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Abstract
The time and effort involved in hand-designing
deep neural networks is immense. This has
prompted the development of Neural Architec-
ture Search (NAS) techniques to automate this
design. However, NAS algorithms tend to be slow
and expensive; they need to train vast numbers
of candidate networks to inform the search pro-
cess. This could be alleviated if we could par-
tially predict a network’s trained accuracy from
its initial state. In this work, we examine the
overlap of activations between datapoints in un-
trained networks and motivate how this can give
a measure which is usefully indicative of a net-
work’s trained performance. We incorporate this
measure into a simple algorithm that allows us to
search for powerful networks without any train-
ing in a matter of seconds on a single GPU, and
verify its effectiveness on NAS-Bench-101, NAS-
Bench-201, NATS-Bench, and Network Design
Spaces. Our approach can be readily combined
with more expensive search methods; we exam-
ine a simple adaptation of regularised evolution-
ary search. Code for reproducing our experi-
ments is available at https://github.com/
BayesWatch/nas-without-training.

1. Introduction
The success of deep learning in computer vision is in no
small part due to the insight and engineering efforts of hu-
man experts, allowing for the creation of powerful archi-
tectures for widespread adoption (Krizhevsky et al., 2012;
Simonyan & Zisserman, 2015; He et al., 2016; Szegedy
et al., 2016; Huang et al., 2017). However, this manual
design is costly, and becomes increasingly more difficult
as networks get larger and more complicated. Because of
these challenges, the neural network community has seen a
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shift from designing architectures to designing algorithms
that search for candidate architectures (Elsken et al., 2019;
Wistuba et al., 2019). These Neural Architecture Search
(NAS) algorithms are capable of automating the discovery
of effective architectures (Zoph & Le, 2017; Zoph et al.,
2018; Pham et al., 2018; Tan et al., 2019; Liu et al., 2019;
Real et al., 2019).

NAS algorithms are broadly based on the seminal work
of Zoph & Le (2017). A controller network generates an
architecture proposal, which is then trained to provide a
signal to the controller through REINFORCE (Williams,
1992), which then produces a new proposal, and so on.
Training a network for every controller update is extremely
expensive; utilising 800 GPUs for 28 days in Zoph & Le
(2017). Subsequent work has sought to ameliorate this by
(i) learning stackable cells instead of whole networks (Zoph
et al., 2018) and (ii) incorporating weight sharing; allow-
ing candidate networks to share weights to allow for joint
training (Pham et al., 2018). These contributions have ac-
celerated the speed of NAS algorithms e.g. to half a day on
a single GPU in Pham et al. (2018).

For some practitioners, NAS is still too slow; being able to
perform NAS quickly (i.e. in seconds) would be immensely
useful in the hardware-aware setting where a separate search
is typically required for each device and task (Wu et al.,
2019; Tan et al., 2019). This could be achieved if NAS
could be performed without any network training. In this
paper we show that this is possible. We explore NAS-Bench-
101 (Ying et al., 2019), NAS-Bench-201 (Dong & Yang,
2020), NATS-Bench (Dong et al., 2021), and Network De-
sign Spaces (NDS, Radosavovic et al., 2019), and examine
the overlap of activations between datapoints in a mini-batch
for an untrained network (Section 3). The linear maps of
the network are uniquely identified by a binary code cor-
responding to the activation pattern of the rectified linear
units. The Hamming distance between these binary codes
can be used to define a kernel matrix (which we denote by
KH ) which is distinctive for networks that perform well;
this is immediately apparent from visualisation alone across
two distinct search spaces (Figure 1). We devise a score
based on KH and perform an ablation study to demonstrate
its robustness to inputs and network initialisation.

