4 Commits

Author SHA1 Message Date
xmuhanma
123cde9313 add swap cifar10 results property_metric path update 2024-09-22 15:55:10 +02:00
xmuhanma
9360839a35 add config path 2024-09-22 15:47:51 +02:00
mhz
f75657ac3b add the environment yaml 2024-09-20 00:06:09 +02:00
mhz
be178bc5ee use trainer but has bugs 2024-09-19 14:11:19 +02:00
13 changed files with 16193 additions and 15953 deletions

View File

@@ -1,34 +1,14 @@
Graph Diffusion Transformer for Multi-Conditional Molecular Generation
================================================================
## Initial Setup
Please download NASBench201 dataset(NAS-Bench-201-v1_1-096897.pth) from
https://drive.google.com/file/d/16Y0UwGisiouVRxW-W5hEtbxmcHw_0hF_/view
and put it in the `/path/to/repo/graph_dit` folder.
## Running the code
start command:
``` bash
python main.py --config-name=config.yaml \
model.ensure_connected=True \
dataset.task_name='nasbench201' \
dataset.guidance_target='regression'
```
This repository contains the code for the paper "Inverse Molecular Design with Multi-Conditional Diffusion Guidance" by Gang Liu, Jiaxin Xu, Tengfei Luo, and Meng Jiang.
Paper: https://arxiv.org/abs/2401.13858
<!-- This is the code for Graph DiT. The denoising model architecture in `graph_dit/models` looks like:
This is the code for Graph DiT. The denoising model architecture in `graph_dit/models` looks like:
<div style="display: flex;" markdown="1">
<img src="asset/reverse.png" style="width: 45%;" alt="Description of the first image">
<img src="asset/arch.png" style="width: 45%;" alt="Description of the second image">
</div> -->
</div>
## Requirements

View File

@@ -2,20 +2,26 @@ general:
name: 'graph_dit'
wandb: 'disabled'
gpus: 1
gpu_number: 2
gpu_number: 0
resume: null
test_only: null
sample_every_val: 2500
samples_to_generate: 512
samples_to_generate: 1000
samples_to_save: 3
chains_to_save: 1
log_every_steps: 50
number_chain_steps: 8
final_model_samples_to_generate: 100
final_model_samples_to_generate: 1000
final_model_samples_to_save: 20
final_model_chains_to_save: 1
enable_progress_bar: False
save_model: True
log_dir: '/zhome/academic/HLRS/xmu/xmuhanma/nasbenchDiT'
number_checkpoint_limit: 3
type: 'Trainer'
nas_201: '/zhome/academic/HLRS/xmu/xmuhanma/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth'
swap_result: '/zhome/academic/HLRS/xmu/xmuhanma/nasbenchDiT/graph_dit/swap_results.csv'
root: '/zhome/academic/HLRS/xmu/xmuhanma/nasbenchDiT/graph_dit/'
model:
type: 'discrete'
transition: 'marginal'
@@ -32,7 +38,7 @@ model:
ensure_connected: True
train:
# n_epochs: 5000
n_epochs: 500
n_epochs: 10
batch_size: 1200
lr: 0.0002
clip_grad: null
@@ -41,8 +47,11 @@ train:
seed: 0
val_check_interval: null
check_val_every_n_epoch: 1
gradient_accumulation_steps: 1
dataset:
datadir: 'data/'
task_name: 'nasbench-201'
guidance_target: 'nasbench-201'
pin_memory: False
ppo:
clip_param: 1

