Compare commits
	
		
			9 Commits
		
	
	
		
			6d9db64a48
			...
			trainer
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
|  | 123cde9313 | ||
|  | 9360839a35 | ||
| f75657ac3b | |||
| be178bc5ee | |||
| d36e1d1077 | |||
| 82183d3df7 | |||
| c86db9b6ba | |||
| a0473008a1 | |||
| 05ee34e355 | 
| @@ -2,20 +2,26 @@ general: | |||||||
|     name: 'graph_dit' |     name: 'graph_dit' | ||||||
|     wandb: 'disabled'  |     wandb: 'disabled'  | ||||||
|     gpus: 1 |     gpus: 1 | ||||||
|     gpu_number: 2 |     gpu_number: 0 | ||||||
|     resume: null |     resume: null | ||||||
|     test_only: null |     test_only: null | ||||||
|     sample_every_val: 2500 |     sample_every_val: 2500 | ||||||
|     samples_to_generate: 512       |     samples_to_generate: 1000 | ||||||
|     samples_to_save: 3 |     samples_to_save: 3 | ||||||
|     chains_to_save: 1 |     chains_to_save: 1 | ||||||
|     log_every_steps: 50 |     log_every_steps: 50 | ||||||
|     number_chain_steps: 8 |     number_chain_steps: 8 | ||||||
|     final_model_samples_to_generate: 100 |     final_model_samples_to_generate: 1000 | ||||||
|     final_model_samples_to_save: 20 |     final_model_samples_to_save: 20 | ||||||
|     final_model_chains_to_save: 1 |     final_model_chains_to_save: 1 | ||||||
|     enable_progress_bar: False |     enable_progress_bar: False | ||||||
|     save_model: True |     save_model: True | ||||||
|  |     log_dir: '/zhome/academic/HLRS/xmu/xmuhanma/nasbenchDiT' | ||||||
|  |     number_checkpoint_limit: 3 | ||||||
|  |     type: 'Trainer' | ||||||
|  |     nas_201: '/zhome/academic/HLRS/xmu/xmuhanma/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth' | ||||||
|  |     swap_result: '/zhome/academic/HLRS/xmu/xmuhanma/nasbenchDiT/graph_dit/swap_results.csv' | ||||||
|  |     root: '/zhome/academic/HLRS/xmu/xmuhanma/nasbenchDiT/graph_dit/' | ||||||
| model: | model: | ||||||
|     type: 'discrete' |     type: 'discrete' | ||||||
|     transition: 'marginal'                   |     transition: 'marginal'                   | ||||||
| @@ -32,7 +38,7 @@ model: | |||||||
|     ensure_connected: True |     ensure_connected: True | ||||||
| train: | train: | ||||||
|     # n_epochs: 5000 |     # n_epochs: 5000 | ||||||
|     n_epochs: 500 |     n_epochs: 10 | ||||||
|     batch_size: 1200 |     batch_size: 1200 | ||||||
|     lr: 0.0002 |     lr: 0.0002 | ||||||
|     clip_grad: null |     clip_grad: null | ||||||
| @@ -41,8 +47,11 @@ train: | |||||||
|     seed: 0 |     seed: 0 | ||||||
|     val_check_interval: null |     val_check_interval: null | ||||||
|     check_val_every_n_epoch: 1 |     check_val_every_n_epoch: 1 | ||||||
|  |     gradient_accumulation_steps: 1 | ||||||
| dataset: | dataset: | ||||||
|     datadir: 'data/' |     datadir: 'data/' | ||||||
|     task_name: 'nasbench-201' |     task_name: 'nasbench-201' | ||||||
|     guidance_target: 'nasbench-201' |     guidance_target: 'nasbench-201' | ||||||
|     pin_memory: False |     pin_memory: False | ||||||
|  | ppo: | ||||||
|  |     clip_param: 1 | ||||||
|   | |||||||
							
								
								
									
										228
									
								
								environment.yaml
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										228
									