We incorporate our score into a simple search algorithm

https://github.com/BayesWatch/nas-without-training
https://github.com/BayesWatch/nas-without-training


Neural Architecture Search without Training

(a) NAS-Bench-201 (b) NDS-DARTS

Figure 1. KH for a mini-batch of 128 CIFAR-10 images for untrained architectures in (a) NAS-Bench-201 (Dong & Yang, 2020) and (b)
NDS-DARTS (Radosavovic et al., 2019). KH in these plots is normalised so that the diagonal entries are 1. The KH are sorted into
columns based on the final CIFAR-10 validation accuracy when trained. Darker regions have higher similarity. The profiles are distinctive;
the KH for good architectures in both search spaces have less similarity between different images. We can use KH for an untrained
network to predict its final performance without any training. Note that (b) covers a tighter accuracy range than (a), which may explain it
being less distinctive.

that doesn’t require training (Section 4). This allows us to
perform architecture search quickly, for example, on CIFAR-
10 (Krizhevsky, 2009) we are able to search for a network
that achieves 92.81% accuracy in 30 seconds within the
NAS-Bench-201 search space; several orders of magnitude
faster than traditional NAS methods for a modest change
in final accuracy. We also show how we can combine our
approach with regularised evolutionary search (REA, Pham
et al., 2018) as an example of how it can be readily integrated
into existing NAS techniques.

We believe that this work is an important proof-of-concept
for NAS without training. The large resource and time costs
associated with NAS can be avoided; our search algorithm
uses a single GPU and is extremely fast. The benefit is two-
fold, as we also show that we can integrate our approach
into existing NAS techniques for scenarios where obtaining
as high an accuracy as possible is of the essence.

2. Background
Designing a neural architecture by hand is a challenging
and time-consuming task. It is extremely difficult to intuit

where to place connections, or which operations to use.
This has prompted an abundance of research into neural
architecture search (NAS); the automation of the network
design process. In the pioneering work of Zoph & Le (2017),
the authors use an RNN controller to generate descriptions
of candidate networks. Candidate networks are trained, and
used to update the controller using reinforcement learning
to improve the quality of the candidates it generates. This
algorithm is very expensive: searching for an architecture to
classify CIFAR-10 required running 800 GPUs for 28 days.
It is also inflexible; the final network obtained is fixed and
cannot be scaled e.g. for use on mobile devices or for other
datasets.

The subsequent work of Zoph et al. (2018) deals with these
limitations. Inspired by the modular nature of successful
hand-designed networks (Simonyan & Zisserman, 2015; He
et al., 2016; Huang et al., 2017), they propose searching over
neural building blocks, instead of over whole architectures.
These building blocks, or cells, form part of a fixed overall
network structure. Specifically, the authors search for a
standard cell, and a reduced cell (incorporating pooling) for
CIFAR-10 classification. These are then used as the building
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Figure 2. Visualising how binary activation codes of ReLU units correspond to linear regions. 1: Each ReLU node Ai splits the input into
an active (> 0) and inactive region We label the active region 1 and inactive 0. 2: The active/inactive regions associated with each node
Ai intersect. Areas of the input space with the same activation pattern are co-linear. Here we show the intersection of the A nodes and
give the code for the linear regions. Bit i of the code corresponds to whether node Ai is active. 3: The ReLU nodes B of the next layer
divides the space further into active and inactive regions. 4: Each linear region at a given node can be uniquely defined by the activation
pattern of all the ReLU nodes that preceded it.

blocks of a larger network for ImageNet (Russakovsky et al.,
2015) classification. While more flexible—the number of
cells can be adjusted according to budget—and cheaper,
owing to a smaller search space, this technique still utilised
500 GPUs across 4 days.

ENAS (Pham et al., 2018) reduces the computational cost
of searching by allowing multiple candidate architectures to
share weights. This facilitates the simultaneous training of
candidates, reducing the search time on CIFAR-10 to half a
day on a single GPU. Weight sharing has seen widespread
adoption in a host of NAS algorithms (Liu et al., 2019;
Luo et al., 2018; Cai et al., 2019; Xie et al., 2019; Brock
et al., 2018). However, there is evidence that it inhibits the
search for optimal architectures (Yu et al., 2020), exposing
random search as an extremely effective NAS baseline (Yu
et al., 2020; Li & Talwalkar, 2019). There also remains the
problem that the search spaces are still so vast—there are
1.6× 1029 possible architectures in Pham et al. (2018) for
example—that it is impossible to identify the best networks
and demonstrate that NAS algorithms find them.