228
environment.yaml Normal file
View File

@@ -0,0 +1,228 @@
name: graphdit
channels:
- pytorch
- conda-forge
- defaults
dependencies:
- _libgcc_mutex=0.1=conda_forge
- _openmp_mutex=4.5=2_gnu
- asttokens=2.4.1=pyhd8ed1ab_0
- blas=1.0=mkl
- brotli-python=1.0.9=py39h6a678d5_8
- bzip2=1.0.8=h5eee18b_6
- ca-certificates=2024.7.2=h06a4308_0
- comm=0.2.2=pyhd8ed1ab_0
- debugpy=1.6.7=py39h6a678d5_0
- decorator=5.1.1=pyhd8ed1ab_0
- exceptiongroup=1.2.0=pyhd8ed1ab_2
- executing=2.0.1=pyhd8ed1ab_0
- ffmpeg=4.3=hf484d3e_0
- freetype=2.12.1=h4a9f257_0
- gmp=6.2.1=h295c915_3
- gmpy2=2.1.2=py39heeb90bb_0
- gnutls=3.6.15=he1e5248_0
- idna=3.7=py39h06a4308_0
- importlib-metadata=7.1.0=pyha770c72_0
- importlib_metadata=7.1.0=hd8ed1ab_0
- intel-openmp=2023.1.0=hdb19cb5_46306
- ipykernel=6.29.4=pyh3099207_0
- ipython=8.18.1=pyh707e725_3
- jedi=0.19.1=pyhd8ed1ab_0
- jinja2=3.1.4=py39h06a4308_0
- jpeg=9e=h5eee18b_1
- jupyter_client=8.6.2=pyhd8ed1ab_0
- jupyter_core=5.7.2=py39hf3d152e_0
- lame=3.100=h7b6447c_0
- lcms2=2.12=h3be6417_0
- ld_impl_linux-64=2.38=h1181459_1
- lerc=3.0=h295c915_0
- libdeflate=1.17=h5eee18b_1
- libffi=3.4.4=h6a678d5_1
- libgcc-ng=13.2.0=h77fa898_7
- libgomp=13.2.0=h77fa898_7
- libiconv=1.16=h5eee18b_3
- libidn2=2.3.4=h5eee18b_0
- libpng=1.6.39=h5eee18b_0
- libsodium=1.0.18=h36c2ea0_1
- libstdcxx-ng=11.2.0=h1234567_1
- libtasn1=4.19.0=h5eee18b_0
- libtiff=4.5.1=h6a678d5_0
- libunistring=0.9.10=h27cfd23_0
- libwebp-base=1.3.2=h5eee18b_0
- lz4-c=1.9.4=h6a678d5_1
- matplotlib-inline=0.1.7=pyhd8ed1ab_0
- mkl=2023.1.0=h213fc3f_46344
- mkl-service=2.4.0=py39h5eee18b_1
- mkl_fft=1.3.8=py39h5eee18b_0
- mkl_random=1.2.4=py39hdb19cb5_0
- mpc=1.1.0=h10f8cd9_1
- mpfr=4.0.2=hb69a4c5_1
- mpmath=1.3.0=py39h06a4308_0
- ncurses=6.4=h6a678d5_0
- nest-asyncio=1.6.0=pyhd8ed1ab_0
- nettle=3.7.3=hbbd107a_1
- numpy-base=1.26.4=py39hb5e798b_0
- openh264=2.1.1=h4ff587b_0
- openjpeg=2.4.0=h9ca470c_2
- openssl=3.3.1=h4ab18f5_0
- packaging=24.0=pyhd8ed1ab_0
- parso=0.8.4=pyhd8ed1ab_0
- pexpect=4.9.0=pyhd8ed1ab_0
- pickleshare=0.7.5=py_1003
- pip=24.0=py39h06a4308_0
- platformdirs=4.2.2=pyhd8ed1ab_0
- prompt-toolkit=3.0.46=pyha770c72_0
- psutil=5.9.8=py39hd1e30aa_0
- ptyprocess=0.7.0=pyhd3deb0d_0
- pure_eval=0.2.2=pyhd8ed1ab_0
- pygments=2.18.0=pyhd8ed1ab_0
- pysocks=1.7.1=py39h06a4308_0
- python=3.9.19=h955ad1f_1
- python_abi=3.9=2_cp39
- pytorch-mutex=1.0=cpu
- pyzmq=25.1.2=py39h6a678d5_0
- readline=8.2=h5eee18b_0
- setuptools=69.5.1=py39h06a4308_0
- six=1.16.0=pyh6c4a22f_0
- sqlite=3.45.3=h5eee18b_0
- stack_data=0.6.2=pyhd8ed1ab_0
- sympy=1.12=py39h06a4308_0
- tbb=2021.8.0=hdb19cb5_0
- tk=8.6.14=h39e8969_0
- tornado=6.4.1=py39hd3abc70_0
- traitlets=5.14.3=pyhd8ed1ab_0
- typing_extensions=4.12.2=pyha770c72_0
- wcwidth=0.2.13=pyhd8ed1ab_0
- wheel=0.43.0=py39h06a4308_0
- xz=5.4.6=h5eee18b_1
- zeromq=4.3.5=h6a678d5_0
- zlib=1.2.13=h5eee18b_1
- zstd=1.5.5=hc292b87_2
- pip:
- absl-py==2.1.0
- accelerate==0.34.2
- aiohttp==3.9.5
- aiosignal==1.3.1
- antlr4-python3-runtime==4.9.3
- astunparse==1.6.3
- async-timeout==4.0.3
- attrs==23.2.0
- beautifulsoup4==4.12.3
- bleach==6.1.0
- certifi==2024.2.2
- charset-normalizer==3.1.0
- cmake==3.29.3
- contourpy==1.2.1
- cycler==0.12.1
- defusedxml==0.7.1
- fastjsonschema==2.19.1
- fcd-torch==1.0.7
- filelock==3.14.0
- flatbuffers==24.3.25
- fonttools==4.52.4
- frozenlist==1.4.1
- fsspec==2024.5.0
- gast==0.5.4
- google-pasta==0.2.0
- grpcio==1.64.1
- h5py==3.11.0
- huggingface-hub==0.24.6
- hydra-core==1.3.2
- imageio==2.26.0
- importlib-resources==6.4.0
- joblib==1.2.0
- jsonschema==4.22.0
- jsonschema-specifications==2023.12.1
- jupyterlab-pygments==0.3.0
- keras==3.3.3
- kiwisolver==1.4.5
- libclang==18.1.1
- lightning-utilities==0.11.2
- lit==18.1.6
- markdown==3.6
- markdown-it-py==3.0.0
- markupsafe==2.1.5
- matplotlib==3.7.0
- mdurl==0.1.2
- mini-moses==1.0
- mistune==3.0.2
- ml-dtypes==0.3.2
- multidict==6.0.5
- namex==0.0.8
- nas-bench-201==2.1
- nasbench==1.0
- nbclient==0.10.0
- nbconvert==7.16.4
- nbformat==5.10.4
- networkx==3.0
- numpy==1.24.2
- nvidia-cublas-cu11==11.10.3.66
- nvidia-cublas-cu12==12.1.3.1
- nvidia-cuda-cupti-cu11==11.7.101
- nvidia-cuda-cupti-cu12==12.1.105
- nvidia-cuda-nvrtc-cu11==11.7.99
- nvidia-cuda-nvrtc-cu12==12.1.105
- nvidia-cuda-runtime-cu11==11.7.99
- nvidia-cuda-runtime-cu12==12.1.105
- nvidia-cudnn-cu11==8.5.0.96
- nvidia-cudnn-cu12==8.9.2.26
- nvidia-cufft-cu11==10.9.0.58
- nvidia-cufft-cu12==11.0.2.54
- nvidia-curand-cu11==10.2.10.91
- nvidia-curand-cu12==10.3.2.106
- nvidia-cusolver-cu11==11.4.0.1
- nvidia-cusolver-cu12==11.4.5.107
- nvidia-cusparse-cu11==11.7.4.91
- nvidia-cusparse-cu12==12.1.0.106
- nvidia-nccl-cu11==2.14.3
- nvidia-nccl-cu12==2.20.5
- nvidia-nvjitlink-cu12==12.5.40
- nvidia-nvtx-cu11==11.7.91
- nvidia-nvtx-cu12==12.1.105
- omegaconf==2.3.0
- opt-einsum==3.3.0
- optree==0.11.0
- pandas==1.5.3
- pandocfilters==1.5.1
- pillow==10.3.0
- protobuf==3.20.3
- pyparsing==3.1.2
- python-dateutil==2.9.0.post0
- pytorch-lightning==2.0.1
- pytz==2024.1
- pyyaml==6.0.1
- rdkit==2023.9.4
- referencing==0.35.1
- requests==2.32.2
- rich==13.7.1
- rpds-py==0.18.1
- safetensors==0.4.5
- scikit-learn==1.2.1
- scipy==1.13.1
- seaborn==0.13.2
- simplejson==3.19.2
- soupsieve==2.5
- tensorboard==2.16.2
- tensorboard-data-server==0.7.2
- tensorflow==2.16.1
- tensorflow-io-gcs-filesystem==0.37.0
- termcolor==2.4.0
- threadpoolctl==3.5.0
- tinycss2==1.3.0
- torch==2.0.0
- torch-geometric==2.3.0
- torchaudio==2.0.1+rocm5.4.2
- torchmetrics==0.11.4
- torchvision==0.15.1
- tqdm==4.64.1
- triton==2.0.0
- typing-extensions==4.12.0
- tzdata==2024.1
- urllib3==2.2.1
- webencodings==0.5.1
- werkzeug==3.0.3
- wrapt==1.16.0
- yacs==0.1.8
- yarl==1.9.4
- zipp==3.19.0
prefix: /home/stud/hanzhang/anaconda3/envs/graphdit

View File

@@ -54,7 +54,9 @@ class BasicGraphMetrics(object):
covered_nodes = set()
direct_valid_count = 0
print(f"generated number: {len(generated)}")
print(f"generated: {generated}")
for graph in generated:
print(f"graph: {graph}")
node_types, edge_types = graph
direct_valid_flag = True
direct_valid_count += 1