								
								environment.yaml
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,228 @@ | |||||||
|  | name: graphdit | ||||||
|  | channels: | ||||||
|  |   - pytorch | ||||||
|  |   - conda-forge | ||||||
|  |   - defaults | ||||||
|  | dependencies: | ||||||
|  |   - _libgcc_mutex=0.1=conda_forge | ||||||
|  |   - _openmp_mutex=4.5=2_gnu | ||||||
|  |   - asttokens=2.4.1=pyhd8ed1ab_0 | ||||||
|  |   - blas=1.0=mkl | ||||||
|  |   - brotli-python=1.0.9=py39h6a678d5_8 | ||||||
|  |   - bzip2=1.0.8=h5eee18b_6 | ||||||
|  |   - ca-certificates=2024.7.2=h06a4308_0 | ||||||
|  |   - comm=0.2.2=pyhd8ed1ab_0 | ||||||
|  |   - debugpy=1.6.7=py39h6a678d5_0 | ||||||
|  |   - decorator=5.1.1=pyhd8ed1ab_0 | ||||||
|  |   - exceptiongroup=1.2.0=pyhd8ed1ab_2 | ||||||
|  |   - executing=2.0.1=pyhd8ed1ab_0 | ||||||
|  |   - ffmpeg=4.3=hf484d3e_0 | ||||||
|  |   - freetype=2.12.1=h4a9f257_0 | ||||||
|  |   - gmp=6.2.1=h295c915_3 | ||||||
|  |   - gmpy2=2.1.2=py39heeb90bb_0 | ||||||
|  |   - gnutls=3.6.15=he1e5248_0 | ||||||
|  |   - idna=3.7=py39h06a4308_0 | ||||||
|  |   - importlib-metadata=7.1.0=pyha770c72_0 | ||||||
|  |   - importlib_metadata=7.1.0=hd8ed1ab_0 | ||||||
|  |   - intel-openmp=2023.1.0=hdb19cb5_46306 | ||||||
|  |   - ipykernel=6.29.4=pyh3099207_0 | ||||||
|  |   - ipython=8.18.1=pyh707e725_3 | ||||||
|  |   - jedi=0.19.1=pyhd8ed1ab_0 | ||||||
|  |   - jinja2=3.1.4=py39h06a4308_0 | ||||||
|  |   - jpeg=9e=h5eee18b_1 | ||||||
|  |   - jupyter_client=8.6.2=pyhd8ed1ab_0 | ||||||
|  |   - jupyter_core=5.7.2=py39hf3d152e_0 | ||||||
|  |   - lame=3.100=h7b6447c_0 | ||||||
|  |   - lcms2=2.12=h3be6417_0 | ||||||
|  |   - ld_impl_linux-64=2.38=h1181459_1 | ||||||
|  |   - lerc=3.0=h295c915_0 | ||||||
|  |   - libdeflate=1.17=h5eee18b_1 | ||||||
|  |   - libffi=3.4.4=h6a678d5_1 | ||||||
|  |   - libgcc-ng=13.2.0=h77fa898_7 | ||||||
|  |   - libgomp=13.2.0=h77fa898_7 | ||||||
|  |   - libiconv=1.16=h5eee18b_3 | ||||||
|  |   - libidn2=2.3.4=h5eee18b_0 | ||||||
|  |   - libpng=1.6.39=h5eee18b_0 | ||||||
|  |   - libsodium=1.0.18=h36c2ea0_1 | ||||||
|  |   - libstdcxx-ng=11.2.0=h1234567_1 | ||||||
|  |   - libtasn1=4.19.0=h5eee18b_0 | ||||||
|  |   - libtiff=4.5.1=h6a678d5_0 | ||||||
|  |   - libunistring=0.9.10=h27cfd23_0 | ||||||
|  |   - libwebp-base=1.3.2=h5eee18b_0 | ||||||
|  |   - lz4-c=1.9.4=h6a678d5_1 | ||||||
|  |   - matplotlib-inline=0.1.7=pyhd8ed1ab_0 | ||||||
|  |   - mkl=2023.1.0=h213fc3f_46344 | ||||||
|  |   - mkl-service=2.4.0=py39h5eee18b_1 | ||||||
|  |   - mkl_fft=1.3.8=py39h5eee18b_0 | ||||||
|  |   - mkl_random=1.2.4=py39hdb19cb5_0 | ||||||
|  |   - mpc=1.1.0=h10f8cd9_1 | ||||||
|  |   - mpfr=4.0.2=hb69a4c5_1 | ||||||
|  |   - mpmath=1.3.0=py39h06a4308_0 | ||||||
|  |   - ncurses=6.4=h6a678d5_0 | ||||||
|  |   - nest-asyncio=1.6.0=pyhd8ed1ab_0 | ||||||
|  |   - nettle=3.7.3=hbbd107a_1 | ||||||
|  |   - numpy-base=1.26.4=py39hb5e798b_0 | ||||||
|  |   - openh264=2.1.1=h4ff587b_0 | ||||||
|  |   - openjpeg=2.4.0=h9ca470c_2 | ||||||
|  |   - openssl=3.3.1=h4ab18f5_0 | ||||||
|  |   - packaging=24.0=pyhd8ed1ab_0 | ||||||
|  |   - parso=0.8.4=pyhd8ed1ab_0 | ||||||
|  |   - pexpect=4.9.0=pyhd8ed1ab_0 | ||||||
|  |   - pickleshare=0.7.5=py_1003 | ||||||
|  |   - pip=24.0=py39h06a4308_0 | ||||||
|  |   - platformdirs=4.2.2=pyhd8ed1ab_0 | ||||||
|  |   - prompt-toolkit=3.0.46=pyha770c72_0 | ||||||
|  |   - psutil=5.9.8=py39hd1e30aa_0 | ||||||
|  |   - ptyprocess=0.7.0=pyhd3deb0d_0 | ||||||
|  |   - pure_eval=0.2.2=pyhd8ed1ab_0 | ||||||
|  |   - pygments=2.18.0=pyhd8ed1ab_0 | ||||||
|  |   - pysocks=1.7.1=py39h06a4308_0 | ||||||
|  |   - python=3.9.19=h955ad1f_1 | ||||||
|  |   - python_abi=3.9=2_cp39 | ||||||
|  |   - pytorch-mutex=1.0=cpu | ||||||
|  |   - pyzmq=25.1.2=py39h6a678d5_0 | ||||||
|  |   - readline=8.2=h5eee18b_0 | ||||||
|  |   - setuptools=69.5.1=py39h06a4308_0 | ||||||
|  |   - six=1.16.0=pyh6c4a22f_0 | ||||||
|  |   - sqlite=3.45.3=h5eee18b_0 | ||||||
|  |   - stack_data=0.6.2=pyhd8ed1ab_0 | ||||||
|  |   - sympy=1.12=py39h06a4308_0 | ||||||
|  |   - tbb=2021.8.0=hdb19cb5_0 | ||||||
|  |   - tk=8.6.14=h39e8969_0 | ||||||
|  |   - tornado=6.4.1=py39hd3abc70_0 | ||||||
|  |   - traitlets=5.14.3=pyhd8ed1ab_0 | ||||||
|  |   - typing_extensions=4.12.2=pyha770c72_0 | ||||||
|  |   - wcwidth=0.2.13=pyhd8ed1ab_0 | ||||||
|  |   - wheel=0.43.0=py39h06a4308_0 | ||||||
|  |   - xz=5.4.6=h5eee18b_1 | ||||||
|  |   - zeromq=4.3.5=h6a678d5_0 | ||||||
|  |   - zlib=1.2.13=h5eee18b_1 | ||||||
|  |   - zstd=1.5.5=hc292b87_2 | ||||||
|  |   - pip: | ||||||
|  |       - absl-py==2.1.0 | ||||||
|  |       - accelerate==0.34.2 | ||||||
|  |       - aiohttp==3.9.5 | ||||||
|  |       - aiosignal==1.3.1 | ||||||
|  |       - antlr4-python3-runtime==4.9.3 | ||||||
|  |       - astunparse==1.6.3 | ||||||
|  |       - async-timeout==4.0.3 | ||||||
|  |       - attrs==23.2.0 | ||||||
|  |       - beautifulsoup4==4.12.3 | ||||||
|  |       - bleach==6.1.0 | ||||||
|  |       - certifi==2024.2.2 | ||||||
|  |       - charset-normalizer==3.1.0 | ||||||
|  |       - cmake==3.29.3 | ||||||
|  |       - contourpy==1.2.1 | ||||||
|  |       - cycler==0.12.1 | ||||||
|  |       - defusedxml==0.7.1 | ||||||
|  |       - fastjsonschema==2.19.1 | ||||||
|  |       - fcd-torch==1.0.7 | ||||||
|  |       - filelock==3.14.0 | ||||||
|  |       - flatbuffers==24.3.25 | ||||||
|  |       - fonttools==4.52.4 | ||||||
|  |       - frozenlist==1.4.1 | ||||||
|  |       - fsspec==2024.5.0 | ||||||
|  |       - gast==0.5.4 | ||||||
|  |       - google-pasta==0.2.0 | ||||||
|  |       - grpcio==1.64.1 | ||||||
|  |       - h5py==3.11.0 | ||||||
|  |       - huggingface-hub==0.24.6 | ||||||
|  |       - hydra-core==1.3.2 | ||||||
|  |       - imageio==2.26.0 | ||||||
|  |       - importlib-resources==6.4.0 | ||||||
|  |       - joblib==1.2.0 | ||||||
|  |       - jsonschema==4.22.0 | ||||||
|  |       - jsonschema-specifications==2023.12.1 | ||||||
|  |       - jupyterlab-pygments==0.3.0 | ||||||
|  |       - keras==3.3.3 | ||||||
|  |       - kiwisolver==1.4.5 | ||||||
|  |       - libclang==18.1.1 | ||||||
|  |       - lightning-utilities==0.11.2 | ||||||
|  |       - lit==18.1.6 | ||||||
|  |       - markdown==3.6 | ||||||
|  |       - markdown-it-py==3.0.0 | ||||||
|  |       - markupsafe==2.1.5 | ||||||
|  |       - matplotlib==3.7.0 | ||||||
|  |       - mdurl==0.1.2 | ||||||
|  |       - mini-moses==1.0 | ||||||
|  |       - mistune==3.0.2 | ||||||
|  |       - ml-dtypes==0.3.2 | ||||||
|  |       - multidict==6.0.5 | ||||||
|  |       - namex==0.0.8 | ||||||
|  |       - nas-bench-201==2.1 | ||||||
|  |       - nasbench==1.0 | ||||||
|  |       - nbclient==0.10.0 | ||||||
|  |       - nbconvert==7.16.4 | ||||||
|  |       - nbformat==5.10.4 | ||||||
|  |       - networkx==3.0 | ||||||
|  |       - numpy==1.24.2 | ||||||
|  |       - nvidia-cublas-cu11==11.10.3.66 | ||||||
|  |       - nvidia-cublas-cu12==12.1.3.1 | ||||||
|  |       - nvidia-cuda-cupti-cu11==11.7.101 | ||||||
|  |       - nvidia-cuda-cupti-cu12==12.1.105 | ||||||
|  |       - nvidia-cuda-nvrtc-cu11==11.7.99 | ||||||
|  |       - nvidia-cuda-nvrtc-cu12==12.1.105 | ||||||
|  |       - nvidia-cuda-runtime-cu11==11.7.99 | ||||||
|  |       - nvidia-cuda-runtime-cu12==12.1.105 | ||||||
|  |       - nvidia-cudnn-cu11==8.5.0.96 | ||||||
|  |       - nvidia-cudnn-cu12==8.9.2.26 | ||||||
|  |       - nvidia-cufft-cu11==10.9.0.58 | ||||||
|  |       - nvidia-cufft-cu12==11.0.2.54 | ||||||
|  |       - nvidia-curand-cu11==10.2.10.91 | ||||||
|  |       - nvidia-curand-cu12==10.3.2.106 | ||||||
|  |       - nvidia-cusolver-cu11==11.4.0.1 | ||||||
|  |       - nvidia-cusolver-cu12==11.4.5.107 | ||||||
|  |       - nvidia-cusparse-cu11==11.7.4.91 | ||||||
|  |       - nvidia-cusparse-cu12==12.1.0.106 | ||||||
|  |       - nvidia-nccl-cu11==2.14.3 | ||||||
|  |       - nvidia-nccl-cu12==2.20.5 | ||||||
|  |       - nvidia-nvjitlink-cu12==12.5.40 | ||||||
|  |       - nvidia-nvtx-cu11==11.7.91 | ||||||
|  |       - nvidia-nvtx-cu12==12.1.105 | ||||||
|  |       - omegaconf==2.3.0 | ||||||
|  |       - opt-einsum==3.3.0 | ||||||
|  |       - optree==0.11.0 | ||||||
|  |       - pandas==1.5.3 | ||||||
|  |       - pandocfilters==1.5.1 | ||||||
|  |       - pillow==10.3.0 | ||||||
|  |       - protobuf==3.20.3 | ||||||
|  |       - pyparsing==3.1.2 | ||||||
|  |       - python-dateutil==2.9.0.post0 | ||||||
|  |       - pytorch-lightning==2.0.1 | ||||||
|  |       - pytz==2024.1 | ||||||
|  |       - pyyaml==6.0.1 | ||||||
|  |       - rdkit==2023.9.4 | ||||||
|  |       - referencing==0.35.1 | ||||||
|  |       - requests==2.32.2 | ||||||
|  |       - rich==13.7.1 | ||||||
|  |       - rpds-py==0.18.1 | ||||||
|  |       - safetensors==0.4.5 | ||||||
|  |       - scikit-learn==1.2.1 | ||||||
|  |       - scipy==1.13.1 | ||||||
|  |       - seaborn==0.13.2 | ||||||
|  |       - simplejson==3.19.2 | ||||||
|  |       - soupsieve==2.5 | ||||||
|  |       - tensorboard==2.16.2 | ||||||
|  |       - tensorboard-data-server==0.7.2 | ||||||
|  |       - tensorflow==2.16.1 | ||||||
|  |       - tensorflow-io-gcs-filesystem==0.37.0 | ||||||
|  |       - termcolor==2.4.0 | ||||||
|  |       - threadpoolctl==3.5.0 | ||||||