An orthogonal direction for identifying good architectures
is the estimation of accuracy prior to training (Deng et al.,
2017; Istrate et al., 2019), although these differ from this
work in that they rely on training a predictive model, rather
than investigating more fundamental architectural properties.
Since its inception others have explored our work and the
ideas therein in interesting directions. Of most interest from
our perspective are Abdelfattah et al. (2021) who integrate

training-free heuristics into existing more-expensive search
strategies to improve their performance as we do in this
paper. Park et al. (2020) use the correspondence between
wide neural networks and Gaussian processes to motivate
using as a heuristic the validation accuracy of a Monte-Carlo
approximated neural network Gaussian process conditioned
on training data. Chen et al. (2021) propose two further
heuristics—one based on the condition number of the neural
tangent kernel (Jacot et al., 2018) at initialisation and the
other based on the number of unique linear regions that
partition training data at initialisation—with a proposed
strategy to combine these heuristics into a stronger one.

2.1. NAS Benchmarks

A major barrier to evaluating the effectiveness of a NAS
algorithm is that the search space (the set of all possible net-
works) is too large for exhaustive evaluation. This has led to
the creation of several benchmarks (Ying et al., 2019; Zela
et al., 2020; Dong & Yang, 2020; Dong et al., 2021) that
consist of tractable NAS search spaces, and metadata for the
training of networks within that search space. Concretely,
this means that it is now possible to determine whether
an algorithm is able to search for a good network. In this
work we utilise NAS-Bench-101 (Ying et al., 2019), NAS-
Bench-201 (Dong & Yang, 2020), and NATS-Bench (Dong
et al., 2021) to evaluate the effectiveness of our approach.
NAS-Bench-101 consists of 423,624 neural networks that
have been trained exhaustively, with three different initialisa-
tions, on the CIFAR-10 dataset for 108 epochs. NAS-Bench-
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201 consists of 15,625 networks trained multiple times on
CIFAR-10, CIFAR-100, and ImageNet-16-120 (Chrabaszcz
et al., 2017). NATS-Bench (Dong et al., 2021) comprises
two search spaces: a topology search space (NATS-Bench
TSS) which contains the same 15,625 networks as NAS-
Bench 201; and a size search space (NATS-Bench SSS)
which contains 32,768 networks where the number of chan-
nels for cells varies between these networks. These bench-
marks are described in detail in Appendix A in the supple-
mentary material.

We also make use of the Network Design Spaces (NDS)
dataset (Radosavovic et al., 2019). Where the NAS bench-
marks aim to compare search algorithms, NDS aims to
compare the search spaces themselves. All networks in
NDS use the DARTS (Liu et al., 2019) skeleton. The net-
works are comprised of cells sampled from one of several
NAS search spaces. Cells are sampled—and the resulting
networks are trained—from each of AmoebaNet (Real et al.,
2019); DARTS (Liu et al., 2019); ENAS (Pham et al., 2018),
NASNet (Zoph & Le, 2017), and PNAS (Liu et al., 2018).

We denote each of these sets as NDS-AmoebaNet, NDS-
DARTS, NDS-ENAS, NDS-NASNet, and NDS-PNAS re-
spectively. Note that these sets contain networks of variable
width and depth, whereas in e.g. the original DARTS search
space these were fixed quantities.1

3. Scoring Networks at Initialisation
Our goal is to devise a means to score a network architecture
at initialisation in a way that is indicative of its final trained
accuracy. This can either replace the expensive inner-loop
training step in NAS, or better direct exploration in existing
NAS algorithms.

Given a neural network with rectified linear units, we can,
at each unit in each layer, identify a binary indicator as to
whether the unit is inactive (the value is negative and hence
is multiplied by zero) or active (in which case its value
is multiplied by one). Fixing these indicator variables, it
is well known that the network is now locally defined by
a linear operator (Hanin & Rolnick, 2019); this operator
is obtained by multiplying the linear maps at each layer
interspersed with the binary rectification units. Consider a
mini-batch of data X = {xi}Ni=1 mapped through a neural
network as f(xi). The indicator variables from the rectified
linear units in f at xi form a binary code ci that defines the
linear region.

The intuition to our approach is that the more similar the
binary codes associated with two inputs are then the more

1NDS also contains a set of networks with fixed width and
depth for the DARTS, ENAS, and PNAS cell search spaces. We
provide experiments on these sets in Appendix B in the supple-
mentary material.

challenging it is for the network to learn to separate these
inputs. When two inputs have the same binary code, they
lie within the same linear region of the network and so are
particularly difficult to disentangle. Conversely, learning
should prove easier when inputs are well separated. Figure 2
visualises binary codes corresponding to linear regions.