View File

@@ -25,7 +25,6 @@ from sklearn.model_selection import train_test_split
import utils as utils
from datasets.abstract_dataset import AbstractDatasetInfos, AbstractDataModule
from diffusion.distributions import DistributionNodes
from naswot.score_networks import get_nasbench201_idx_score
from naswot import nasspace
from naswot import datasets as dt
@@ -72,7 +71,9 @@ class DataModule(AbstractDataModule):
# base_path = pathlib.Path(os.path.realpath(__file__)).parents[2]
# except NameError:
# base_path = pathlib.Path(os.getcwd()).parent[2]
base_path = '/nfs/data3/hanzhang/nasbenchDiT'
# base_path = '/nfs/data3/hanzhang/nasbenchDiT'
base_path = os.path.join(self.cfg.general.root, "..")
root_path = os.path.join(base_path, self.datadir)
self.root_path = root_path
@@ -84,7 +85,7 @@ class DataModule(AbstractDataModule):
# Load the dataset to the memory
# Dataset has target property, root path, and transform
source = './NAS-Bench-201-v1_1-096897.pth'
dataset = Dataset(source=source, root=root_path, target_prop=target, transform=None)
dataset = Dataset(source=source, root=root_path, target_prop=target, transform=None, cfg=self.cfg)
self.dataset = dataset
# self.api = dataset.api
@@ -384,7 +385,7 @@ class DataModule_original(AbstractDataModule):
def test_dataloader(self):
return self.test_loader
def new_graphs_to_json(graphs, filename):
def new_graphs_to_json(graphs, filename, cfg):
source_name = "nasbench-201"
num_graph = len(graphs)
@@ -491,8 +492,9 @@ def new_graphs_to_json(graphs, filename):
'num_active_nodes': len(active_nodes),
'transition_E': transition_E.tolist(),
}
with open(f'/nfs/data3/hanzhang/nasbenchDiT/graph_dit/nasbench-201-meta.json', 'w') as f:
import os
# with open(f'/nfs/data3/hanzhang/nasbenchDiT/graph_dit/nasbench-201-meta.json', 'w') as f:
with open(os.path.join(cfg.general.root,'nasbench-201-meta.json'), 'w') as f:
json.dump(meta_dict, f)
return meta_dict
@@ -656,9 +658,11 @@ def graphs_to_json(graphs, filename):
json.dump(meta_dict, f)
return meta_dict
class Dataset(InMemoryDataset):
def __init__(self, source, root, target_prop=None, transform=None, pre_transform=None, pre_filter=None):
def __init__(self, source, root, target_prop=None, transform=None, pre_transform=None, pre_filter=None, cfg=None):
self.target_prop = target_prop
source = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth'
self.cfg = cfg
# source = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth'
source = os.path.join(self.cfg.general.root, 'NAS-Bench-201-v1_1-096897.pth')
self.source = source
# self.api = API(source) # Initialize NAS-Bench-201 API
# print('API loaded')
@@ -679,7 +683,8 @@ class Dataset(InMemoryDataset):
return [f'{self.source}.pt']
def process(self):
source = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth'
# source = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth'
source = self.cfg.general.nas_201
# self.api = API(source)
data_list = []
@@ -748,7 +753,8 @@ class Dataset(InMemoryDataset):
return edges,nodes
def graph_to_graph_data(graph, idx, train_loader, searchspace, args, device):
# def graph_to_graph_data(graph, idx, train_loader, searchspace, args, device):
def graph_to_graph_data(graph, idx, args, device):
# def graph_to_graph_data(graph):
ops = graph[1]
adj = graph[0]
@@ -797,7 +803,7 @@ class Dataset(InMemoryDataset):
args.batch_size = 128
args.GPU = '0'
args.dataset = 'cifar10'
args.api_loc = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth'
args.api_loc = self.cfg.general.nas_201
args.data_loc = '../cifardata/'
args.seed = 777
args.init = ''
@@ -812,11 +818,12 @@ class Dataset(InMemoryDataset):
args.num_modules_per_stack = 3
args.num_labels = 1
searchspace = nasspace.get_search_space(args)
train_loader = dt.get_data(args.dataset, args.data_loc, args.trainval, args.batch_size, args.augtype, args.repeat, args)
# train_loader = dt.get_data(args.dataset, args.data_loc, args.trainval, args.batch_size, args.augtype, args.repeat, args)
self.swap_scores = []
import csv
# with open('/nfs/data3/hanzhang/nasbenchDiT/graph_dit/swap_results.csv', 'r') as f:
with open('/nfs/data3/hanzhang/nasbenchDiT/graph_dit/swap_results_cifar100.csv', 'r') as f:
with open(self.cfg.general.swap_result, 'r') as f:
# with open('/nfs/data3/hanzhang/nasbenchDiT/graph_dit/swap_results_cifar100.csv', 'r') as f:
reader = csv.reader(f)
header = next(reader)
data = [row for row in reader]
@@ -824,12 +831,15 @@ class Dataset(InMemoryDataset):
device = torch.device('cuda:2')
with tqdm(total = len_data) as pbar:
active_nodes = set()
file_path = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/nasbench-201-graph.json'
import os
# file_path = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/nasbench-201-graph.json'
file_path = os.path.join(self.cfg.general.root, 'nasbench-201-graph.json')
with open(file_path, 'r') as f:
graph_list = json.load(f)
i = 0
flex_graph_list = []
flex_graph_path = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/flex-nasbench201-graph.json'
# flex_graph_path = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/flex-nasbench201-graph.json'
flex_graph_path = os.path.join(self.cfg.general.root,'flex-nasbench201-graph.json')
for graph in graph_list:
print(f'iterate every graph in graph_list, here is {i}')
arch_info = graph['arch_str']
@@ -837,7 +847,8 @@ class Dataset(InMemoryDataset):
for op in ops:
if op not in active_nodes:
active_nodes.add(op)
data = graph_to_graph_data((adj_matrix, ops),idx=i, train_loader=train_loader, searchspace=searchspace, args=args, device=device)
# data = graph_to_graph_data((adj_matrix, ops),idx=i, train_loader=train_loader, searchspace=searchspace, args=args, device=device)
data = graph_to_graph_data((adj_matrix, ops),idx=i, args=args, device=device)
i += 1
if data is None:
pbar.update(1)
@@ -1140,6 +1151,7 @@ class DataInfos(AbstractDatasetInfos):
self.task = task_name
self.task_type = tasktype_dict.get(task_name, "regression")
self.ensure_connected = cfg.model.ensure_connected
self.cfg = cfg
# self.api = dataset.api
datadir = cfg.dataset.datadir
@@ -1182,14 +1194,15 @@ class DataInfos(AbstractDatasetInfos):
# len_ops.add(len(ops))
# graphs.append((adj_matrix, ops))
# graphs = read_adj_ops_from_json(f'/nfs/data3/hanzhang/nasbenchDiT/graph_dit/flex-nasbench201-graph.json')
graphs = read_adj_ops_from_json(f'/nfs/data3/hanzhang/nasbenchDiT/graph_dit/nasbench-201-graph.json')
# graphs = read_adj_ops_from_json(f'/nfs/data3/hanzhang/nasbenchDiT/graph_dit/nasbench-201-graph.json')
graphs = read_adj_ops_from_json(os.path.join(self.cfg.general.root, 'nasbench-201-graph.json'))
# check first five graphs
for i in range(5):
print(f'graph {i} : {graphs[i]}')
# print(f'ops_type: {ops_type}')
meta_dict = new_graphs_to_json(graphs, 'nasbench-201')
meta_dict = new_graphs_to_json(graphs, 'nasbench-201', self.cfg)
self.base_path = base_path
self.active_nodes = meta_dict['active_nodes']
self.max_n_nodes = meta_dict['max_n_nodes']
@@ -1396,11 +1409,12 @@ def compute_meta(root, source_name, train_index, test_index):
'transition_E': tansition_E.tolist(),
}
with open(f'/nfs/data3/hanzhang/nasbenchDiT/graph_dit/nasbench201.meta.json', "w") as f:
# with open(f'/nfs/data3/hanzhang/nasbenchDiT/graph_dit/nasbench201.meta.json', "w") as f:
with open(os.path.join(self.cfg.general.root, 'nasbench201.meta.json'), "w") as f:
json.dump(meta_dict, f)
return meta_dict
if __name__ == "__main__":
dataset = Dataset(source='nasbench', root='/nfs/data3/hanzhang/nasbenchDiT/graph-dit', target_prop='Class', transform=None)
dataset = Dataset(source='nasbench', root='/zhome/academic/HLRS/xmu/xmuhanma/nasbenchDiT/graph_dit/', target_prop='Class', transform=None)