|  |       - tinycss2==1.3.0 | ||||||
|  |       - torch==2.0.0 | ||||||
|  |       - torch-geometric==2.3.0 | ||||||
|  |       - torchaudio==2.0.1+rocm5.4.2 | ||||||
|  |       - torchmetrics==0.11.4 | ||||||
|  |       - torchvision==0.15.1 | ||||||
|  |       - tqdm==4.64.1 | ||||||
|  |       - triton==2.0.0 | ||||||
|  |       - typing-extensions==4.12.0 | ||||||
|  |       - tzdata==2024.1 | ||||||
|  |       - urllib3==2.2.1 | ||||||
|  |       - webencodings==0.5.1 | ||||||
|  |       - werkzeug==3.0.3 | ||||||
|  |       - wrapt==1.16.0 | ||||||
|  |       - yacs==0.1.8 | ||||||
|  |       - yarl==1.9.4 | ||||||
|  |       - zipp==3.19.0 | ||||||
|  | prefix: /home/stud/hanzhang/anaconda3/envs/graphdit | ||||||
| @@ -54,7 +54,9 @@ class BasicGraphMetrics(object): | |||||||
|         covered_nodes = set() |         covered_nodes = set() | ||||||
|         direct_valid_count = 0 |         direct_valid_count = 0 | ||||||
|         print(f"generated number: {len(generated)}") |         print(f"generated number: {len(generated)}") | ||||||
|  |         print(f"generated: {generated}") | ||||||
|         for graph in generated: |         for graph in generated: | ||||||
|  |             print(f"graph: {graph}") | ||||||
|             node_types, edge_types = graph |             node_types, edge_types = graph | ||||||
|             direct_valid_flag = True |             direct_valid_flag = True | ||||||
|             direct_valid_count += 1 |             direct_valid_count += 1 | ||||||
|   | |||||||
| @@ -25,7 +25,6 @@ from sklearn.model_selection import train_test_split | |||||||
| import utils as utils | import utils as utils | ||||||
| from datasets.abstract_dataset import AbstractDatasetInfos, AbstractDataModule | from datasets.abstract_dataset import AbstractDatasetInfos, AbstractDataModule | ||||||
| from diffusion.distributions import DistributionNodes | from diffusion.distributions import DistributionNodes | ||||||
| from naswot.score_networks import get_nasbench201_idx_score |  | ||||||
| from naswot import nasspace | from naswot import nasspace | ||||||
| from naswot import datasets as dt | from naswot import datasets as dt | ||||||
|  |  | ||||||
| @@ -72,7 +71,9 @@ class DataModule(AbstractDataModule): | |||||||
|         #     base_path = pathlib.Path(os.path.realpath(__file__)).parents[2] |         #     base_path = pathlib.Path(os.path.realpath(__file__)).parents[2] | ||||||
|         # except NameError: |         # except NameError: | ||||||
|         # base_path = pathlib.Path(os.getcwd()).parent[2] |         # base_path = pathlib.Path(os.getcwd()).parent[2] | ||||||
|         base_path = '/nfs/data3/hanzhang/nasbenchDiT' |         # base_path = '/nfs/data3/hanzhang/nasbenchDiT' | ||||||
|  |         base_path = os.path.join(self.cfg.general.root, "..") | ||||||
|  |  | ||||||
|         root_path = os.path.join(base_path, self.datadir) |         root_path = os.path.join(base_path, self.datadir) | ||||||
|         self.root_path = root_path |         self.root_path = root_path | ||||||
|  |  | ||||||
| @@ -84,7 +85,7 @@ class DataModule(AbstractDataModule): | |||||||
|         # Load the dataset to the memory |         # Load the dataset to the memory | ||||||
|         # Dataset has target property, root path, and transform |         # Dataset has target property, root path, and transform | ||||||
|         source = './NAS-Bench-201-v1_1-096897.pth' |         source = './NAS-Bench-201-v1_1-096897.pth' | ||||||
|         dataset = Dataset(source=source, root=root_path, target_prop=target, transform=None) |         dataset = Dataset(source=source, root=root_path, target_prop=target, transform=None, cfg=self.cfg) | ||||||
|         self.dataset = dataset |         self.dataset = dataset | ||||||
|         # self.api = dataset.api |         # self.api = dataset.api | ||||||
|  |  | ||||||
| @@ -384,7 +385,7 @@ class DataModule_original(AbstractDataModule): | |||||||
|     def test_dataloader(self): |     def test_dataloader(self): | ||||||
|         return self.test_loader |         return self.test_loader | ||||||
|  |  | ||||||
| def new_graphs_to_json(graphs, filename): | def new_graphs_to_json(graphs, filename, cfg): | ||||||
|     source_name = "nasbench-201" |     source_name = "nasbench-201" | ||||||
|     num_graph = len(graphs) |     num_graph = len(graphs) | ||||||
|  |  | ||||||
| @@ -491,8 +492,9 @@ def new_graphs_to_json(graphs, filename): | |||||||
|         'num_active_nodes': len(active_nodes), |         'num_active_nodes': len(active_nodes), | ||||||
|         'transition_E': transition_E.tolist(), |         'transition_E': transition_E.tolist(), | ||||||
|     } |     } | ||||||
|  |     import os | ||||||
|     with open(f'/nfs/data3/hanzhang/nasbenchDiT/graph_dit/nasbench-201-meta.json', 'w') as f: |     # with open(f'/nfs/data3/hanzhang/nasbenchDiT/graph_dit/nasbench-201-meta.json', 'w') as f: | ||||||
|  |     with open(os.path.join(cfg.general.root,'nasbench-201-meta.json'), 'w') as f: | ||||||
|         json.dump(meta_dict, f) |         json.dump(meta_dict, f) | ||||||
|      |      | ||||||
|     return meta_dict |     return meta_dict | ||||||
| @@ -656,9 +658,11 @@ def graphs_to_json(graphs, filename): | |||||||
|         json.dump(meta_dict, f) |         json.dump(meta_dict, f) | ||||||
|     return meta_dict |     return meta_dict | ||||||
| class Dataset(InMemoryDataset): | class Dataset(InMemoryDataset): | ||||||
|     def __init__(self, source, root, target_prop=None, transform=None, pre_transform=None, pre_filter=None): |     def __init__(self, source, root, target_prop=None, transform=None, pre_transform=None, pre_filter=None, cfg=None): | ||||||
|         self.target_prop = target_prop |         self.target_prop = target_prop | ||||||
|         source = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth' |         self.cfg = cfg | ||||||
|  |         # source = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth' | ||||||
|  |         source = os.path.join(self.cfg.general.root, 'NAS-Bench-201-v1_1-096897.pth') | ||||||
|         self.source = source |         self.source = source | ||||||
|         # self.api = API(source)  # Initialize NAS-Bench-201 API |         # self.api = API(source)  # Initialize NAS-Bench-201 API | ||||||
|         # print('API loaded') |         # print('API loaded') | ||||||
| @@ -679,7 +683,8 @@ class Dataset(InMemoryDataset): | |||||||
|         return [f'{self.source}.pt'] |         return [f'{self.source}.pt'] | ||||||
|  |  | ||||||
|     def process(self): |     def process(self): | ||||||
|         source = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth' |         # source = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth' | ||||||
|  |         source = self.cfg.general.nas_201 | ||||||
|         # self.api = API(source) |         # self.api = API(source) | ||||||
|  |  | ||||||
|         data_list = [] |         data_list = [] | ||||||
| @@ -748,7 +753,8 @@ class Dataset(InMemoryDataset): | |||||||
|             return  edges,nodes |             return  edges,nodes | ||||||
|          |          | ||||||
|  |  | ||||||
|         def graph_to_graph_data(graph, idx, train_loader, searchspace, args, device): |         # def graph_to_graph_data(graph, idx, train_loader, searchspace, args, device): | ||||||
|  |         def graph_to_graph_data(graph, idx,  args, device): | ||||||
|         # def graph_to_graph_data(graph): |         # def graph_to_graph_data(graph): | ||||||
|             ops = graph[1] |             ops = graph[1] | ||||||
|             adj = graph[0] |             adj = graph[0] | ||||||
| @@ -771,9 +777,10 @@ class Dataset(InMemoryDataset): | |||||||
|             edge_type = torch.tensor(edge_type, dtype=torch.long) |             edge_type = torch.tensor(edge_type, dtype=torch.long) | ||||||
|             edge_attr = edge_type |             edge_attr = edge_type | ||||||
|             # y = torch.tensor([0, 0], dtype=torch.float).view(1, -1) |             # y = torch.tensor([0, 0], dtype=torch.float).view(1, -1) | ||||||
|             y = get_nasbench201_idx_score(idx, train_loader, searchspace, args, device) |             # y = get_nasbench201_idx_score(idx, train_loader, searchspace, args, device) | ||||||
|  |             y = self.swap_scores[idx] | ||||||
|             print(y, idx) |             print(y, idx) | ||||||
|             if y > 1600: |             if y > 60000: | ||||||
|                 print(f'idx={idx}, y={y}') |                 print(f'idx={idx}, y={y}') | ||||||
|                 y = torch.tensor([1, 1], dtype=torch.float).view(1, -1) |                 y = torch.tensor([1, 1], dtype=torch.float).view(1, -1) | ||||||
|                 data = Data(x=x, edge_index=edge_index, edge_attr=edge_attr, y=y, idx=i) |                 data = Data(x=x, edge_index=edge_index, edge_attr=edge_attr, y=y, idx=i) | ||||||
| @@ -796,7 +803,7 @@ class Dataset(InMemoryDataset): | |||||||
|         args.batch_size = 128 |         args.batch_size = 128 | ||||||
|         args.GPU = '0' |         args.GPU = '0' | ||||||
|         args.dataset = 'cifar10' |         args.dataset = 'cifar10' | ||||||
