Compare commits
5 Commits
main
...
a7f7010da7
Author | SHA1 | Date | |
---|---|---|---|
a7f7010da7 | |||
14186fa97f | |||
a222c514d9 | |||
062a27b83f | |||
0c7c525680 |
@@ -127,4 +127,19 @@ class AbstractDatasetInfos:
|
||||
print('input dims')
|
||||
print(self.input_dims)
|
||||
print('output dims')
|
||||
print(self.output_dims)
|
||||
def compute_graph_input_output_dims(self, datamodule):
|
||||
example_batch = datamodule.example_batch()
|
||||
example_batch_x = torch.nn.functional.one_hot(example_batch.x, num_classes=8).float()[:, self.active_index]
|
||||
example_batch_edge_attr = torch.nn.functional.one_hot(example_batch.edge_attr, num_classes=2).float()
|
||||
|
||||
self.input_dims = {'X': example_batch_x.size(1),
|
||||
'E': example_batch_edge_attr.size(1),
|
||||
'y': example_batch['y'].size(1)}
|
||||
self.output_dims = {'X': example_batch_x.size(1),
|
||||
'E': example_batch_edge_attr.size(1),
|
||||
'y': example_batch['y'].size(1)}
|
||||
print('input dims')
|
||||
print(self.input_dims)
|
||||
print('output dims')
|
||||
print(self.output_dims)
|
@@ -50,12 +50,12 @@ class DataModule(AbstractDataModule):
|
||||
|
||||
def prepare_data(self) -> None:
|
||||
target = getattr(self.cfg.dataset, 'guidance_target', None)
|
||||
print("target", target)
|
||||
print("target", target) # nasbench-201
|
||||
# try:
|
||||
# base_path = pathlib.Path(os.path.realpath(__file__)).parents[2]
|
||||
# except NameError:
|
||||
# base_path = pathlib.Path(os.getcwd()).parent[2]
|
||||
base_path = '/home/stud/hanzhang/Graph-Dit'
|
||||
base_path = '/home/stud/hanzhang/nasbenchDiT'
|
||||
root_path = os.path.join(base_path, self.datadir)
|
||||
self.root_path = root_path
|
||||
|
||||
@@ -68,13 +68,16 @@ class DataModule(AbstractDataModule):
|
||||
# Dataset has target property, root path, and transform
|
||||
source = './NAS-Bench-201-v1_1-096897.pth'
|
||||
dataset = Dataset(source=source, root=root_path, target_prop=target, transform=None)
|
||||
self.dataset = dataset
|
||||
self.api = dataset.api
|
||||
|
||||
# if len(self.task.split('-')) == 2:
|
||||
# train_index, val_index, test_index, unlabeled_index = self.fixed_split(dataset)
|
||||
# else:
|
||||
train_index, val_index, test_index, unlabeled_index = self.random_data_split(dataset)
|
||||
|
||||
self.train_index, self.val_index, self.test_index, self.unlabeled_index = train_index, val_index, test_index, unlabeled_index
|
||||
self.train_index, self.val_index, self.test_index, self.unlabeled_index = (
|
||||
train_index, val_index, test_index, unlabeled_index)
|
||||
train_index, val_index, test_index, unlabeled_index = torch.LongTensor(train_index), torch.LongTensor(val_index), torch.LongTensor(test_index), torch.LongTensor(unlabeled_index)
|
||||
if len(unlabeled_index) > 0:
|
||||
train_index = torch.cat([train_index, unlabeled_index], dim=0)
|
||||
@@ -175,6 +178,27 @@ class DataModule(AbstractDataModule):
|
||||
smiles = Chem.MolToSmiles(mol)
|
||||
return smiles
|
||||
|
||||
def get_train_graphs(self):
|
||||
train_graphs = []
|
||||
test_graphs = []
|
||||
for graph in self.train_dataset:
|
||||
train_graphs.append(graph)
|
||||
for graph in self.test_dataset:
|
||||
test_graphs.append(graph)
|
||||
return train_graphs, test_graphs
|
||||
|
||||
|
||||
# def get_train_smiles(self):
|
||||
# filename = f'{self.task}.csv.gz'
|