View File

@@ -23,6 +23,9 @@ class Graph_DiT(pl.LightningModule):
self.test_only = cfg.general.test_only
self.guidance_target = getattr(cfg.dataset, 'guidance_target', None)
from nas_201_api import NASBench201API as API
self.api = API(cfg.general.nas_201)
input_dims = dataset_infos.input_dims
output_dims = dataset_infos.output_dims
nodes_dist = dataset_infos.nodes_dist
@@ -41,7 +44,7 @@ class Graph_DiT(pl.LightningModule):
self.args.batch_size = 128
self.args.GPU = '0'
self.args.dataset = 'cifar10-valid'
self.args.api_loc = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth'
self.args.api_loc = cfg.general.nas_201
self.args.data_loc = '../cifardata/'
self.args.seed = 777
self.args.init = ''
@@ -79,6 +82,7 @@ class Graph_DiT(pl.LightningModule):
self.node_dist = nodes_dist
self.active_index = active_index
self.dataset_info = dataset_infos
self.cur_epoch = 0
self.train_loss = TrainLossDiscrete(self.cfg.model.lambda_train)
@@ -162,25 +166,81 @@ class Graph_DiT(pl.LightningModule):
return pred
def training_step(self, data, i):
data_x = F.one_hot(data.x, num_classes=12).float()[:, self.active_index]
data_edge_attr = F.one_hot(data.edge_attr, num_classes=2).float()
if self.cfg.general.type != 'accelerator' and self.current_epoch > self.cfg.train.n_epochs / 5 * 4:
samples_left_to_generate = self.cfg.general.samples_to_generate
samples_left_to_save = self.cfg.general.samples_to_save
chains_left_to_save = self.cfg.general.chains_to_save
dense_data, node_mask = utils.to_dense(data_x, data.edge_index, data_edge_attr, data.batch, self.max_n_nodes)
dense_data = dense_data.mask(node_mask)
X, E = dense_data.X, dense_data.E
noisy_data = self.apply_noise(X, E, data.y, node_mask)
pred = self.forward(noisy_data)
loss = self.train_loss(masked_pred_X=pred.X, masked_pred_E=pred.E, pred_y=pred.y,
true_X=X, true_E=E, true_y=data.y, node_mask=node_mask,
samples, all_ys, batch_id = [], [], 0
def graph_reward_fn(graphs, true_graphs=None, device=None, reward_model='swap'):
rewards = []
if reward_model == 'swap':
import csv
with open(self.cfg.general.swap_result, 'r') as f:
reader = csv.reader(f)
header = next(reader)
data = [row for row in reader]
swap_scores = [float(row[0]) for row in data]
for graph in graphs:
node_tensor = graph[0]
node = node_tensor.cpu().numpy().tolist()
def nodes_to_arch_str(nodes):
num_to_op = ['input', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3', 'skip_connect', 'none', 'output']
nodes_str = [num_to_op[node] for node in nodes]
arch_str = '|' + nodes_str[1] + '~0|+' + \
'|' + nodes_str[2] + '~0|' + nodes_str[3] + '~1|+' +\
'|' + nodes_str[4] + '~0|' + nodes_str[5] + '~1|' + nodes_str[6] + '~2|'
return arch_str
arch_str = nodes_to_arch_str(node)
reward = swap_scores[self.api.query_index_by_arch(arch_str)]
rewards.append(reward)
return torch.tensor(rewards, dtype=torch.float32, requires_grad=True).unsqueeze(0).to(device)
old_log_probs = None
bs = 1 * self.cfg.train.batch_size
to_generate = min(samples_left_to_generate, bs)
to_save = min(samples_left_to_save, bs)
chains_save = min(chains_left_to_save, bs)
# batch_y = test_y_collection[batch_id : batch_id + to_generate]
batch_y = torch.ones(to_generate, self.ydim_output, device=self.device)
cur_sample, log_probs = self.sample_batch(batch_id, to_generate, batch_y, save_final=to_save,
keep_chain=chains_save, number_chain_steps=self.number_chain_steps)
# samples = samples + cur_sample
samples.append(cur_sample)
reward = graph_reward_fn(cur_sample, device=self.device)
advantages = (reward - torch.mean(reward)) / (torch.std(reward) + 1e-6) #
if old_log_probs is None:
old_log_probs = log_probs.clone()
ratio = torch.exp(log_probs - old_log_probs)
print(f"ratio: {ratio.shape}, advantages: {advantages.shape}")
unclipped_loss = -advantages * ratio
clipped_loss = -advantages * torch.clamp(ratio, 1.0 - self.cfg.ppo.clip_param, 1.0 + self.cfg.ppo.clip_param)
loss = torch.mean(torch.max(unclipped_loss, clipped_loss))
return {'loss': loss}
else:
data_x = F.one_hot(data.x, num_classes=12).float()[:, self.active_index]
data_edge_attr = F.one_hot(data.edge_attr, num_classes=2).float()
dense_data, node_mask = utils.to_dense(data_x, data.edge_index, data_edge_attr, data.batch, self.max_n_nodes)
dense_data = dense_data.mask(node_mask)
X, E = dense_data.X, dense_data.E
noisy_data = self.apply_noise(X, E, data.y, node_mask)
pred = self.forward(noisy_data)
loss = self.train_loss(masked_pred_X=pred.X, masked_pred_E=pred.E, pred_y=pred.y,
true_X=X, true_E=E, true_y=data.y, node_mask=node_mask,
log=i % self.log_every_steps == 0)
# print(f'training loss: {loss}, epoch: {self.current_epoch}, batch: {i}\n, pred type: {type(pred)}, pred.X shape: {type(pred.X)}, {pred.X.shape}, pred.E shape: {type(pred.E)}, {pred.E.shape}')
self.train_metrics(masked_pred_X=pred.X, masked_pred_E=pred.E, true_X=X, true_E=E,
log=i % self.log_every_steps == 0)
# print(f'training loss: {loss}, epoch: {self.current_epoch}, batch: {i}\n, pred type: {type(pred)}, pred.X shape: {type(pred.X)}, {pred.X.shape}, pred.E shape: {type(pred.E)}, {pred.E.shape}')
self.train_metrics(masked_pred_X=pred.X, masked_pred_E=pred.E, true_X=X, true_E=E,
log=i % self.log_every_steps == 0)
self.log(f'loss', loss, batch_size=X.size(0), sync_dist=True)
print(f"training loss: {loss}")
with open("training-loss.csv", "a") as f:
f.write(f"{loss}, {i}\n")
return {'loss': loss}
self.log(f'loss', loss, batch_size=X.size(0), sync_dist=True)
print(f"training loss: {loss}")
with open("training-loss.csv", "a") as f:
f.write(f"{loss}, {i}\n")
return {'loss': loss}
def configure_optimizers(self):
@@ -195,17 +255,15 @@ class Graph_DiT(pl.LightningModule):
# print("Size of the input features Xdim {}, Edim {}, ydim {}".format(self.Xdim, self.Edim, self.ydim))
def on_train_epoch_start(self) -> None:
# if self.current_epoch / self.trainer.max_epochs in [0.25, 0.5, 0.75, 1.0]:
if self.current_epoch / self.cfg.train.n_epochs in [0.25, 0.5, 0.75, 1.0]:
# print("Starting train epoch {}/{}...".format(self.current_epoch, self.trainer.max_epochs))
print("Starting train epoch {}/{}...".format(self.current_epoch, self.cfg.train.n_epochs))
if self.current_epoch / self.trainer.max_epochs in [0.25, 0.5, 0.75, 1.0]:
# if self.cur_epoch / self.cfg.train.n_epochs in [0.25, 0.5, 0.75, 1.0]:
print("Starting train epoch {}/{}...".format(self.cur_epoch, self.cfg.train.n_epochs))
self.start_epoch_time = time.time()
self.train_loss.reset()
self.train_metrics.reset()
def on_train_epoch_end(self) -> None:
# if self.current_epoch / self.trainer.max_epochs in [0.25, 0.5, 0.75, 1.0]:
if self.current_epoch / self.cfg.train.n_epochs in [0.25, 0.5, 0.75, 1.0]:
log = True
else:
@@ -242,8 +300,9 @@ class Graph_DiT(pl.LightningModule):
self.val_X_logp.compute(), self.val_E_logp.compute()]
# if self.current_epoch / self.trainer.max_epochs in [0.25, 0.5, 0.75, 1.0]:
print(f"Epoch {self.current_epoch}: Val NLL {metrics[0] :.2f} -- Val Atom type KL {metrics[1] :.2f} -- ",
if self.current_epoch / self.trainer.max_epochs in [0.25, 0.5, 0.75, 1.0]:
# if self.cur_epoch / self.cfg.train.n_epochs in [0.25, 0.5, 0.75, 1.0]:
print(f"Epoch {self.current_epoch}: Val NLL {metrics[0] :.2f} -- Val Atom type KL {metrics[1] :.2f} -- ",
f"Val Edge type KL: {metrics[2] :.2f}", 'Val loss: %.2f \t Best : %.2f\n' % (metrics[0], self.best_val_nll))
with open("validation-metrics.csv", "a") as f:
# save the metrics as csv file
@@ -286,10 +345,15 @@ class Graph_DiT(pl.LightningModule):
num_examples = self.val_y_collection.size(0)
batch_y = self.val_y_collection[start_index:start_index + to_generate]
all_ys.append(batch_y)
samples.extend(self.sample_batch(batch_id=ident, batch_size=to_generate, y=batch_y,
cur_sample, logprobs = self.sample_batch(batch_id=ident, batch_size=to_generate, y=batch_y,
save_final=to_save,
keep_chain=chains_save,
number_chain_steps=self.number_chain_steps)[0])
number_chain_steps=self.number_chain_steps)
samples.extend(cur_sample)
# samples.extend(self.sample_batch(batch_id=ident, batch_size=to_generate, y=batch_y,
# save_final=to_save,
# keep_chain=chains_save,
# number_chain_steps=self.number_chain_steps))
ident += to_generate
start_index += to_generate
@@ -339,7 +403,7 @@ class Graph_DiT(pl.LightningModule):
print(f"Epoch {self.current_epoch}: Test NLL {metrics[0] :.2f} -- Test Atom type KL {metrics[1] :.2f} -- ",
f"Test Edge type KL: {metrics[2] :.2f}")
## final epcoh
## final epoch
samples_left_to_generate = self.cfg.general.final_model_samples_to_generate
samples_left_to_save = self.cfg.general.final_model_samples_to_save
chains_left_to_save = self.cfg.general.final_model_chains_to_save
@@ -362,9 +426,9 @@ class Graph_DiT(pl.LightningModule):
# batch_y = test_y_collection[batch_id : batch_id + to_generate]
batch_y = torch.ones(to_generate, self.ydim_output, device=self.device)
cur_sample = self.sample_batch(batch_id, to_generate, batch_y, save_final=to_save,
keep_chain=chains_save, number_chain_steps=self.number_chain_steps)[0]
samples = samples + cur_sample
cur_sample, log_probs = self.sample_batch(batch_id, to_generate, batch_y, save_final=to_save,
keep_chain=chains_save, number_chain_steps=self.number_chain_steps)
samples.extend(cur_sample)
all_ys.append(batch_y)
batch_id += to_generate
@@ -604,8 +668,11 @@ class Graph_DiT(pl.LightningModule):
assert (E == torch.transpose(E, 1, 2)).all()
total_log_probs = torch.zeros([self.cfg.general.final_model_samples_to_generate,10], device=self.device)
# total_log_probs = torch.zeros([self.cfg.general.samples_to_generate,10], device=self.device)
if self.cfg.general.type != 'accelerator':
if self.trainer.training or self.trainer.validating:
total_log_probs = torch.zeros([self.cfg.general.samples_to_generate, 10], device=self.device)
elif self.trainer.testing:
total_log_probs = torch.zeros([self.cfg.general.final_model_samples_to_generate, 10], device=self.device)
# Iteratively sample p(z_s | z_t) for t = 1, ..., T, with s = t - 1.
for s_int in reversed(range(0, self.T)):
@@ -615,10 +682,8 @@ class Graph_DiT(pl.LightningModule):
t_norm = t_array / self.T
# Sample z_s
sampled_s, discrete_sampled_s, log_probs= self.sample_p_zs_given_zt(s_norm, t_norm, X, E, y, node_mask)
sampled_s, discrete_sampled_s, log_probs = self.sample_p_zs_given_zt(s_norm, t_norm, X, E, y, node_mask)
X, E, y = sampled_s.X, sampled_s.E, sampled_s.y
print(f'sampled_s.X shape: {sampled_s.X.shape}, sampled_s.E shape: {sampled_s.E.shape}')
print(f'log_probs shape: {log_probs.shape}')
total_log_probs += log_probs
# Sample
@@ -630,7 +695,9 @@ class Graph_DiT(pl.LightningModule):
n = n_nodes[i]
node_types = X[i, :n].cpu()
edge_types = E[i, :n, :n].cpu()
graph_list.append([node_types, edge_types])
graph_list.append((node_types , edge_types))
total_log_probs = torch.sum(total_log_probs, dim=-1)
return graph_list, total_log_probs
@@ -644,7 +711,6 @@ class Graph_DiT(pl.LightningModule):
# Neural net predictions
noisy_data = {'X_t': X_t, 'E_t': E_t, 'y_t': y_t, 't': t, 'node_mask': node_mask}
print(f"sample p zs given zt X_t shape: {X_t.shape}, E_t shape: {E_t.shape}, y_t shape: {y_t.shape}, node_mask shape: {node_mask.shape}")
def get_prob(noisy_data, unconditioned=False):
pred = self.forward(noisy_data, unconditioned=unconditioned)
@@ -684,19 +750,15 @@ class Graph_DiT(pl.LightningModule):
# with condition = P_t(G_{t-1} |G_t, C)
# with condition = P_t(A_{t-1} |A_t, y)
prob_X, prob_E, pred = get_prob(noisy_data)
print(f'prob_X shape: {prob_X.shape}, prob_E shape: {prob_E.shape}')
print(f'X_t shape: {X_t.shape}, E_t shape: {E_t.shape}, y_t shape: {y_t.shape}')
print(f'X_t: {X_t}')
log_prob_X = torch.log(torch.gather(prob_X, -1, X_t.long()).squeeze(-1)) # bs, n
log_prob_E = torch.log(torch.gather(prob_E, -1, E_t.long()).squeeze(-1)) # bs, n, n
# Sum the log_prob across dimensions for total log_prob
log_prob_X = log_prob_X.sum(dim=-1)
log_prob_E = log_prob_E.sum(dim=(1, 2))
print(f'log_prob_X shape: {log_prob_X.shape}, log_prob_E shape: {log_prob_E.shape}')
# log_probs = log_prob_E + log_prob_X
log_probs = torch.cat([log_prob_X, log_prob_E], dim=-1) # (batch_size, 2)
print(f'log_probs shape: {log_probs.shape}')
log_probs = torch.cat([log_prob_X, log_prob_E], dim=-1)
### Guidance
if self.guidance_target is not None and self.guide_scale is not None and self.guide_scale != 1:
uncon_prob_X, uncon_prob_E, pred = get_prob(noisy_data, unconditioned=True)