|         args.api_loc = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth' |         args.api_loc = self.cfg.general.nas_201  | ||||||
|         args.data_loc = '../cifardata/' |         args.data_loc = '../cifardata/' | ||||||
|         args.seed = 777 |         args.seed = 777 | ||||||
|         args.init = '' |         args.init = '' | ||||||
| @@ -811,40 +818,41 @@ class Dataset(InMemoryDataset): | |||||||
|         args.num_modules_per_stack = 3 |         args.num_modules_per_stack = 3 | ||||||
|         args.num_labels = 1 |         args.num_labels = 1 | ||||||
|         searchspace = nasspace.get_search_space(args) |         searchspace = nasspace.get_search_space(args) | ||||||
|         train_loader = dt.get_data(args.dataset, args.data_loc, args.trainval, args.batch_size, args.augtype, args.repeat, args) |         # train_loader = dt.get_data(args.dataset, args.data_loc, args.trainval, args.batch_size, args.augtype, args.repeat, args) | ||||||
|  |         self.swap_scores = [] | ||||||
|  |         import csv | ||||||
|  |         # with open('/nfs/data3/hanzhang/nasbenchDiT/graph_dit/swap_results.csv', 'r') as f: | ||||||
|  |         with open(self.cfg.general.swap_result, 'r') as f: | ||||||
|  |         # with open('/nfs/data3/hanzhang/nasbenchDiT/graph_dit/swap_results_cifar100.csv', 'r') as f: | ||||||
|  |             reader = csv.reader(f) | ||||||
|  |             header = next(reader) | ||||||
|  |             data = [row for row in reader] | ||||||
|  |             self.swap_scores = [float(row[0]) for row in data] | ||||||
|         device = torch.device('cuda:2') |         device = torch.device('cuda:2') | ||||||
|         with tqdm(total = len_data) as pbar: |         with tqdm(total = len_data) as pbar: | ||||||
|             active_nodes = set() |             active_nodes = set() | ||||||
|             file_path = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/nasbench-201-graph.json' |             import os | ||||||
|  |             # file_path = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/nasbench-201-graph.json' | ||||||
|  |             file_path = os.path.join(self.cfg.general.root, 'nasbench-201-graph.json') | ||||||
|             with open(file_path, 'r') as f: |             with open(file_path, 'r') as f: | ||||||
|                 graph_list = json.load(f) |                 graph_list = json.load(f) | ||||||
|             i = 0 |             i = 0 | ||||||
|             flex_graph_list = [] |             flex_graph_list = [] | ||||||
|             flex_graph_path = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/flex-nasbench201-graph.json' |             # flex_graph_path = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/flex-nasbench201-graph.json' | ||||||
|  |             flex_graph_path = os.path.join(self.cfg.general.root,'flex-nasbench201-graph.json') | ||||||
|             for graph in graph_list: |             for graph in graph_list: | ||||||
|                 print(f'iterate every graph in graph_list, here is {i}') |                 print(f'iterate every graph in graph_list, here is {i}') | ||||||
|                 # arch_info = self.api.query_meta_info_by_index(i) |  | ||||||
|                 # results = self.api.query_by_index(i, 'cifar100') |  | ||||||
|                 arch_info = graph['arch_str'] |                 arch_info = graph['arch_str'] | ||||||
|                 # results =  |  | ||||||
|                 # nodes, edges = parse_architecture_string(arch_info.arch_str) |  | ||||||
|                 # ops, adj_matrix = parse_architecture_string(arch_info.arch_str, padding=4) |  | ||||||
|                 ops, adj_matrix, ori_nodes, ori_adj = parse_architecture_string(arch_info, padding=4) |                 ops, adj_matrix, ori_nodes, ori_adj = parse_architecture_string(arch_info, padding=4) | ||||||
|                 # adj_matrix, ops = create_adj_matrix_and_ops(nodes, edges) |  | ||||||
|                 for op in ops: |                 for op in ops: | ||||||
|                     if op not in active_nodes: |                     if op not in active_nodes: | ||||||
|                         active_nodes.add(op) |                         active_nodes.add(op) | ||||||
|                 data = graph_to_graph_data((adj_matrix, ops),idx=i, train_loader=train_loader, searchspace=searchspace, args=args, device=device)  |                 # data = graph_to_graph_data((adj_matrix, ops),idx=i, train_loader=train_loader, searchspace=searchspace, args=args, device=device)  | ||||||
|  |                 data = graph_to_graph_data((adj_matrix, ops),idx=i, args=args, device=device)  | ||||||
|                 i += 1 |                 i += 1 | ||||||
|                 if data is None: |                 if data is None: | ||||||
|                     pbar.update(1) |                     pbar.update(1) | ||||||
|                     continue |                     continue | ||||||
|                 # with open(flex_graph_path, 'a') as f: |  | ||||||
|                 #     flex_graph = { |  | ||||||
|                 #         'adj_matrix': adj_matrix, |  | ||||||
|                 #         'ops': ops, |  | ||||||
|                 #     } |  | ||||||
|                 #     json.dump(flex_graph, f) |  | ||||||
|                 flex_graph_list.append({ |                 flex_graph_list.append({ | ||||||
|                     'adj_matrix':adj_matrix, |                     'adj_matrix':adj_matrix, | ||||||
|                     'ops': ops, |                     'ops': ops, | ||||||
| @@ -1143,6 +1151,7 @@ class DataInfos(AbstractDatasetInfos): | |||||||
|         self.task = task_name |         self.task = task_name | ||||||
|         self.task_type = tasktype_dict.get(task_name, "regression") |         self.task_type = tasktype_dict.get(task_name, "regression") | ||||||
|         self.ensure_connected = cfg.model.ensure_connected |         self.ensure_connected = cfg.model.ensure_connected | ||||||
|  |         self.cfg = cfg | ||||||
|         # self.api = dataset.api |         # self.api = dataset.api | ||||||
|  |  | ||||||
|         datadir = cfg.dataset.datadir |         datadir = cfg.dataset.datadir | ||||||
| @@ -1185,14 +1194,15 @@ class DataInfos(AbstractDatasetInfos): | |||||||
|             # len_ops.add(len(ops)) |             # len_ops.add(len(ops)) | ||||||
|             # graphs.append((adj_matrix, ops)) |             # graphs.append((adj_matrix, ops)) | ||||||
|         # graphs = read_adj_ops_from_json(f'/nfs/data3/hanzhang/nasbenchDiT/graph_dit/flex-nasbench201-graph.json') |         # graphs = read_adj_ops_from_json(f'/nfs/data3/hanzhang/nasbenchDiT/graph_dit/flex-nasbench201-graph.json') | ||||||
|         graphs = read_adj_ops_from_json(f'/nfs/data3/hanzhang/nasbenchDiT/graph_dit/nasbench-201-graph.json') |         # graphs = read_adj_ops_from_json(f'/nfs/data3/hanzhang/nasbenchDiT/graph_dit/nasbench-201-graph.json') | ||||||
|  |         graphs = read_adj_ops_from_json(os.path.join(self.cfg.general.root, 'nasbench-201-graph.json')) | ||||||
|  |  | ||||||
|         # check first five graphs |         # check first five graphs | ||||||
|         for i in range(5): |         for i in range(5): | ||||||
|             print(f'graph {i} : {graphs[i]}') |             print(f'graph {i} : {graphs[i]}') | ||||||
|         # print(f'ops_type: {ops_type}') |         # print(f'ops_type: {ops_type}') | ||||||
|  |  | ||||||
|         meta_dict = new_graphs_to_json(graphs, 'nasbench-201') |         meta_dict = new_graphs_to_json(graphs, 'nasbench-201', self.cfg) | ||||||
|         self.base_path = base_path |         self.base_path = base_path | ||||||
|         self.active_nodes = meta_dict['active_nodes'] |         self.active_nodes = meta_dict['active_nodes'] | ||||||
|         self.max_n_nodes = meta_dict['max_n_nodes'] |         self.max_n_nodes = meta_dict['max_n_nodes'] | ||||||
| @@ -1399,11 +1409,12 @@ def compute_meta(root, source_name, train_index, test_index): | |||||||
|         'transition_E': tansition_E.tolist(), |         'transition_E': tansition_E.tolist(), | ||||||
|         } |         } | ||||||
|  |  | ||||||
|     with open(f'/nfs/data3/hanzhang/nasbenchDiT/graph_dit/nasbench201.meta.json', "w") as f: |     # with open(f'/nfs/data3/hanzhang/nasbenchDiT/graph_dit/nasbench201.meta.json', "w") as f: | ||||||
|  |     with open(os.path.join(self.cfg.general.root, 'nasbench201.meta.json'), "w") as f: | ||||||
|         json.dump(meta_dict, f) |         json.dump(meta_dict, f) | ||||||
|      |      | ||||||
|     return meta_dict |     return meta_dict | ||||||
|  |  | ||||||
|  |  | ||||||
| if __name__ == "__main__": | if __name__ == "__main__": | ||||||
|     dataset = Dataset(source='nasbench', root='/nfs/data3/hanzhang/nasbenchDiT/graph-dit', target_prop='Class', transform=None) |     dataset = Dataset(source='nasbench', root='/zhome/academic/HLRS/xmu/xmuhanma/nasbenchDiT/graph_dit/', target_prop='Class', transform=None) | ||||||
|   | |||||||
| @@ -23,6 +23,9 @@ class Graph_DiT(pl.LightningModule): | |||||||
|         self.test_only = cfg.general.test_only |         self.test_only = cfg.general.test_only | ||||||
