add UNet code
This commit is contained in:
53
UNet/train.py
Normal file
53
UNet/train.py
Normal file
@@ -0,0 +1,53 @@
|
||||
import torch
|
||||
from torch import optim
|
||||
from torch.utils.data import DataLoader
|
||||
from data import *
|
||||
from net import *
|
||||
|
||||
from torchvision.utils import save_image
|
||||
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
weight_path = r'/Users/hanzhangma/Nextcloud/mhz/Study/SS24/MasterThesis/UNet/params/unet.pth'
|
||||
data_path = r'/Users/hanzhangma/Document/DataSet/VOC2007'
|
||||
save_path = r'/Users/hanzhangma/Nextcloud/mhz/Study/SS24/MasterThesis/Unet/train_image'
|
||||
|
||||
if __name__ == '__main__':
|
||||
data_loader = DataLoader(MyDataset(data_path), batch_size= 4, shuffle=True)
|
||||
|
||||
net = UNet().to(device)
|
||||
if os.path.exists(weight_path):
|
||||
net.load_state_dict(torch.load(weight_path))
|
||||
print('successful load weight!')
|
||||
else:
|
||||
print('Failed on load weight!')
|
||||
|
||||
opt = optim.Adam(net.parameters())
|
||||
loss_fun = nn.BCELoss()
|
||||
|
||||
epoch=1
|
||||
|
||||
while True:
|
||||
for i,(image,segment_image) in enumerate(data_loader):
|
||||
image, segment_image = image.to(device), segment_image.to(device)
|
||||
|
||||
out_image = net(image)
|
||||
train_loss = loss_fun(out_image, segment_image)
|
||||
|
||||
opt.zero_grad()
|
||||
train_loss.backward()
|
||||
opt.step() # 更新梯度
|
||||
|
||||
if i%5 ==0 :
|
||||
print(f'{epoch} -- {i} -- train loss ===>> {train_loss.item()}')
|
||||
|
||||
if i % 50 == 0:
|
||||
torch.save(net.state_dict(), weight_path)
|
||||
|
||||
_image = image[0]
|
||||
_segment_image = segment_image[0]
|
||||
_out_image = out_image[0]
|
||||
|
||||
img = torch.stack([_image, _segment_image, _out_image], dim=0)
|
||||
save_image(img, f'{save_path}/{i}.png')
|
||||
|
||||
epoch += 1
|
||||
Reference in New Issue
Block a user