||||
# df = pd.read_csv(f'{self.root_path}/raw/{filename}')
|
||||
# df_test = df.iloc[self.test_index]
|
||||
# df = df.iloc[self.train_index]
|
||||
# smiles_list = df['smiles'].tolist()
|
||||
# smiles_list_test = df_test['smiles'].tolist()
|
||||
# smiles_list = [Chem.MolToSmiles(Chem.MolFromSmiles(smi)) for smi in smiles_list]
|
||||
# smiles_list_test = [Chem.MolToSmiles(Chem.MolFromSmiles(smi)) for smi in smiles_list_test]
|
||||
# return smiles_list, smiles_list_test
|
||||
|
||||
def get_train_smiles(self):
|
||||
train_smiles = []
|
||||
test_smiles = []
|
||||
@@ -477,14 +501,17 @@ def graphs_to_json(graphs, filename):
|
||||
class Dataset(InMemoryDataset):
|
||||
def __init__(self, source, root, target_prop=None, transform=None, pre_transform=None, pre_filter=None):
|
||||
self.target_prop = target_prop
|
||||
source = '/home/stud/hanzhang/Graph-DiT/graph_dit/NAS-Bench-201-v1_1-096897.pth'
|
||||
source = '/home/stud/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth'
|
||||
self.source = source
|
||||
super().__init__(root, transform, pre_transform, pre_filter)
|
||||
print(self.processed_paths[0]) #/home/stud/hanzhang/Graph-DiT/graph_dit/NAS-Bench-201-v1_1-096897.pth.pt
|
||||
self.api = API(source) # Initialize NAS-Bench-201 API
|
||||
print('API loaded')
|
||||
super().__init__(root, transform, pre_transform, pre_filter)
|
||||
print('Dataset initialized')
|
||||
print(self.processed_paths[0])
|
||||
self.data, self.slices = torch.load(self.processed_paths[0])
|
||||
self.data.edge_attr = self.data.edge_attr.squeeze()
|
||||
self.data.idx = torch.arange(len(self.data.y))
|
||||
print(f"self.data={self.data}, self.slices={self.slices}")
|
||||
|
||||
@property
|
||||
def raw_file_names(self):
|
||||
@@ -676,7 +703,7 @@ def create_adj_matrix_and_ops(nodes, edges):
|
||||
adj_matrix[src][dst] = 1
|
||||
return adj_matrix, nodes
|
||||
class DataInfos(AbstractDatasetInfos):
|
||||
def __init__(self, datamodule, cfg):
|
||||
def __init__(self, datamodule, cfg, dataset):
|
||||
tasktype_dict = {
|
||||
'hiv_b': 'classification',
|
||||
'bace_b': 'classification',
|
||||
@@ -689,6 +716,7 @@ class DataInfos(AbstractDatasetInfos):
|
||||
self.task = task_name
|
||||
self.task_type = tasktype_dict.get(task_name, "regression")
|
||||
self.ensure_connected = cfg.model.ensure_connected
|
||||
self.api = dataset.api
|
||||
|
||||
datadir = cfg.dataset.datadir
|
||||
|
||||
@@ -699,9 +727,9 @@ class DataInfos(AbstractDatasetInfos):
|
||||
length = 15625
|
||||
ops_type = {}
|
||||
len_ops = set()
|
||||
api = API('/home/stud/hanzhang/Graph-DiT/graph_dit/NAS-Bench-201-v1_1-096897.pth')
|
||||
# api = API('/home/stud/hanzhang/Graph-DiT/graph_dit/NAS-Bench-201-v1_1-096897.pth')
|
||||
for i in range(length):
|
||||
arch_info = api.query_meta_info_by_index(i)
|
||||
arch_info = self.api.query_meta_info_by_index(i)
|
||||
nodes, edges = parse_architecture_string(arch_info.arch_str)
|
||||
adj_matrix, ops = create_adj_matrix_and_ops(nodes, edges)
|
||||
if i < 5:
|
||||
@@ -929,4 +957,4 @@ def compute_meta(root, source_name, train_index, test_index):
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
pass
|
||||
dataset = Dataset(source='nasbench', root='/home/stud/hanzhang/nasbenchDiT/graph-dit', target_prop='Class', transform=None)
|
||||
|