|         self.guidance_target = getattr(cfg.dataset, 'guidance_target', None) |         self.guidance_target = getattr(cfg.dataset, 'guidance_target', None) | ||||||
|  |  | ||||||
|  |         from nas_201_api import NASBench201API as API | ||||||
|  |         self.api = API(cfg.general.nas_201) | ||||||
|  |  | ||||||
|         input_dims = dataset_infos.input_dims |         input_dims = dataset_infos.input_dims | ||||||
|         output_dims = dataset_infos.output_dims |         output_dims = dataset_infos.output_dims | ||||||
|         nodes_dist = dataset_infos.nodes_dist |         nodes_dist = dataset_infos.nodes_dist | ||||||
| @@ -41,7 +44,7 @@ class Graph_DiT(pl.LightningModule): | |||||||
|         self.args.batch_size = 128 |         self.args.batch_size = 128 | ||||||
|         self.args.GPU = '0' |         self.args.GPU = '0' | ||||||
|         self.args.dataset = 'cifar10-valid' |         self.args.dataset = 'cifar10-valid' | ||||||
|         self.args.api_loc = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth' |         self.args.api_loc = cfg.general.nas_201 | ||||||
|         self.args.data_loc = '../cifardata/' |         self.args.data_loc = '../cifardata/' | ||||||
|         self.args.seed = 777 |         self.args.seed = 777 | ||||||
|         self.args.init = '' |         self.args.init = '' | ||||||
| @@ -79,6 +82,7 @@ class Graph_DiT(pl.LightningModule): | |||||||
|         self.node_dist = nodes_dist |         self.node_dist = nodes_dist | ||||||
|         self.active_index = active_index |         self.active_index = active_index | ||||||
|         self.dataset_info = dataset_infos |         self.dataset_info = dataset_infos | ||||||
|  |         self.cur_epoch = 0 | ||||||
|  |  | ||||||
|         self.train_loss = TrainLossDiscrete(self.cfg.model.lambda_train) |         self.train_loss = TrainLossDiscrete(self.cfg.model.lambda_train) | ||||||
|  |  | ||||||
| @@ -162,6 +166,62 @@ class Graph_DiT(pl.LightningModule): | |||||||
|         return pred |         return pred | ||||||
|          |          | ||||||
|     def training_step(self, data, i): |     def training_step(self, data, i): | ||||||
|  |         if self.cfg.general.type != 'accelerator' and self.current_epoch > self.cfg.train.n_epochs / 5 * 4: | ||||||
|  |             samples_left_to_generate = self.cfg.general.samples_to_generate | ||||||
|  |             samples_left_to_save = self.cfg.general.samples_to_save | ||||||
|  |             chains_left_to_save = self.cfg.general.chains_to_save | ||||||
|  |  | ||||||
|  |             samples, all_ys, batch_id = [], [], 0 | ||||||
|  |  | ||||||
|  |             def graph_reward_fn(graphs, true_graphs=None, device=None, reward_model='swap'): | ||||||
|  |                 rewards = [] | ||||||
|  |                 if reward_model == 'swap': | ||||||
|  |                     import csv | ||||||
|  |                     with open(self.cfg.general.swap_result, 'r') as f: | ||||||
|  |                         reader = csv.reader(f) | ||||||
|  |                         header = next(reader) | ||||||
|  |                         data = [row for row in reader] | ||||||
|  |                         swap_scores = [float(row[0]) for row in data] | ||||||
|  |                         for graph in graphs: | ||||||
|  |                             node_tensor = graph[0] | ||||||
|  |                             node = node_tensor.cpu().numpy().tolist() | ||||||
|  |  | ||||||
|  |                             def nodes_to_arch_str(nodes): | ||||||
|  |                                 num_to_op = ['input', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3', 'skip_connect', 'none', 'output'] | ||||||
|  |                                 nodes_str = [num_to_op[node] for node in nodes] | ||||||
|  |                                 arch_str = '|' + nodes_str[1] + '~0|+' + \ | ||||||
|  |                                         '|' + nodes_str[2] + '~0|' + nodes_str[3] + '~1|+' +\ | ||||||
|  |                                         '|' + nodes_str[4] + '~0|' + nodes_str[5] + '~1|' + nodes_str[6] + '~2|'  | ||||||
|  |                                 return arch_str | ||||||
|  |                              | ||||||
|  |                             arch_str = nodes_to_arch_str(node) | ||||||
|  |                             reward = swap_scores[self.api.query_index_by_arch(arch_str)] | ||||||
|  |                             rewards.append(reward) | ||||||
|  |                 return torch.tensor(rewards, dtype=torch.float32, requires_grad=True).unsqueeze(0).to(device) | ||||||
|  |             old_log_probs = None | ||||||
|  |  | ||||||
|  |             bs = 1 * self.cfg.train.batch_size | ||||||
|  |             to_generate = min(samples_left_to_generate, bs) | ||||||
|  |             to_save = min(samples_left_to_save, bs) | ||||||
|  |             chains_save = min(chains_left_to_save, bs) | ||||||
|  |             # batch_y = test_y_collection[batch_id : batch_id + to_generate] | ||||||
|  |             batch_y = torch.ones(to_generate, self.ydim_output, device=self.device) | ||||||
|  |  | ||||||
|  |             cur_sample, log_probs = self.sample_batch(batch_id, to_generate, batch_y, save_final=to_save, | ||||||
|  |                                             keep_chain=chains_save, number_chain_steps=self.number_chain_steps) | ||||||
|  |             # samples = samples + cur_sample | ||||||
|  |             samples.append(cur_sample)  | ||||||
|  |             reward = graph_reward_fn(cur_sample, device=self.device) | ||||||
|  |             advantages = (reward - torch.mean(reward)) / (torch.std(reward) + 1e-6) #  | ||||||
|  |             if old_log_probs is None: | ||||||
|  |                 old_log_probs = log_probs.clone() | ||||||
|  |             ratio = torch.exp(log_probs - old_log_probs) | ||||||
|  |             print(f"ratio: {ratio.shape}, advantages: {advantages.shape}") | ||||||
|  |             unclipped_loss = -advantages * ratio | ||||||
|  |             clipped_loss = -advantages * torch.clamp(ratio, 1.0 - self.cfg.ppo.clip_param, 1.0 + self.cfg.ppo.clip_param) | ||||||
|  |             loss = torch.mean(torch.max(unclipped_loss, clipped_loss)) | ||||||
|  |             return {'loss': loss} | ||||||
|  |         else: | ||||||
|             data_x = F.one_hot(data.x, num_classes=12).float()[:, self.active_index] |             data_x = F.one_hot(data.x, num_classes=12).float()[:, self.active_index] | ||||||
|             data_edge_attr = F.one_hot(data.edge_attr, num_classes=2).float() |             data_edge_attr = F.one_hot(data.edge_attr, num_classes=2).float() | ||||||
|  |  | ||||||
| @@ -196,14 +256,15 @@ class Graph_DiT(pl.LightningModule): | |||||||
|  |  | ||||||
|     def on_train_epoch_start(self) -> None: |     def on_train_epoch_start(self) -> None: | ||||||
|         if self.current_epoch / self.trainer.max_epochs in [0.25, 0.5, 0.75, 1.0]: |         if self.current_epoch / self.trainer.max_epochs in [0.25, 0.5, 0.75, 1.0]: | ||||||
|             print("Starting train epoch {}/{}...".format(self.current_epoch, self.trainer.max_epochs)) |         # if self.cur_epoch / self.cfg.train.n_epochs in [0.25, 0.5, 0.75, 1.0]: | ||||||
|  |             print("Starting train epoch {}/{}...".format(self.cur_epoch, self.cfg.train.n_epochs)) | ||||||
|         self.start_epoch_time = time.time() |         self.start_epoch_time = time.time() | ||||||
|         self.train_loss.reset() |         self.train_loss.reset() | ||||||
|         self.train_metrics.reset() |         self.train_metrics.reset() | ||||||
|  |  | ||||||
|     def on_train_epoch_end(self) -> None: |     def on_train_epoch_end(self) -> None: | ||||||
|  |  | ||||||
|         if self.current_epoch / self.trainer.max_epochs in [0.25, 0.5, 0.75, 1.0]: |         if self.current_epoch / self.cfg.train.n_epochs in [0.25, 0.5, 0.75, 1.0]: | ||||||
|             log = True |             log = True | ||||||
|         else: |         else: | ||||||
|             log = False |             log = False | ||||||
| @@ -240,6 +301,7 @@ class Graph_DiT(pl.LightningModule): | |||||||
|                    self.val_X_logp.compute(), self.val_E_logp.compute()] |                    self.val_X_logp.compute(), self.val_E_logp.compute()] | ||||||
|          |          | ||||||
|         if self.current_epoch / self.trainer.max_epochs in [0.25, 0.5, 0.75, 1.0]: |         if self.current_epoch / self.trainer.max_epochs in [0.25, 0.5, 0.75, 1.0]: | ||||||
|  |         # if self.cur_epoch / self.cfg.train.n_epochs in [0.25, 0.5, 0.75, 1.0]: | ||||||
|             print(f"Epoch {self.current_epoch}: Val NLL {metrics[0] :.2f} -- Val Atom type KL {metrics[1] :.2f} -- ", |             print(f"Epoch {self.current_epoch}: Val NLL {metrics[0] :.2f} -- Val Atom type KL {metrics[1] :.2f} -- ", | ||||||
|                 f"Val Edge type KL: {metrics[2] :.2f}", 'Val loss: %.2f \t Best :  %.2f\n' % (metrics[0], self.best_val_nll)) |                 f"Val Edge type KL: {metrics[2] :.2f}", 'Val loss: %.2f \t Best :  %.2f\n' % (metrics[0], self.best_val_nll)) | ||||||
|         with open("validation-metrics.csv", "a") as f: |         with open("validation-metrics.csv", "a") as f: | ||||||
