
| total_counts = len(percentages) | ||||
| percentages_in_bins = (bin_counts / total_counts) * 100 | ||||
|  | ||||
| # 绘制条形图 | ||||
| plt.figure(figsize=(10, 6)) | ||||
| bars = plt.bar(bin_counts.index.astype(str), bin_counts.values, width=0.9, color='skyblue') | ||||
|  | ||||
| for bar, percentage in zip(bars, percentages_in_bins): | ||||
|     plt.text(bar.get_x() + bar.get_width() / 2, bar.get_height(), | ||||
|             f'{percentage:.2f}%', ha='center', va='bottom') | ||||
|  | ||||
| # 添加标题和标签 | ||||
| plt.title('Distribution of Percentages in 10% Intervals') | ||||
| plt.xlabel('Percentage Interval') | ||||
| plt.ylabel('Count') | ||||
|  | ||||
| # 显示图表 | ||||
| plt.xticks(rotation=45) | ||||
| plt.savefig('barplog.png') | ||||
|  | ||||
							
								
								
									
										1
									
								
								graph_dit/nasbench-201-meta.json
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1
									
								
								graph_dit/nasbench-201-meta.json
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1 @@ | ||||
| {"source": "nasbench-201", "num_graph": 15625, "n_nodes_per_graph": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], "max_n_nodes": 8, "max_n_edges": 8, "node_type_list": [0.125, 0.15, 0.15, 0.15, 0.15, 0.15, 0.125, 0.0], "edge_type_list": [0.6666666666666666, 0.3333333333333333], "valencies": [0.125, 0.15, 0.15, 0.15, 0.15, 0.15, 0.125, 0.0], "active_nodes": ["*", "input", "nor_conv_1x1", "nor_conv_3x3", "avg_pool_3x3", "skip_connect", "none"], "num_active_nodes": 7, "transition_E": [[[1.0, 0.0], [0.5, 0.5], [0.5, 0.5], [0.5, 0.5], [0.5, 0.5], [0.5, 0.5], [1.0, 0.0], [1.0, 0.0]], [[0.5, 0.5], [0.7333333333333333, 0.26666666666666666], [0.7333333333333333, 0.26666666666666666], [0.7333333333333333, 0.26666666666666666], [0.7333333333333333, 0.26666666666666666], [0.7333333333333333, 0.26666666666666666], [0.5, 0.5], [1.0, 0.0]], [[0.5, 0.5], [0.7333333333333333, 0.26666666666666666], [0.7333333333333333, 0.26666666666666666], [0.7333333333333333, 0.26666666666666666], [0.7333333333333333, 0.26666666666666666], [0.7333333333333333, 0.26666666666666666], [0.5, 0.5], [1.0, 0.0]], [[0.5, 0.5], [0.7333333333333333, 0.26666666666666666], [0.7333333333333333, 0.26666666666666666], [0.7333333333333333, 0.26666666666666666], [0.7333333333333333, 0.26666666666666666], [0.7333333333333333, 0.26666666666666666], [0.5, 0.5], [1.0, 0.0]], [[0.5, 0.5], [0.7333333333333333, 0.26666666666666666], [0.7333333333333333, 0.26666666666666666], [0.7333333333333333, 0.26666666666666666], [0.7333333333333333, 0.26666666666666666], [0.7333333333333333, 0.26666666666666666], [0.5, 0.5], [1.0, 0.0]], [[0.5, 0.5], [0.7333333333333333, 0.26666666666666666], [0.7333333333333333, 0.26666666666666666], [0.7333333333333333, 0.26666666666666666], [0.7333333333333333, 0.26666666666666666], [0.7333333333333333, 0.26666666666666666], [0.5, 0.5], [1.0, 0.0]], [[1.0, 0.0], [0.5, 0.5], [0.5, 0.5], [0.5, 0.5], [0.5, 0.5], [0.5, 0.5], [1.0, 0.0], [1.0, 0.0]], [[1.0, 0.0], [1.0, 0.0], [1.0, 0.0], [1.0, 0.0], [1.0, 0.0], [1.0, 0.0], [1.0, 0.0], [1.0, 0.0]]]} | ||||
		Reference in New Issue
	
	Block a user