281 lines
10 KiB
Python
281 lines
10 KiB
Python
# These imports are tricky because they use c++, do not move them
|
|
import tqdm
|
|
import os, shutil
|
|
import warnings
|
|
|
|
import torch
|
|
import hydra
|
|
from omegaconf import DictConfig
|
|
from pytorch_lightning import Trainer
|
|
|
|
import utils
|
|
from datasets import dataset
|
|
from diffusion_model import Graph_DiT
|
|
from metrics.molecular_metrics_train import TrainMolecularMetricsDiscrete
|
|
from metrics.molecular_metrics_train import TrainGraphMetricsDiscrete
|
|
from metrics.molecular_metrics_sampling import SamplingMolecularMetrics
|
|
from metrics.molecular_metrics_sampling import SamplingGraphMetrics
|
|
|
|
|
|
from analysis.visualization import MolecularVisualization
|
|
from analysis.visualization import GraphVisualization
|
|
|
|
warnings.filterwarnings("ignore", category=UserWarning)
|
|
torch.set_float32_matmul_precision("medium")
|
|
|
|
def remove_folder(folder):
|
|
for filename in os.listdir(folder):
|
|
file_path = os.path.join(folder, filename)
|
|
try:
|
|
if os.path.isfile(file_path) or os.path.islink(file_path):
|
|
os.unlink(file_path)
|
|
elif os.path.isdir(file_path):
|
|
shutil.rmtree(file_path)
|
|
except Exception as e:
|
|
print("Failed to delete %s. Reason: %s" % (file_path, e))
|
|
|
|
|
|
def get_resume(cfg, model_kwargs):
|
|
"""Resumes a run. It loads previous config without allowing to update keys (used for testing)."""
|
|
saved_cfg = cfg.copy()
|
|
name = cfg.general.name + "_resume"
|
|
resume = cfg.general.test_only
|
|
batch_size = cfg.train.batch_size
|
|
model = Graph_DiT.load_from_checkpoint(resume, **model_kwargs)
|
|
cfg = model.cfg
|
|
cfg.general.test_only = resume
|
|
cfg.general.name = name
|
|
cfg.train.batch_size = batch_size
|
|
cfg = utils.update_config_with_new_keys(cfg, saved_cfg)
|
|
return cfg, model
|
|
|
|
def get_resume_adaptive(cfg, model_kwargs):
|
|
"""Resumes a run. It loads previous config but allows to make some changes (used for resuming training)."""
|
|
saved_cfg = cfg.copy()
|
|
# Fetch path to this file to get base path
|
|
current_path = os.path.dirname(os.path.realpath(__file__))
|
|
root_dir = current_path.split("outputs")[0]
|
|
resume_path = os.path.join(root_dir, cfg.general.resume)
|
|
|
|
if cfg.model.type == "discrete":
|
|
model = Graph_DiT.load_from_checkpoint(
|
|
resume_path, **model_kwargs
|
|
)
|
|
else:
|
|
raise NotImplementedError("Unknown model")
|
|
|
|
new_cfg = model.cfg
|
|
for category in cfg:
|
|
for arg in cfg[category]:
|
|
new_cfg[category][arg] = cfg[category][arg]
|
|
|
|
new_cfg.general.resume = resume_path
|
|
new_cfg.general.name = new_cfg.general.name + "_resume"
|
|
|
|
new_cfg = utils.update_config_with_new_keys(new_cfg, saved_cfg)
|
|
return new_cfg, model
|
|
|
|
|
|
@hydra.main(
|
|
version_base="1.1", config_path="../configs", config_name="config"
|
|
)
|
|
def main(cfg: DictConfig):
|
|
|
|
datamodule = dataset.DataModule(cfg)
|
|
datamodule.prepare_data()
|
|
dataset_infos = dataset.DataInfos(datamodule=datamodule, cfg=cfg, dataset=datamodule.dataset)
|
|
train_smiles, reference_smiles = datamodule.get_train_smiles()
|
|
# train_graphs, reference_graphs = datamodule.get_train_graphs()
|
|
|
|
# get input output dimensions
|
|
dataset_infos.compute_input_output_dims(datamodule=datamodule)
|
|
train_metrics = TrainMolecularMetricsDiscrete(dataset_infos)