| @@ -283,10 +345,15 @@ class Graph_DiT(pl.LightningModule): | |||||||
|                     num_examples = self.val_y_collection.size(0) |                     num_examples = self.val_y_collection.size(0) | ||||||
|                 batch_y = self.val_y_collection[start_index:start_index + to_generate]                 |                 batch_y = self.val_y_collection[start_index:start_index + to_generate]                 | ||||||
|                 all_ys.append(batch_y) |                 all_ys.append(batch_y) | ||||||
|                 samples.extend(self.sample_batch(batch_id=ident, batch_size=to_generate, y=batch_y, |                 cur_sample, logprobs = self.sample_batch(batch_id=ident, batch_size=to_generate, y=batch_y, | ||||||
|                                                 save_final=to_save, |                                                 save_final=to_save, | ||||||
|                                                 keep_chain=chains_save, |                                                 keep_chain=chains_save, | ||||||
|                                                 number_chain_steps=self.number_chain_steps)) |                                                 number_chain_steps=self.number_chain_steps) | ||||||
|  |                 samples.extend(cur_sample) | ||||||
|  |                 # samples.extend(self.sample_batch(batch_id=ident, batch_size=to_generate, y=batch_y, | ||||||
|  |                 #                                 save_final=to_save, | ||||||
|  |                 #                                 keep_chain=chains_save, | ||||||
|  |                 #                                 number_chain_steps=self.number_chain_steps)) | ||||||
|                 ident += to_generate |                 ident += to_generate | ||||||
|                 start_index += to_generate |                 start_index += to_generate | ||||||
|  |  | ||||||
| @@ -336,7 +403,7 @@ class Graph_DiT(pl.LightningModule): | |||||||
|         print(f"Epoch {self.current_epoch}: Test NLL {metrics[0] :.2f} -- Test Atom type KL {metrics[1] :.2f} -- ", |         print(f"Epoch {self.current_epoch}: Test NLL {metrics[0] :.2f} -- Test Atom type KL {metrics[1] :.2f} -- ", | ||||||
|               f"Test Edge type KL: {metrics[2] :.2f}") |               f"Test Edge type KL: {metrics[2] :.2f}") | ||||||
|  |  | ||||||
|         ## final epcoh |         ## final epoch | ||||||
|         samples_left_to_generate = self.cfg.general.final_model_samples_to_generate |         samples_left_to_generate = self.cfg.general.final_model_samples_to_generate | ||||||
|         samples_left_to_save = self.cfg.general.final_model_samples_to_save |         samples_left_to_save = self.cfg.general.final_model_samples_to_save | ||||||
|         chains_left_to_save = self.cfg.general.final_model_chains_to_save |         chains_left_to_save = self.cfg.general.final_model_chains_to_save | ||||||
| @@ -359,9 +426,9 @@ class Graph_DiT(pl.LightningModule): | |||||||
|             # batch_y = test_y_collection[batch_id : batch_id + to_generate] |             # batch_y = test_y_collection[batch_id : batch_id + to_generate] | ||||||
|             batch_y = torch.ones(to_generate, self.ydim_output, device=self.device) |             batch_y = torch.ones(to_generate, self.ydim_output, device=self.device) | ||||||
|  |  | ||||||
|             cur_sample = self.sample_batch(batch_id, to_generate, batch_y, save_final=to_save, |             cur_sample, log_probs = self.sample_batch(batch_id, to_generate, batch_y, save_final=to_save, | ||||||
|                                             keep_chain=chains_save, number_chain_steps=self.number_chain_steps) |                                             keep_chain=chains_save, number_chain_steps=self.number_chain_steps) | ||||||
|             samples = samples + cur_sample |             samples.extend(cur_sample)   | ||||||
|              |              | ||||||
|             all_ys.append(batch_y) |             all_ys.append(batch_y) | ||||||
|             batch_id += to_generate |             batch_id += to_generate | ||||||
| @@ -601,6 +668,12 @@ class Graph_DiT(pl.LightningModule): | |||||||
|  |  | ||||||
|         assert (E == torch.transpose(E, 1, 2)).all() |         assert (E == torch.transpose(E, 1, 2)).all() | ||||||
|  |  | ||||||
|  |         if self.cfg.general.type != 'accelerator': | ||||||
|  |             if self.trainer.training or self.trainer.validating: | ||||||
|  |                 total_log_probs = torch.zeros([self.cfg.general.samples_to_generate, 10], device=self.device) | ||||||
|  |             elif self.trainer.testing: | ||||||
|  |                 total_log_probs = torch.zeros([self.cfg.general.final_model_samples_to_generate, 10], device=self.device) | ||||||
|  |  | ||||||
|         # Iteratively sample p(z_s | z_t) for t = 1, ..., T, with s = t - 1. |         # Iteratively sample p(z_s | z_t) for t = 1, ..., T, with s = t - 1. | ||||||
|         for s_int in reversed(range(0, self.T)): |         for s_int in reversed(range(0, self.T)): | ||||||
|             s_array = s_int * torch.ones((batch_size, 1)).type_as(y) |             s_array = s_int * torch.ones((batch_size, 1)).type_as(y) | ||||||
| @@ -609,21 +682,24 @@ class Graph_DiT(pl.LightningModule): | |||||||
|             t_norm = t_array / self.T |             t_norm = t_array / self.T | ||||||
|  |  | ||||||
|             # Sample z_s |             # Sample z_s | ||||||
|             sampled_s, discrete_sampled_s = self.sample_p_zs_given_zt(s_norm, t_norm, X, E, y, node_mask) |             sampled_s, discrete_sampled_s, log_probs = self.sample_p_zs_given_zt(s_norm, t_norm, X, E, y, node_mask) | ||||||
|             X, E, y = sampled_s.X, sampled_s.E, sampled_s.y |             X, E, y = sampled_s.X, sampled_s.E, sampled_s.y | ||||||
|  |             total_log_probs += log_probs | ||||||
|  |  | ||||||
|         # Sample |         # Sample | ||||||
|         sampled_s = sampled_s.mask(node_mask, collapse=True) |         sampled_s = sampled_s.mask(node_mask, collapse=True) | ||||||
|         X, E, y = sampled_s.X, sampled_s.E, sampled_s.y |         X, E, y = sampled_s.X, sampled_s.E, sampled_s.y | ||||||
|          |          | ||||||
|         molecule_list = [] |         graph_list = [] | ||||||
|         for i in range(batch_size): |         for i in range(batch_size): | ||||||
|             n = n_nodes[i] |             n = n_nodes[i] | ||||||
|             atom_types = X[i, :n].cpu() |             node_types = X[i, :n].cpu() | ||||||
|             edge_types = E[i, :n, :n].cpu() |             edge_types = E[i, :n, :n].cpu() | ||||||
|             molecule_list.append([atom_types, edge_types]) |             graph_list.append((node_types , edge_types)) | ||||||
|          |          | ||||||
|         return molecule_list |         total_log_probs = torch.sum(total_log_probs, dim=-1) | ||||||
|  |          | ||||||
|  |         return graph_list, total_log_probs | ||||||
|  |  | ||||||
|     def sample_p_zs_given_zt(self, s, t, X_t, E_t, y_t, node_mask): |     def sample_p_zs_given_zt(self, s, t, X_t, E_t, y_t, node_mask): | ||||||
|         """Samples from zs ~ p(zs | zt). Only used during sampling. |         """Samples from zs ~ p(zs | zt). Only used during sampling. | ||||||
| @@ -675,6 +751,14 @@ class Graph_DiT(pl.LightningModule): | |||||||
|         # with condition = P_t(A_{t-1} |A_t, y) |         # with condition = P_t(A_{t-1} |A_t, y) | ||||||
|         prob_X, prob_E, pred = get_prob(noisy_data) |         prob_X, prob_E, pred = get_prob(noisy_data) | ||||||
|  |  | ||||||
|  |         log_prob_X = torch.log(torch.gather(prob_X, -1, X_t.long()).squeeze(-1))  # bs, n | ||||||
|  |         log_prob_E = torch.log(torch.gather(prob_E, -1, E_t.long()).squeeze(-1))  # bs, n, n | ||||||
|  |  | ||||||
|  |         # Sum the log_prob across dimensions for total log_prob | ||||||
|  |         log_prob_X = log_prob_X.sum(dim=-1) | ||||||
|  |         log_prob_E = log_prob_E.sum(dim=(1, 2)) | ||||||
|  |  | ||||||
|  |         log_probs = torch.cat([log_prob_X, log_prob_E], dim=-1) | ||||||
|         ### Guidance |         ### Guidance | ||||||
|         if self.guidance_target is not None and self.guide_scale is not None and self.guide_scale != 1: |         if self.guidance_target is not None and self.guide_scale is not None and self.guide_scale != 1: | ||||||
|             uncon_prob_X, uncon_prob_E, pred = get_prob(noisy_data, unconditioned=True) |             uncon_prob_X, uncon_prob_E, pred = get_prob(noisy_data, unconditioned=True) | ||||||
| @@ -810,4 +894,4 @@ class Graph_DiT(pl.LightningModule): | |||||||
|         out_one_hot = utils.PlaceHolder(X=X_s, E=E_s, y=y_t) |         out_one_hot = utils.PlaceHolder(X=X_s, E=E_s, y=y_t) | ||||||
|         out_discrete = utils.PlaceHolder(X=X_s, E=E_s, y=y_t) |         out_discrete = utils.PlaceHolder(X=X_s, E=E_s, y=y_t) | ||||||
|  |  | ||||||
|         return out_one_hot.mask(node_mask).type_as(y_t), out_discrete.mask(node_mask, collapse=True).type_as(y_t) |         return out_one_hot.mask(node_mask).type_as(y_t), out_discrete.mask(node_mask, collapse=True).type_as(y_t), log_probs | ||||||
|   | |||||||
							