We use the Hamming distance dH(ci, cj) between two
binary codes—induced by the untrained network at two
inputs—as a measure of how dissimilar the two inputs are.

We can examine the correspondence between binary codes
for the whole mini-batch by computing the kernel matrix

KH =

NA−dH(c1, c1) · · · NA−dH(c1, cN )
...

. . .
...

NA−dH(cN , c1) · · · NA−dH(cN , cN )


(1)

where NA is the number of rectified linear units.

We compute KH for a random subset of NAS-Bench-
201 (Dong & Yang, 2020) and NDS-DARTS (Radosavovic
et al., 2019) networks at initialisation for a mini-batch of
CIFAR-10 images. We plot normalised KH for different
trained accuracy bounds in Figure 1.

These normalised kernel plots are very distinct; high per-
forming networks have fewer off-diagonal elements with
high similarity. We can use this observation to predict the
final performance of untrained networks, in place of the
expensive training step in NAS. Specifically, we score net-
works using:

s = log |KH | (2)

Given two kernels with the same trace, s is higher for the
kernel closest to diagonal. A higher score at initialisation
implies improved final accuracy after training.

For the search spaces across NAS-Bench-101 (Ying et al.,
2019), NAS-Bench-201 (Dong & Yang, 2020), NATS-
Bench SSS (Dong et al., 2021), and NDS (Radosavovic
et al., 2019) we sample networks at random and plot our
score s on the untrained networks against their validation ac-
curacies when trained. The plots for NAS-Bench-101, NAS-
Bench-201, and NDS are available in Figure 3. In most
cases 1000 networks are sampled.2 The plots for NATS-
Bench SSS can be found in Figure 9 (Appendix B in the
supplementary material). We also provide comparison plots
for the fixed width and depth spaces in NDS in Figure 10
(Appendix B in the supplementary material). Kendall’s Tau
correlation coefficients τ are given at the top of each plot.

2Due to GPU memory limitations, there are 900, 749, and 973
networks shown for NDS-AmoebaNet, NDS-ENAS, and NDS-
PNAS respectively.
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Figure 3. (a)-(i): Plots of our score for randomly sampled untrained architectures
in NAS-Bench-201, NAS-Bench-101, NDS-Amoeba, NDS-DARTS, NDS-ENAS,
NDS-NASNet, NDS-PNAS against validation accuracy when trained. The inputs
when computing the score and the validation accuracy for each plot are from
CIFAR-10 except for (b) and (c) which use CIFAR-100 and ImageNet16-120
respectively. (j): We include a plot from NDS-DARTS on ImageNet (121 networks
provided) to illustrate that the score extends to more challenging datasets. We use
a mini-batch from ImageNette2 which is a strict subset of ImageNet with only
10 classes. In all cases there is a noticeable correlation between the score for an
untrained network and the final accuracy when trained.

(j)
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Figure 4. Kendall’s Tau correlation across each of the NDS CIFAR-10 search spaces. We compare our method to two alternative measures:
grad norm and synflow. The results for grad norm refer to the absolute Euclidean-norm of the gradients over one random
mini-batch of data. synflow is the gradient-based score defined by Tanaka et al. (2020), summed over each parameter in the network.

We find in all cases there is a positive correlation between
the validation accuracy and the score. This is particularly
strong for NAS-Bench-201 and NDS-DARTS. We show the
Kendall’s Tau correlation coefficient between s and final
accuracy on CIFAR-10 for NDS in Figure 4. For compar-
ison, we include the best-performing architecture scoring
functions from Abdelfattah et al. (2021) — grad norm
and synflow — as baselines. The first is the sum of the
gradient norms for every weight in the network, and the sec-
ond is the summed Synaptic Flow score derived in Tanaka
et al. (2020). our score (Equation 2) correlates with accuracy
across all of the search spaces, where the other two scores
fluctuate substantially. These results point to our score being
effective on a wide array of neural network design spaces.