|
|
# train_metrics = TrainGraphMetricsDiscrete(dataset_infos)
|
|
|
|
sampling_metrics = SamplingMolecularMetrics(
|
|
dataset_infos, train_smiles, reference_smiles
|
|
)
|
|
# sampling_metrics = SamplingGraphMetrics(
|
|
# dataset_infos, train_graphs, reference_graphs
|
|
# )
|
|
visualization_tools = MolecularVisualization(dataset_infos)
|
|
|
|
model_kwargs = {
|
|
"dataset_infos": dataset_infos,
|
|
# "train_metrics": train_metrics,
|
|
# "sampling_metrics": sampling_metrics,
|
|
"visualization_tools": visualization_tools,
|
|
}
|
|
|
|
if cfg.general.test_only:
|
|
# When testing, previous configuration is fully loaded
|
|
cfg, _ = get_resume(cfg, model_kwargs)
|
|
os.chdir(cfg.general.test_only.split("checkpoints")[0])
|
|
elif cfg.general.resume is not None:
|
|
# When resuming, we can override some parts of previous configuration
|
|
cfg, _ = get_resume_adaptive(cfg, model_kwargs)
|
|
os.chdir(cfg.general.resume.split("checkpoints")[0])
|
|
|
|
model = Graph_DiT(cfg=cfg, **model_kwargs)
|
|
trainer = Trainer(
|
|
gradient_clip_val=cfg.train.clip_grad,
|
|
# accelerator="gpu"
|
|
# if torch.cuda.is_available() and cfg.general.gpus > 0
|
|
# else "cpu",
|
|
accelerator="cpu",
|
|
devices=cfg.general.gpus
|
|
if torch.cuda.is_available() and cfg.general.gpus > 0
|
|
else None,
|
|
max_epochs=cfg.train.n_epochs,
|
|
enable_checkpointing=False,
|
|
check_val_every_n_epoch=cfg.train.check_val_every_n_epoch,
|
|
val_check_interval=cfg.train.val_check_interval,
|
|
strategy="ddp" if cfg.general.gpus > 1 else "auto",
|
|
enable_progress_bar=cfg.general.enable_progress_bar,
|
|
callbacks=[],
|
|
reload_dataloaders_every_n_epochs=0,
|
|
logger=[],
|
|
)
|
|
|
|
if not cfg.general.test_only:
|
|
trainer.fit(model, datamodule=datamodule, ckpt_path=cfg.general.resume)
|
|
if cfg.general.save_model:
|
|
trainer.save_checkpoint(f"checkpoints/{cfg.general.name}/last.ckpt")
|
|
trainer.test(model, datamodule=datamodule)
|
|
else:
|
|
trainer.test(model, datamodule=datamodule, ckpt_path=cfg.general.test_only)
|
|
|
|
from accelerate import Accelerator
|
|
from accelerate.utils import set_seed, ProjectConfiguration
|
|
|
|
@hydra.main(
|
|
version_base="1.1", config_path="../configs", config_name="config"
|
|
)
|
|
def test(cfg: DictConfig):
|
|
accelerator_config = ProjectConfiguration(
|
|
project_dir=os.path.join(cfg.general.log_dir, cfg.general.name),
|
|
automatic_checkpoint_naming=True,
|
|
total_limit=cfg.general.number_checkpoint_limit,
|
|
)
|
|
accelerator = Accelerator(
|
|
mixed_precision=cfg.mixed_precision,
|
|
project_config=accelerator_config,
|
|
gradient_accumulation_steps=cfg.train.gradient_accumulation_steps * cfg.n_epochs,
|
|
)
|
|
set_seed(cfg.train.seed, device_specific=True)
|
|
|
|
datamodule = dataset.DataModule(cfg)
|
|
datamodule.prepare_data()
|
|
dataset_infos = dataset.DataInfos(datamodule=datamodule, cfg=cfg, dataset=datamodule.dataset)
|
|
train_graphs, reference_graphs = datamodule.get_train_graphs()
|
|
|
|
dataset_infos.compute_input_output_dims(datamodule=datamodule)
|
|
train_metrics = TrainGraphMetricsDiscrete(dataset_infos)
|
|
|
|
sampling_metrics = SamplingGraphMetrics(
|
|
dataset_infos, train_graphs, reference_graphs
|
|
)
|
|
|
|
visulization_tools = GraphVisualization(dataset_infos)
|
|
|
|
model_kwargs = {
|
|
"dataset_infos": dataset_infos,
|
|
"train_metrics": train_metrics,