								
								
									
										
											BIN
										
									
								
								graph_dit/exp_201/barplog.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								graph_dit/exp_201/barplog.png
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							| After Width: | Height: | Size: 30 KiB | 
| @@ -2,44 +2,45 @@ | |||||||
| import matplotlib.pyplot as plt | import matplotlib.pyplot as plt | ||||||
| import pandas as pd | import pandas as pd | ||||||
| from nas_201_api import NASBench201API as API | from nas_201_api import NASBench201API as API | ||||||
| from naswot.score_networks import get_nasbench201_idx_score | # from naswot.score_networks import get_nasbench201_idx_score | ||||||
| from naswot import datasets as dt | # from naswot import datasets as dt | ||||||
| from naswot import nasspace | # from naswot import nasspace | ||||||
|  |  | ||||||
| class Args(): | # class Args(): | ||||||
|     pass | #     pass | ||||||
| args = Args() | # args = Args() | ||||||
| args.trainval = True | # args.trainval = True | ||||||
| args.augtype = 'none' | # args.augtype = 'none' | ||||||
| args.repeat = 1 | # args.repeat = 1 | ||||||
| args.score = 'hook_logdet' | # args.score = 'hook_logdet' | ||||||
| args.sigma = 0.05 | # args.sigma = 0.05 | ||||||
| args.nasspace = 'nasbench201' | # args.nasspace = 'nasbench201' | ||||||
| args.batch_size = 128 | # args.batch_size = 128 | ||||||
| args.GPU = '0' | # args.GPU = '0' | ||||||
| args.dataset = 'cifar10' | # args.dataset = 'cifar10' | ||||||
| args.api_loc = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth' | # args.api_loc = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth' | ||||||
| args.data_loc = '../cifardata/' | # args.data_loc = '../cifardata/' | ||||||
| args.seed = 777 | # args.seed = 777 | ||||||
| args.init = '' | # args.init = '' | ||||||
| args.save_loc = 'results' | # args.save_loc = 'results' | ||||||
| args.save_string = 'naswot' | # args.save_string = 'naswot' | ||||||
| args.dropout = False | # args.dropout = False | ||||||
| args.maxofn = 1 | # args.maxofn = 1 | ||||||
| args.n_samples = 100 | # args.n_samples = 100 | ||||||
| args.n_runs = 500 | # args.n_runs = 500 | ||||||
| args.stem_out_channels = 16 | # args.stem_out_channels = 16 | ||||||
| args.num_stacks = 3 | # args.num_stacks = 3 | ||||||
| args.num_modules_per_stack = 3 | # args.num_modules_per_stack = 3 | ||||||
| args.num_labels = 1 | # args.num_labels = 1 | ||||||
| searchspace = nasspace.get_search_space(args) | # searchspace = nasspace.get_search_space(args) | ||||||
| train_loader = dt.get_data(args.dataset, args.data_loc, args.trainval, args.batch_size, args.augtype, args.repeat, args) | # train_loader = dt.get_data(args.dataset, args.data_loc, args.trainval, args.batch_size, args.augtype, args.repeat, args) | ||||||
| device = torch.device('cuda:2') | # device = torch.device('cuda:2') | ||||||
|  |  | ||||||
|  |  | ||||||
|  | source = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth' | ||||||
|  | api = API(source) | ||||||
|  |  | ||||||
|  |  | ||||||
| # source = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth' |  | ||||||
| # api = API(source) |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
| @@ -50,8 +51,10 @@ percentages = [] | |||||||
| len_201 = 15625 | len_201 = 15625 | ||||||
|  |  | ||||||
| for i in range(len_201): | for i in range(len_201): | ||||||
|     percentage = get_nasbench201_idx_score(i, train_loader, searchspace, args, device) |     # percentage = get_nasbench201_idx_score(i, train_loader, searchspace, args, device) | ||||||
|     percentages.append(percentage) |     results = api.query_by_index(i, 'cifar10') | ||||||
|  |     result = results[111].get_eval('ori-test') | ||||||
|  |     percentages.append(result) | ||||||
|  |  | ||||||
| # 定义10%区间 | # 定义10%区间 | ||||||
| bins = [i for i in range(0, 101, 10)] | bins = [i for i in range(0, 101, 10)] | ||||||
|   | |||||||
| @@ -177,6 +177,66 @@ def test(cfg: DictConfig): | |||||||
|         os.chdir(cfg.general.resume.split("checkpoints")[0]) |         os.chdir(cfg.general.resume.split("checkpoints")[0]) | ||||||
|     # os.environ["CUDA_VISIBLE_DEVICES"] = cfg.general.gpu_number |     # os.environ["CUDA_VISIBLE_DEVICES"] = cfg.general.gpu_number | ||||||
|     model = Graph_DiT(cfg=cfg, **model_kwargs) |     model = Graph_DiT(cfg=cfg, **model_kwargs) | ||||||
|  |  | ||||||
|  |     if cfg.general.type == "accelerator": | ||||||
|  |         graph_dit_model = model | ||||||
|  |  | ||||||
|  |         from accelerate import Accelerator | ||||||
|  |         from accelerate.utils import set_seed, ProjectConfiguration | ||||||
|  |  | ||||||
|  |         accelerator_config = ProjectConfiguration( | ||||||
|  |             project_dir=os.path.join(cfg.general.log_dir, cfg.general.name), | ||||||
|  |             automatic_checkpoint_naming=True, | ||||||
|  |             total_limit=cfg.general.number_checkpoint_limit, | ||||||
|  |         ) | ||||||
|  |         accelerator = Accelerator( | ||||||
|  |             mixed_precision='no', | ||||||
|  |             project_config=accelerator_config, | ||||||
|  |             # gradient_accumulation_steps=cfg.train.gradient_accumulation_steps * cfg.train.n_epochs, | ||||||
|  |             gradient_accumulation_steps=cfg.train.gradient_accumulation_steps,  | ||||||
|  |         ) | ||||||
|  |  | ||||||
|  |         optimizer = graph_dit_model.configure_optimizers() | ||||||
|  |  | ||||||
|  |         train_dataloader = datamodule.train_dataloader() | ||||||
|  |         train_dataloader = accelerator.prepare(train_dataloader) | ||||||
|  |         val_dataloader = datamodule.val_dataloader() | ||||||
|  |         val_dataloader = accelerator.prepare(val_dataloader) | ||||||
|  |         test_dataloader = datamodule.test_dataloader() | ||||||
|  |         test_dataloader = accelerator.prepare(test_dataloader) | ||||||
|  |  | ||||||
|  |         optimizer, graph_dit_model = accelerator.prepare(optimizer, graph_dit_model) | ||||||
|  |  | ||||||
|  |         # train_epoch | ||||||
|  |         from pytorch_lightning import seed_everything | ||||||
|  |         seed_everything(cfg.train.seed) | ||||||
|  |         for epoch in range(cfg.train.n_epochs): | ||||||
|  |             print(f"Epoch {epoch}") | ||||||
|  |             graph_dit_model.train() | ||||||
|  |             graph_dit_model.cur_epoch = epoch | ||||||
|  |             graph_dit_model.on_train_epoch_start() | ||||||
|  |             for batch in train_dataloader: | ||||||
|  |                 optimizer.zero_grad() | ||||||
|  |                 loss = graph_dit_model.training_step(batch, epoch)['loss'] | ||||||
|  |                 accelerator.backward(loss) | ||||||
|  |                 optimizer.step() | ||||||
|  |             graph_dit_model.on_train_epoch_end() | ||||||
|  |             for batch in val_dataloader: | ||||||
|  |                 if epoch % cfg.train.check_val_every_n_epoch == 0: | ||||||
|  |                     graph_dit_model.eval() | ||||||
|  |                     graph_dit_model.on_validation_epoch_start() | ||||||
|  |                     graph_dit_model.validation_step(batch, epoch) | ||||||
|  |                     graph_dit_model.on_validation_epoch_end() | ||||||
|  |          | ||||||
|  |         # test_epoch | ||||||
|  |  | ||||||
|  |         graph_dit_model.test() | ||||||
|  |         graph_dit_model.on_test_epoch_start() | ||||||
|  |         for batch in test_dataloader: | ||||||
|  |             graph_dit_model.test_step(batch, epoch) | ||||||
|  |         graph_dit_model.on_test_epoch_end() | ||||||
|  |      | ||||||
|  |     elif cfg.general.type == "Trainer":  | ||||||
|         trainer = Trainer( |         trainer = Trainer( | ||||||
|             gradient_clip_val=cfg.train.clip_grad, |             gradient_clip_val=cfg.train.clip_grad, | ||||||
|             # accelerator="cpu", |             # accelerator="cpu", | ||||||
|   | |||||||
| @@ -83,7 +83,8 @@ class TaskModel(): | |||||||
|             return adj_ops_pairs |             return adj_ops_pairs | ||||||
|         def feature_from_adj_and_ops(adj, ops): |         def feature_from_adj_and_ops(adj, ops): | ||||||
|             return np.concatenate([adj.flatten(), ops]) |             return np.concatenate([adj.flatten(), ops]) | ||||||
|         filename = '/home/stud/hanzhang/nasbenchDiT/graph_dit/nasbench-201-graph.json' |         # filename = '/home/stud/hanzhang/nasbenchDiT/graph_dit/nasbench-201-graph.json' | ||||||
|  |         filename = '/zhome/academic/HLRS/xmu/xmuhanma/nasbenchDiT/graph_dit/nasbench-201-graph.json' | ||||||
|         graphs = read_adj_ops_from_json(filename) |         graphs = read_adj_ops_from_json(filename) | ||||||
|         adjs = [] |         adjs = [] | ||||||
|         opss = [] |         opss = [] | ||||||
|   | |||||||
							