3.1. Ablation Study

How important are the images used to compute the
score? Since our approach relies on randomly sampling
a single mini-batch of data, it is reasonable to question
whether different mini-batches result in different scores.
To determine whether our method is dependent on mini-
batches, we randomly select 10 architectures from different
CIFAR-100 accuracy percentiles in NAS-Bench-201 and
compute the score separately for 20 random CIFAR-100
mini-batches. The resulting box-and-whisker plot is given
in Figure 5(top-left): the ranking of the scores is reasonably
robust to the specific choice of images. In Figure 5(top-
right) we compute our score using normally distributed
random inputs; this has little impact on the general trend.
This suggests our score captures a property of the network
architecture, rather than something data-specific.

Does the score change for different initialisations? Fig-
ure 5(bottom-left) shows how the score for our 10 NAS-
Bench-201 architectures differs over 20 initialisations.
While there is some noise, the better performing networks
remain distinctive, and can be isolated.

Figure 5. Ablation experiments showing the effect on our score us-
ing different CIFAR-100 mini-batches (top-left), random normally-
distributed input images (top-right), weight initialisations (bottom-
left), and mini-batch sizes (bottom-right) for 10 randomly selected
NAS-Bench-201 architectures (one in each 5% percentile range
from 50-55, ..., 95-100). For each network, 20 samples were taken
for each ablation. The mini-batch size was 128 for all experiments
apart from the bottom-right. The bottom-right experiment used
mini-batch sizes of 32, 64, 128, and 256; as the score depends on
the mini-batch size we normalised the score by the minimum score
of the sampled networks from the same mini-batch size.

Does the size of the mini-batch matter? As KH scales
with mini-batch size we compare across mini-batch sizes
by dividing a given score by the minimum score using the
same mini-batch size from the set of sampled networks.
Figure 5(bottom-right) presents this normalised score for
different mini-batch sizes. The best performing networks
remain distinct.

How does the score evolve as networks are trained? Al-
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though the motivation of our work is to score uninitialised
networks, it is worth observing how the score evolves as a
network is trained. We consider 10 NAS-Bench-201 net-
works with > 90% validation accuracy when evaluated on
CIFAR-10. This makes the performance difference between
the 10 networks much smaller than for the search space
as a whole. We train each network via stochastic gradient
descent with a cross entropy loss for 100 epochs and eval-
uate the score at each training epoch. Figure 6 shows the
evolution of the score. The left subplot shows a zoomed-in
view of the score trajectories across the first two epochs and
the right subplot shows the score trajectories across all 100
epochs. We observe that the score increases in all cases im-
mediately after some training has occurred, but very quickly
stabilises to a near constant value. The increase in the score
value after initialisation was similar amongst the networks,
and the relative ranking remained similar throughout.

Figure 6. Plots of our score (Equation 2) during training for 10
networks from NAS-Bench-201 using the CIFAR-10 dataset. The
legend provides the final accuracy of the network as given by
the NAS-Bench-201 API. For all 10 networks the score increases
sharply in the first few epochs and then flattens. The ranking of
the scores between networks remains relatively stable throughout
training.

In Section 4 we demonstrate how our score (Equation 2)
can be used in a NAS algorithm for extremely fast search.

4. Neural Architecture Search without
Training — NASWOT

In Section 3 we derived a score for cheaply ranking net-
works at initialisation based on their expected performance
(Equation 2). Here as a proof of concept, we integrate this
score into a simple search algorithm and evaluate its ability
to alleviate the need for training in NAS. Code for repro-
ducing our experiments is available at https://github.
com/BayesWatch/nas-without-training.

Table 1. Mean ± std. accuracy from NAS-Bench-101. NASWOT
is our training-free algorithm (across 500 runs). REA uses evolu-
tionary search to select an architecture (50 runs), Random selects
one architecture (500 runs). AREA (assisted-REA) uses our score
(Equation 2) to select the starting population for REA (50 runs).
Search times for REA and AREA were calculated using the NAS-
Bench-101 API.