View File

@@ -1,5 +1,4 @@
# These imports are tricky because they use c++, do not move them
from tqdm import tqdm
import os, shutil
import warnings
@@ -145,32 +144,10 @@ def main(cfg: DictConfig):
else:
trainer.test(model, datamodule=datamodule, ckpt_path=cfg.general.test_only)
from accelerate import Accelerator
from accelerate.utils import set_seed, ProjectConfiguration
@hydra.main(
version_base="1.1", config_path="../configs", config_name="config"
)
def test(cfg: DictConfig):
os.environ["CUDA_VISIBLE_DEVICES"] = cfg.general.gpu_number
accelerator_config = ProjectConfiguration(
project_dir=os.path.join(cfg.general.log_dir, cfg.general.name),
automatic_checkpoint_naming=True,
total_limit=cfg.general.number_checkpoint_limit,
)
accelerator = Accelerator(
mixed_precision='no',
project_config=accelerator_config,
# gradient_accumulation_steps=cfg.train.gradient_accumulation_steps * cfg.train.n_epochs,
gradient_accumulation_steps=cfg.train.gradient_accumulation_steps,
)
# Debug: 确认可用设备
print(f"Available GPUs: {torch.cuda.device_count()}")
print(f"Using device: {accelerator.device}")
set_seed(cfg.train.seed, device_specific=True)
datamodule = dataset.DataModule(cfg)
datamodule.prepare_data()
dataset_infos = dataset.DataInfos(datamodule=datamodule, cfg=cfg, dataset=datamodule.dataset)
@@ -192,216 +169,100 @@ def test(cfg: DictConfig):
"visualization_tools": visulization_tools,
}
# Debug: 确认可用设备
print(f"Available GPUs: {torch.cuda.device_count()}")
print(f"Using device: {accelerator.device}")
if cfg.general.test_only:
cfg, _ = get_resume(cfg, model_kwargs)
os.chdir(cfg.general.test_only.split("checkpoints")[0])
elif cfg.general.resume is not None:
cfg, _ = get_resume_adaptive(cfg, model_kwargs)
os.chdir(cfg.general.resume.split("checkpoints")[0])
# os.environ["CUDA_VISIBLE_DEVICES"] = cfg.general.gpu_number
model = Graph_DiT(cfg=cfg, **model_kwargs)
graph_dit_model = model
inference_dtype = torch.float32
graph_dit_model.to(accelerator.device, dtype=inference_dtype)
if cfg.general.type == "accelerator":
graph_dit_model = model
from accelerate import Accelerator
from accelerate.utils import set_seed, ProjectConfiguration
# optional: freeze the model
# graph_dit_model.model.requires_grad_(True)
accelerator_config = ProjectConfiguration(
project_dir=os.path.join(cfg.general.log_dir, cfg.general.name),
automatic_checkpoint_naming=True,
total_limit=cfg.general.number_checkpoint_limit,
)
accelerator = Accelerator(
mixed_precision='no',
project_config=accelerator_config,
# gradient_accumulation_steps=cfg.train.gradient_accumulation_steps * cfg.train.n_epochs,
gradient_accumulation_steps=cfg.train.gradient_accumulation_steps,
)
import torch.nn.functional as F
optimizer = graph_dit_model.configure_optimizers()
train_dataloader = accelerator.prepare(datamodule.train_dataloader())
optimizer, graph_dit_model = accelerator.prepare(optimizer, graph_dit_model)
# start training
for epoch in range(cfg.train.n_epochs):
graph_dit_model.train() # 设置模型为训练模式
print(f"Epoch {epoch}", end="\n")
graph_dit_model.on_train_epoch_start()
for data in train_dataloader: # 从数据加载器中获取一个批次的数据
# data.to(accelerator.device)
# data_x = F.one_hot(data.x, num_classes=12).float()[:, graph_dit_model.active_index]
# data_edge_attr = F.one_hot(data.edge_attr, num_classes=2).float()
# dense_data, node_mask = utils.to_dense(data_x, data.edge_index, data_edge_attr, data.batch, graph_dit_model.max_n_nodes)
# dense_data = dense_data.mask(node_mask)
# X, E = dense_data.X, dense_data.E
# noisy_data = graph_dit_model.apply_noise(X, E, data.y, node_mask)
# pred = graph_dit_model.forward(noisy_data)
# loss = graph_dit_model.train_loss(masked_pred_X=pred.X, masked_pred_E=pred.E, pred_y=pred.y,
# true_X=X, true_E=E, true_y=data.y, node_mask=node_mask,
# log=epoch % graph_dit_model.log_every_steps == 0)
# # print(f'training loss: {loss}, epoch: {self.current_epoch}, batch: {i}\n, pred type: {type(pred)}, pred.X shape: {type(pred.X)}, {pred.X.shape}, pred.E shape: {type(pred.E)}, {pred.E.shape}')
# graph_dit_model.train_metrics(masked_pred_X=pred.X, masked_pred_E=pred.E, true_X=X, true_E=E,
# log=epoch % graph_dit_model.log_every_steps == 0)
# graph_dit_model.log(f'loss', loss, batch_size=X.size(0), sync_dist=True)
# print(f"training loss: {loss}")
# with open("training-loss.csv", "a") as f:
# f.write(f"{loss}, {epoch}\n")
loss = graph_dit_model.training_step(data, epoch)
loss = loss['loss']
optimizer = graph_dit_model.configure_optimizers()
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()
# return {'loss': loss}
graph_dit_model.on_train_epoch_end()
if epoch % cfg.train.check_val_every_n_epoch == 0:
print(f'print validation loss')
graph_dit_model.eval()
graph_dit_model.on_validation_epoch_start()
graph_dit_model.validation_step(data, epoch)
graph_dit_model.on_validation_epoch_end()
# start testing
print("start testing")
graph_dit_model.eval()
test_dataloader = accelerator.prepare(datamodule.test_dataloader())
graph_dit_model.on_test_epoch_start()
for data in test_dataloader:
nll = graph_dit_model.test_step(data, epoch)
# data_x = F.one_hot(data.x, num_classes=12).float()[:, graph_dit_model.active_index]
# data_edge_attr = F.one_hot(data.edge_attr, num_classes=2).float()
train_dataloader = datamodule.train_dataloader()
train_dataloader = accelerator.prepare(train_dataloader)
val_dataloader = datamodule.val_dataloader()
val_dataloader = accelerator.prepare(val_dataloader)
test_dataloader = datamodule.test_dataloader()
test_dataloader = accelerator.prepare(test_dataloader)
# dense_data, node_mask = utils.to_dense(data_x, data.edge_index, data_edge_attr, data.batch, graph_dit_model.max_n_nodes)
# dense_data = dense_data.mask(node_mask)
# noisy_data = graph_dit_model.apply_noise(dense_data.X, dense_data.E, data.y, node_mask)
# pred = graph_dit_model.forward(noisy_data)
# nll = graph_dit_model.compute_val_loss(pred, noisy_data, dense_data.X, dense_data.E, data.y, node_mask, test=True)
# graph_dit_model.test_y_collection.append(data.y)
print(f'test loss: {nll}')
graph_dit_model.on_test_epoch_end()
optimizer, graph_dit_model = accelerator.prepare(optimizer, graph_dit_model)