								
								
									
										15626
									
								
								graph_dit/swap_results.csv
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										15626
									
								
								graph_dit/swap_results.csv
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
										
											
												File diff suppressed because one or more lines are too long
											
										
									
								
							
							
								
								
									
										144
									
								
								graph_dit/test_perf.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										144
									
								
								graph_dit/test_perf.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,144 @@ | |||||||
|  | from nas_201_api import NASBench201API as API | ||||||
|  | import re | ||||||
|  | import pandas as pd | ||||||
|  | import json | ||||||
|  | import numpy as np | ||||||
|  | import argparse | ||||||
|  |  | ||||||
|  | api = API('./NAS-Bench-201-v1_1-096897.pth') | ||||||
|  |  | ||||||
|  | parser = argparse.ArgumentParser(description='Process some integers.') | ||||||
|  |  | ||||||
|  | parser.add_argument('--file_path', type=str, default='211035.txt',) | ||||||
|  | parser.add_argument('--datasets', type=str, default='cifar10',) | ||||||
|  | args = parser.parse_args() | ||||||
|  |  | ||||||
|  | def process_graph_data(text): | ||||||
|  |     # Split the input text into sections for each graph | ||||||
|  |     graph_sections = text.strip().split('nodes:') | ||||||
|  |      | ||||||
|  |     # Prepare lists to store data | ||||||
|  |     nodes_list = [] | ||||||
|  |     edges_list = [] | ||||||
|  |     results_list = [] | ||||||
|  |      | ||||||
|  |     for section in graph_sections[1:]: | ||||||
|  |         # Extract nodes | ||||||
|  |         nodes_section = section.split('edges:')[0] | ||||||
|  |         nodes_match = re.search(r'(tensor\(\d+\) ?)+', section) | ||||||
|  |         if nodes_match: | ||||||
|  |             nodes = re.findall(r'tensor\((\d+)\)', nodes_match.group(0)) | ||||||
|  |             nodes_list.append(nodes) | ||||||
|  |          | ||||||
|  |         # Extract edges | ||||||
|  |         edge_section = section.split('edges:')[1] | ||||||
|  |         edges_match = re.search(r'edges:', section) | ||||||
|  |         if edges_match: | ||||||
|  |             edges = re.findall(r'tensor\((\d+)\)', edge_section) | ||||||
|  |             edges_list.append(edges) | ||||||
|  |          | ||||||
|  |         # Extract the last floating point number as a result | ||||||
|  |      | ||||||
|  |     # Create a DataFrame to store the extracted data | ||||||
|  |     data = { | ||||||
|  |         'nodes': nodes_list, | ||||||
|  |         'edges': edges_list, | ||||||
|  |     } | ||||||
|  |     data['nodes'] = [[int(x) for x in node] for node in data['nodes']] | ||||||
|  |     data['edges'] = [[int(x) for x in edge] for edge in data['edges']] | ||||||
|  |     def split_list(input_list, chunk_size): | ||||||
|  |         return [input_list[i:i + chunk_size] for i in range(0, len(input_list), chunk_size)] | ||||||
|  |     data['edges'] = [split_list(edge, 8) for edge in data['edges']] | ||||||
|  |  | ||||||
|  |     print(data) | ||||||
|  |     df = pd.DataFrame(data) | ||||||
|  |     print('df') | ||||||
|  |     print(df['nodes'][0], df['edges'][0]) | ||||||
|  |     return df | ||||||
|  |  | ||||||
|  | def is_valid_nasbench201(adj, ops): | ||||||
|  |     print(ops) | ||||||
|  |     if ops[0] != 0 or ops[-1] != 6: | ||||||
|  |         return False | ||||||
|  |     for i in range(2, len(ops) - 1): | ||||||
|  |         if ops[i] not in [1, 2, 3, 4, 5]: | ||||||
|  |             return False | ||||||
|  |     adj_mat = [ [0, 1, 1, 0, 1, 0, 0, 0], | ||||||
|  |                 [0, 0, 0, 1, 0, 1 ,0 ,0], | ||||||
|  |                 [0, 0, 0, 0, 0, 0, 1, 0], | ||||||
|  |                 [0, 0, 0, 0, 0, 0, 1, 0], | ||||||
|  |                 [0, 0, 0, 0, 0, 0, 0, 1], | ||||||
|  |                 [0, 0, 0, 0, 0, 0, 0, 1], | ||||||
|  |                 [0, 0, 0, 0, 0, 0, 0, 1], | ||||||
|  |                 [0, 0, 0, 0, 0, 0, 0, 0]] | ||||||
|  |   | ||||||
|  |     for i in range(len(adj)): | ||||||
|  |         for j in range(len(adj[i])): | ||||||
|  |             if adj[i][j] not in [0, 1]: | ||||||
|  |                 return False | ||||||
|  |             if j > i: | ||||||
|  |                 if adj[i][j] != adj_mat[i][j]: | ||||||
|  |                     return False | ||||||
|  |     return True | ||||||
|  |  | ||||||
|  | num_to_op = ['input', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3', 'skip_connect', 'none', 'output'] | ||||||
|  | def nodes_to_arch_str(nodes): | ||||||
|  |     nodes_str = [num_to_op[node] for node in nodes] | ||||||
|  |     arch_str = '|' + nodes_str[1] + '~0|+' + \ | ||||||
|  |                '|' + nodes_str[2] + '~0|' + nodes_str[3] + '~1|+' +\ | ||||||
|  |                '|' + nodes_str[4] + '~0|' + nodes_str[5] + '~1|' + nodes_str[6] + '~2|'  | ||||||
|  |     return arch_str | ||||||
|  |  | ||||||
|  | filename = args.file_path | ||||||
|  | datasets_name = args.datasets | ||||||
|  |  | ||||||
|  | with open('./output_graphs/' + filename, 'r') as f: | ||||||
|  |     texts = f.read() | ||||||
|  |     df = process_graph_data(texts) | ||||||
|  |     valid = 0 | ||||||
|  |     not_valid = 0 | ||||||
|  |     scores = [] | ||||||
|  |  | ||||||
|  |     # 定义分类标准和分布字典的映射 | ||||||
|  |     thresholds = { | ||||||
|  |         'cifar10': [90, 91, 92, 93, 94], | ||||||
|  |         'cifar100': [68,69,70, 71, 72, 73] | ||||||
|  |     } | ||||||
|  |     dist = {f'<{threshold}': 0 for threshold in thresholds[datasets_name]} | ||||||
|  |     dist[f'>{thresholds[datasets_name][-1]}'] = 0 | ||||||
|  |  | ||||||
|  |     for i in range(len(df)): | ||||||
|  |         nodes = df['nodes'][i] | ||||||
|  |         edges = df['edges'][i] | ||||||
|  |         result = is_valid_nasbench201(edges, nodes) | ||||||
|  |         if result: | ||||||
|  |             valid += 1 | ||||||
|  |             arch_str = nodes_to_arch_str(nodes) | ||||||
|  |             index = api.query_index_by_arch(arch_str) | ||||||
|  |             res = api.get_more_info(index, datasets_name, None, hp=200, is_random=False) | ||||||
|  |             acc = res['test-accuracy'] | ||||||
|  |             scores.append((index, acc)) | ||||||
|  |  | ||||||
|  |             # 根据阈值更新分布 | ||||||
|  |             updated = False | ||||||
|  |             for threshold in thresholds[datasets_name]: | ||||||
|  |                 if acc < threshold: | ||||||
|  |                     dist[f'<{threshold}'] += 1 | ||||||
|  |                     updated = True | ||||||
|  |                     break | ||||||
|  |             if not updated: | ||||||
|  |                 dist[f'>{thresholds[datasets_name][-1]}'] += 1 | ||||||
|  |         else: | ||||||
|  |             not_valid += 1 | ||||||
|  |  | ||||||
|  |     with open('./output_graphs/' + filename + '_' + datasets_name +'.json', 'w') as f: | ||||||
|  |         json.dump(scores, f) | ||||||
|  |  | ||||||
|  |     print(scores) | ||||||
|  |     print(valid, not_valid) | ||||||
|  |     print(dist) | ||||||
|  |     print("mean: ", np.mean([x[1] for x in scores])) | ||||||
|  |     print("max: ", np.max([x[1] for x in scores])) | ||||||
|  |     print("min: ", np.min([x[1] for x in scores])) | ||||||
|  |  | ||||||
|  |          | ||||||
		Reference in New Issue
	
	Block a user