@@ -179,9 +179,9 @@ class Graph_DiT(pl.LightningModule):
|
||||
@torch.no_grad()
|
||||
def validation_step(self, data, i):
|
||||
data_x = F.one_hot(data.x, num_classes=118).float()[:, self.active_index]
|
||||
data_edge_attr = F.one_hot(data.edge_attr, num_classes=10).float()
|
||||
data_edge_attr = F.one_hot(data.edge_attr, num_classes=5).float()
|
||||
dense_data, node_mask = utils.to_dense(data_x, data.edge_index, data_edge_attr, data.batch, self.max_n_nodes)
|
||||
dense_data = dense_data.mask(node_mask, collapse=False)
|
||||
dense_data = dense_data.mask(node_mask)
|
||||
noisy_data = self.apply_noise(dense_data.X, dense_data.E, data.y, node_mask)
|
||||
pred = self.forward(noisy_data)
|
||||
nll = self.compute_val_loss(pred, noisy_data, dense_data.X, dense_data.E, data.y, node_mask, test=False)
|
||||
@@ -444,11 +444,9 @@ class Graph_DiT(pl.LightningModule):
|
||||
beta_t = self.noise_schedule(t_normalized=t_float) # (bs, 1)
|
||||
alpha_s_bar = self.noise_schedule.get_alpha_bar(t_normalized=s_float) # (bs, 1)
|
||||
alpha_t_bar = self.noise_schedule.get_alpha_bar(t_normalized=t_float) # (bs, 1)
|
||||
print(f"alpha_t_bar.shape {alpha_t_bar.shape}")
|
||||
|
||||
Qtb = self.transition_model.get_Qt_bar(alpha_t_bar, self.device) # (bs, dx_in, dx_out), (bs, de_in, de_out)
|
||||
print(f"E.shape {E.shape}")
|
||||
print(f"X.shape {X.shape}")
|
||||
|
||||
bs, n, d = X.shape
|
||||
X_all = torch.cat([X, E.reshape(bs, n, -1)], dim=-1)
|
||||
prob_all = X_all @ Qtb.X
|
||||
|
@@ -78,16 +78,20 @@ def main(cfg: DictConfig):
|
||||
|
||||
datamodule = dataset.DataModule(cfg)
|
||||
datamodule.prepare_data()
|
||||
dataset_infos = dataset.DataInfos(datamodule=datamodule, cfg=cfg)
|
||||
dataset_infos = dataset.DataInfos(datamodule=datamodule, cfg=cfg, dataset=datamodule.dataset)
|
||||
# train_smiles, reference_smiles = datamodule.get_train_smiles()
|
||||
train_graphs, reference_graphs = datamodule.get_train_graphs()
|
||||
|
||||
# get input output dimensions
|
||||
dataset_infos.compute_input_output_dims(datamodule=datamodule)
|
||||
# train_metrics = TrainMolecularMetricsDiscrete(dataset_infos)
|
||||
train_metrics = TrainMolecularMetricsDiscrete(dataset_infos)
|
||||
|
||||
# sampling_metrics = SamplingMolecularMetrics(
|
||||
# dataset_infos, train_smiles, reference_smiles
|
||||
# )
|
||||
sampling_metrics = SamplingGraphMetrics(
|
||||
dataset_infos, train_graphs, reference_graphs
|
||||
)
|
||||
visualization_tools = MolecularVisualization(dataset_infos)
|
||||
|
||||
model_kwargs = {
|
||||
@@ -135,5 +139,16 @@ def main(cfg: DictConfig):
|
||||
else:
|
||||
trainer.test(model, datamodule=datamodule, ckpt_path=cfg.general.test_only)
|
||||
|
||||
@hydra.main(
|
||||
version_base="1.1", config_path="../configs", config_name="config"
|
||||
)
|
||||
def test(cfg: DictConfig):
|
||||
datamodule = dataset.DataModule(cfg)
|
||||
datamodule.prepare_data()
|
||||
dataset_infos = dataset.DataInfos(datamodule=datamodule, cfg=cfg, dataset=datamodule.dataset)
|
||||
train_graphs, reference_graphs = datamodule.get_train_graphs()
|
||||
|
||||
dataset_infos.compute_input_output_dims(datamodule=datamodule)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
test()
|
||||
|
0
graph_dit/workingdoc.md
Normal file
0
graph_dit/workingdoc.md
Normal file
Reference in New Issue
Block a user