# start sampling
# samples_left_to_generate = cfg.general.final_model_samples_to_generate
# samples_left_to_save = cfg.general.final_model_samples_to_save
# chains_left_to_save = cfg.general.final_model_chains_to_save
# samples, all_ys, batch_id = [], [], 0
# samples_with_log_probs = []
# test_y_collection = torch.cat(graph_dit_model.test_y_collection, dim=0)
# num_examples = test_y_collection.size(0)
# if cfg.general.final_model_samples_to_generate > num_examples:
# ratio = cfg.general.final_model_samples_to_generate // num_examples
# test_y_collection = test_y_collection.repeat(ratio+1, 1)
# num_examples = test_y_collection.size(0)
# Normal reward function
# from nas_201_api import NASBench201API as API
# api = API('/nfs/data3/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth')
# def graph_reward_fn(graphs, true_graphs=None, device=None, reward_model='swap'):
# rewards = []
# if reward_model == 'swap':
# import csv
# with open('/nfs/data3/hanzhang/nasbenchDiT/graph_dit/swap_results.csv', 'r') as f:
# reader = csv.reader(f)
# header = next(reader)
# data = [row for row in reader]
# swap_scores = [float(row[0]) for row in data]
# for graph in graphs:
# node_tensor = graph[0]
# node = node_tensor.cpu().numpy().tolist()
# def nodes_to_arch_str(nodes):
# num_to_op = ['input', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3', 'skip_connect', 'none', 'output']
# nodes_str = [num_to_op[node] for node in nodes]
# arch_str = '|' + nodes_str[1] + '~0|+' + \
# '|' + nodes_str[2] + '~0|' + nodes_str[3] + '~1|+' +\
# '|' + nodes_str[4] + '~0|' + nodes_str[5] + '~1|' + nodes_str[6] + '~2|'
# return arch_str
# arch_str = nodes_to_arch_str(node)
# reward = swap_scores[api.query_index_by_arch(arch_str)]
# rewards.append(reward)
# # for graph in graphs:
# # reward = 1.0
# # rewards.append(reward)
# return torch.tensor(rewards, dtype=torch.float32, requires_grad=True).unsqueeze(0).to(device)
# old_log_probs = None
# while samples_left_to_generate > 0:
# print(f'samples left to generate: {samples_left_to_generate}/'
# f'{cfg.general.final_model_samples_to_generate}', end='', flush=True)
# bs = 1 * cfg.train.batch_size
# to_generate = min(samples_left_to_generate, bs)
# to_save = min(samples_left_to_save, bs)
# chains_save = min(chains_left_to_save, bs)
# # batch_y = test_y_collection[batch_id : batch_id + to_generate]
# batch_y = torch.ones(to_generate, graph_dit_model.ydim_output, device=graph_dit_model.device)
# cur_sample, log_probs = graph_dit_model.sample_batch(batch_id, to_generate, batch_y, save_final=to_save,
# keep_chain=chains_save, number_chain_steps=graph_dit_model.number_chain_steps)
# log_probs = torch.sum(log_probs, dim=-1).unsqueeze(1)
# samples = samples + cur_sample
# reward = graph_reward_fn(cur_sample, device=graph_dit_model.device)
# advantages = (reward - torch.mean(reward)) / (torch.std(reward) + 1e-6)
# print(f'reward: {reward.shape}, advantages: {advantages.shape}, log_probs: {log_probs.shape}, cur_sample: {len(cur_sample)}')
# if old_log_probs is None:
# old_log_probs = log_probs.clone()
# ratio = torch.exp(log_probs - old_log_probs)
# unclipped_loss = -advantages * ratio
# clipped_loss = -advantages * torch.clamp(ratio, 1.0 - cfg.ppo.clip_param, 1.0 + cfg.ppo.clip_param)
# loss = torch.mean(torch.max(unclipped_loss, clipped_loss))
# accelerator.backward(loss)
# optimizer.step()
# optimizer.zero_grad()
# samples_with_log_probs.append((cur_sample, log_probs, reward))
# train_epoch
from pytorch_lightning import seed_everything
seed_everything(cfg.train.seed)
for epoch in range(cfg.train.n_epochs):
print(f"Epoch {epoch}")
graph_dit_model.train()
graph_dit_model.cur_epoch = epoch
graph_dit_model.on_train_epoch_start()
for batch in train_dataloader:
optimizer.zero_grad()
loss = graph_dit_model.training_step(batch, epoch)['loss']
accelerator.backward(loss)
optimizer.step()
graph_dit_model.on_train_epoch_end()
for batch in val_dataloader:
if epoch % cfg.train.check_val_every_n_epoch == 0:
graph_dit_model.eval()
graph_dit_model.on_validation_epoch_start()
graph_dit_model.validation_step(batch, epoch)
graph_dit_model.on_validation_epoch_end()
# all_ys.append(batch_y)
# batch_id += to_generate
# test_epoch
# samples_left_to_save -= to_save
# samples_left_to_generate -= to_generate
# chains_left_to_save -= chains_save
# print(f"final Computing sampling metrics...")
# graph_dit_model.sampling_metrics.reset()
# graph_dit_model.sampling_metrics(samples, all_ys, graph_dit_model.name, graph_dit_model.current_epoch, graph_dit_model.val_counter, test=True)
# graph_dit_model.sampling_metrics.reset()
# print(f"Done.")
# # save samples
# print("Samples:")
# print(samples)
# ========================
graph_dit_model.test()
graph_dit_model.on_test_epoch_start()
for batch in test_dataloader:
graph_dit_model.test_step(batch, epoch)
graph_dit_model.on_test_epoch_end()
elif cfg.general.type == "Trainer":
trainer = Trainer(
gradient_clip_val=cfg.train.clip_grad,
# accelerator="cpu",
accelerator="gpu"
if torch.cuda.is_available() and cfg.general.gpus > 0
else "cpu",
devices=[cfg.general.gpu_number]
if torch.cuda.is_available() and cfg.general.gpus > 0
else None,
max_epochs=cfg.train.n_epochs,
enable_checkpointing=False,
check_val_every_n_epoch=cfg.train.check_val_every_n_epoch,
val_check_interval=cfg.train.val_check_interval,
strategy="ddp" if cfg.general.gpus > 1 else "auto",
enable_progress_bar=cfg.general.enable_progress_bar,
callbacks=[],
reload_dataloaders_every_n_epochs=0,
logger=[],
)
# trainer = Trainer(
# gradient_clip_val=cfg.train.clip_grad,
# # accelerator="cpu",
# accelerator="gpu"
# if torch.cuda.is_available() and cfg.general.gpus > 0
# else "cpu",
# devices=[cfg.general.gpu_number]
# if torch.cuda.is_available() and cfg.general.gpus > 0
# else None,
# max_epochs=cfg.train.n_epochs,
# enable_checkpointing=False,
# check_val_every_n_epoch=cfg.train.check_val_every_n_epoch,
# val_check_interval=cfg.train.val_check_interval,
# strategy="ddp" if cfg.general.gpus > 1 else "auto",
# enable_progress_bar=cfg.general.enable_progress_bar,
# callbacks=[],
# reload_dataloaders_every_n_epochs=0,
# logger=[],
# )
# if not cfg.general.test_only:
# print("start testing fit method")
# trainer.fit(model, datamodule=datamodule, ckpt_path=cfg.general.resume)
# if cfg.general.save_model:
# trainer.save_checkpoint(f"checkpoints/{cfg.general.name}/last.ckpt")
# trainer.test(model, datamodule=datamodule)
if not cfg.general.test_only:
print("start testing fit method")
trainer.fit(model, datamodule=datamodule, ckpt_path=cfg.general.resume)
if cfg.general.save_model:
trainer.save_checkpoint(f"checkpoints/{cfg.general.name}/last.ckpt")
trainer.test(model, datamodule=datamodule)
if __name__ == "__main__":
test()