|
|
"sampling_metrics": sampling_metrics,
|
|
"visualization_tools": visulization_tools,
|
|
}
|
|
|
|
if cfg.general.test_only:
|
|
cfg, _ = get_resume(cfg, model_kwargs)
|
|
os.chdir(cfg.general.test_only.split("checkpoints")[0])
|
|
elif cfg.general.resume is not None:
|
|
cfg, _ = get_resume_adaptive(cfg, model_kwargs)
|
|
os.chdir(cfg.general.resume.split("checkpoints")[0])
|
|
# os.environ["CUDA_VISIBLE_DEVICES"] = cfg.general.gpu_number
|
|
model = Graph_DiT(cfg=cfg, **model_kwargs)
|
|
graph_dit_model = model
|
|
|
|
inference_dtype = torch.float32
|
|
graph_dit_model.to(accelerator.device, dtype=inference_dtype)
|
|
|
|
|
|
# optional: freeze the model
|
|
# graph_dit_model.model.requires_grad_(True)
|
|
import torch.nn.functional as F
|
|
optimizer = graph_dit_model.configure_optimizers()
|
|
# start training
|
|
for epoch in range(cfg.train.n_epochs):
|
|
graph_dit_model.train() # 设置模型为训练模式
|
|
for batch_data in datamodule.train_dataloader: # 从数据加载器中获取一个批次的数据
|
|
data_x = F.one_hot(batch_data.x, num_classes=12).float()[:, graph_dit_model.active_index] # 节点特征
|
|
data_edge_attr = F.one_hot(batch_data.edge_attr, num_classes=2).float() # 边特征
|
|
|
|
# 转换为 dense 格式并传递给 Graph_DiT
|
|
dense_data, node_mask = utils.to_dense(data_x, batch_data.edge_index, data_edge_attr, batch_data.batch, graph_dit_model.max_n_nodes)
|
|
dense_data = dense_data.mask(node_mask)
|
|
|
|
X, E = dense_data.X, dense_data.E # 节点特征和边特征
|
|
y = batch_data.y # 标签
|
|
|
|
# 前向传播和损失计算
|
|
pred = graph_dit_model(dense_data) # 传入 Graph_DiT 模型
|
|
loss = graph_dit_model.train_loss(pred, X, E, y, node_mask)
|
|
|
|
# 优化步骤
|
|
optimizer.zero_grad()
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
# start sampling
|
|
|
|
samples = []
|
|
|
|
for i in tqdm(
|
|
range(cfg.general.n_samples), desc="Sampling", disable=not cfg.general.enable_progress_bar
|
|
):
|
|
batch_size = cfg.train.batch_size
|
|
num_steps = cfg.model.diffusion_steps
|
|
y = torch.ones(batch_size, num_steps, 1, 1, device=accelerator.device, dtype=inference_dtype)
|
|
|
|
# sample from the model
|
|
samples_batch = graph_dit_model.sample_batch(
|
|
batch_id=i,
|
|
batch_size=batch_size,
|
|
y=y,
|
|
keep_chain=1,
|
|
number_chain_steps=num_steps,
|
|
save_final=batch_size
|
|
)
|
|
samples.append(samples_batch)
|
|
|
|
|
|
# trainer = Trainer(
|
|
# gradient_clip_val=cfg.train.clip_grad,
|
|
# # accelerator="cpu",
|
|
# accelerator="gpu"
|
|
# if torch.cuda.is_available() and cfg.general.gpus > 0
|
|
# else "cpu",
|
|
# devices=[cfg.general.gpu_number]
|
|
# if torch.cuda.is_available() and cfg.general.gpus > 0
|
|
# else None,
|
|
# max_epochs=cfg.train.n_epochs,
|
|
# enable_checkpointing=False,
|
|
# check_val_every_n_epoch=cfg.train.check_val_every_n_epoch,
|
|
# val_check_interval=cfg.train.val_check_interval,
|
|
# strategy="ddp" if cfg.general.gpus > 1 else "auto",
|
|
# enable_progress_bar=cfg.general.enable_progress_bar,
|
|
# callbacks=[],
|
|
# reload_dataloaders_every_n_epochs=0,
|
|
# logger=[],
|
|
# )
|
|
|
|
# if not cfg.general.test_only:
|
|
# print("start testing fit method")
|
|
# trainer.fit(model, datamodule=datamodule, ckpt_path=cfg.general.resume)
|
|
# if cfg.general.save_model:
|
|
# trainer.save_checkpoint(f"checkpoints/{cfg.general.name}/last.ckpt")
|
|
# trainer.test(model, datamodule=datamodule)
|
|
|
|
if __name__ == "__main__":
|
|
test()
|