View File

@@ -83,7 +83,8 @@ class TaskModel():
return adj_ops_pairs
def feature_from_adj_and_ops(adj, ops):
return np.concatenate([adj.flatten(), ops])
filename = '/home/stud/hanzhang/nasbenchDiT/graph_dit/nasbench-201-graph.json'
# filename = '/home/stud/hanzhang/nasbenchDiT/graph_dit/nasbench-201-graph.json'
filename = '/zhome/academic/HLRS/xmu/xmuhanma/nasbenchDiT/graph_dit/nasbench-201-graph.json'
graphs = read_adj_ops_from_json(filename)
adjs = []
opss = []

View File

@@ -76,8 +76,6 @@ class CategoricalEmbedder(nn.Module):
embeddings = embeddings + noise
return embeddings
# 相似的condition cluster起来
# size
class ClusterContinuousEmbedder(nn.Module):
def __init__(self, input_size, hidden_size, dropout_prob):
super().__init__()
@@ -110,8 +108,6 @@ class ClusterContinuousEmbedder(nn.Module):
if drop_ids is not None:
embeddings = torch.zeros((labels.shape[0], self.hidden_size), device=labels.device)
# print(labels[~drop_ids].shape)
# torch.Size([1200])
embeddings[~drop_ids] = self.mlp(labels[~drop_ids])
embeddings[drop_ids] += self.embedding_drop.weight[0]
else:

View File

@@ -17,22 +17,20 @@ class Denoiser(nn.Module):
num_heads=16,
mlp_ratio=4.0,
drop_condition=0.1,
Xdim=7,
Edim=2,
ydim=1,
Xdim=118,
Edim=5,
ydim=3,
task_type='regression',
):
super().__init__()
print(f"Denoiser, xdim: {Xdim}, edim: {Edim}, ydim: {ydim}, hidden_size: {hidden_size}, depth: {depth}, num_heads: {num_heads}, mlp_ratio: {mlp_ratio}, drop_condition: {drop_condition}")
self.num_heads = num_heads
self.ydim = ydim
self.x_embedder = nn.Linear(Xdim + max_n_nodes * Edim, hidden_size, bias=False)
self.t_embedder = TimestepEmbedder(hidden_size)
#
self.y_embedding_list = torch.nn.ModuleList()
self.y_embedding_list.append(ClusterContinuousEmbedder(1, hidden_size, drop_condition))
self.y_embedding_list.append(ClusterContinuousEmbedder(2, hidden_size, drop_condition))
for i in range(ydim - 2):
if task_type == 'regression':
self.y_embedding_list.append(ClusterContinuousEmbedder(1, hidden_size, drop_condition))
@@ -90,8 +88,6 @@ class Denoiser(nn.Module):
# print("Denoiser Forward")
# print(x.shape, e.shape, y.shape, t.shape, unconditioned)
# torch.Size([1200, 8, 7]) torch.Size([1200, 8, 8, 2]) torch.Size([1200, 2]) torch.Size([1200, 1]) False
# print(y)
force_drop_id = torch.zeros_like(y.sum(-1))
# drop the nan values
force_drop_id[torch.isnan(y.sum(-1))] = 1
@@ -113,12 +109,11 @@ class Denoiser(nn.Module):
c1 = self.t_embedder(t)
# print("C1 after t_embedder")
# print(c1.shape)
c2 = self.y_embedding_list[0](y[:,0].unsqueeze(-1), self.training, force_drop_id, t)
# for i in range(1, self.ydim):
# if i == 1:
# c2 = self.y_embedding_list[i-1](y[:, :2], self.training, force_drop_id, t)
# else:
# c2 = c2 + self.y_embedding_list[i-1](y[:, i:i+1], self.training, force_drop_id, t)
for i in range(1, self.ydim):
if i == 1:
c2 = self.y_embedding_list[i-1](y[:, :2], self.training, force_drop_id, t)
else:
c2 = c2 + self.y_embedding_list[i-1](y[:, i:i+1], self.training, force_drop_id, t)
# print("C2 after y_embedding_list")
# print(c2.shape)
# print("C1 + C2")

15626
graph_dit/swap_results.csv Normal file

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -11,9 +11,18 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 2,
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/stud/hanzhang/anaconda3/envs/graphdit/lib/python3.9/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n"
]
}
],
"source": [
"import sys\n",
"sys.path.append('../') \n",
@@ -34,6 +43,89 @@
"from sklearn.model_selection import train_test_split\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"torch.Size([100, 1])\n"
]
}
],
"source": [
"tensor1 = torch.randn(100,10)\n",
"sums_tensor1 = torch.sum(tensor1, dim=-1).unsqueeze(1)\n",
"print(sums_tensor1.shape)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor([[ 7.1564e-01, -3.5812e-02, -2.5924e-01],\n",
" [ 1.5302e-03, 1.0105e+00, 2.3484e+00]])\n",
"tensor([[-0.3566, -0.9514, -0.3267],\n",
" [-1.0915, -0.2063, 0.1615]])\n",
"torch.Size([4, 3])\n",
"tensor([[ 7.1564e-01, -3.5812e-02, -2.5924e-01],\n",
" [ 1.5302e-03, 1.0105e+00, 2.3484e+00],\n",
" [-3.5660e-01, -9.5144e-01, -3.2673e-01],\n",
" [-1.0915e+00, -2.0631e-01, 1.6153e-01]])\n",
"torch.Size([2, 6])\n",
"tensor([[ 7.1564e-01, -3.5812e-02, -2.5924e-01, -3.5660e-01, -9.5144e-01,\n",
" -3.2673e-01],\n",
" [ 1.5302e-03, 1.0105e+00, 2.3484e+00, -1.0915e+00, -2.0631e-01,\n",
" 1.6153e-01]])\n"
]
}
],
"source": [
"tensor1 = torch.randn(2, 3)\n",
"tensor2 = torch.randn(2, 3)\n",
"print(tensor1)\n",
"print(tensor2)\n",
"result1 = torch.cat([tensor1, tensor2], dim=0)\n",
"print(result1.shape)\n",
"print(result1)\n",
"\n",
"result2 = torch.cat([tensor1, tensor2], dim=1)\n",
"print(result2.shape)\n",
"print(result2)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[tensor([[0.4206, 3.3604]]), tensor([[-1.6348, -1.1363]])]\n"
]
}
],
"source": [
"tensors = [tensor1, tensor2]\n",
"for i in range(len(tensors)):\n",
" tensors[i] = torch.sum(tensors[i], dim=-1).unsqueeze(0)\n",
"print(tensors)\n",
"# for tensor in tensors:\n",
"# tensor = torch.sum(tensor).unsqueeze(0)\n",
"# print(tensor)\n",
"# print(tensors)"
]
},
{
"cell_type": "code",
"execution_count": 2,