Method Search (s) CIFAR-10

Random N/A 90.38±5.51
NASWOT (N=100) 23 91.77±0.05
REA 12000 93.87±0.22
AREA (Ours) 12000 93.91±0.29

Algorithm 1 NASWOT

generator = RandomGenerator()
best net, best score = None, 0
for i=1:N do

net = generator.generate()
score = net.score()
if score > best score then

best net, best score = net, score
chosen net = best network

Many NAS algorithms are based on that of Zoph & Le
(2017); it uses a generator network which proposes archi-
tectures. The weights of the generator are learnt by training
the networks it generates, either on a proxy task or on the
dataset itself, and using their trained accuracies as signal
through e.g. REINFORCE (Williams, 1992). This is re-
peated until the generator is trained; it then produces a final
network which is the output of this algorithm. The vast
majority of the cost is incurred by having to train candi-
date architectures for every single controller update. Note
that there exist alternative schema utilising e.g. evolutionary
algorithms (Real et al., 2019) or bilevel optimisation (Liu
et al., 2019) but all involve training.

We instead propose a simple alternative—NASWOT—
illustrated in Algorithm 1. Instead of having a neural net-
work as a generator, we randomly propose a candidate from
the search space and then rather than training it, we score
it in its untrained state using Equation 2. We do this N
times—i.e. we have a sample size of N architectures—and
then output the highest scoring network.

NAS-Bench-101. We compare NASWOT to 12000 sec-
onds of REA (Real et al., 2019) and random selection on
NAS-Bench-101 (Ying et al., 2019) in Table 1. NASWOT
can find a network with a final accuracy roughly midway
between these methods in under a minute on a single GPU.

NAS-Bench-201. Dong & Yang (2020) benchmark a wide
range of NAS algorithms, both with and without weight
sharing, that we compare to NASWOT. The weight shar-

https://github.com/BayesWatch/nas-without-training
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Table 2. (a): Mean ± std. accuracies on NAS-Bench-201. Baselines are taken directly from Dong & Yang (2020), averaged over 500 runs
(3 for weight-sharing methods). Search times are recorded for a single 1080Ti GPU. Note that all searches are performed on CIFAR-10
before evaluating the final model on CIFAR-10, CIFAR-100, and ImageNet-16-120. The performance of our training-free approach
(NASWOT) is given for different sample size N (also 500 runs), along with that of our Assisted REA (AREA) approach (50 runs). We
also report the results for picking a network at random, and the best possible network from the sample. (b): Mean ± std. accuracies (over
500 runs) on NATS-Bench SSS (Dong et al., 2021) comparing non-weight sharing approaches to NASWOT. Unlike NAS-Bench-201,
each search is performed on the same dataset that is then used to evaluate the proposed network.

Method Search (s) CIFAR-10 CIFAR-100 ImageNet-16-120

validation test validation test validation test

(a) NAS-Bench-201

Non-weight sharing
REA 12000 91.19±0.31 93.92±0.30 71.81±1.12 71.84±0.99 45.15±0.89 45.54±1.03
RS 12000 90.93±0.36 93.70±0.36 70.93±1.09 71.04±1.07 44.45±1.10 44.57±1.25
REINFORCE 12000 91.09±0.37 93.85±0.37 71.61±1.12 71.71±1.09 45.05±1.02 45.24±1.18
BOHB 12000 90.82±0.53 93.61±0.52 70.74±1.29 70.85±1.28 44.26±1.36 44.42±1.49

Weight sharing
RSPS 7587 84.16±1.69 87.66±1.69 59.00±4.60 58.33±4.34 31.56±3.28 31.14±3.88
DARTS-V1 10890 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00
DARTS-V2 29902 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00
GDAS 28926 90.00±0.21 93.51±0.13 71.14±0.27 70.61±0.26 41.70±1.26 41.84±0.90
SETN 31010 82.25±5.17 86.19±4.63 56.86±7.59 56.87±7.77 32.54±3.63 31.90±4.07
ENAS 13315 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00

Training-free
NASWOT (N=10) 3.05 89.14 ± 1.14 92.44 ± 1.13 68.50 ± 2.03 68.62 ± 2.04 41.09 ± 3.97 41.31 ± 4.11
NASWOT (N=100) 30.01 89.55 ± 0.89 92.81 ± 0.99 69.35 ± 1.70 69.48 ± 1.70 42.81 ± 3.05 43.10 ± 3.16
NASWOT (N=1000) 306.19 89.69 ± 0.73 92.96 ± 0.81 69.86 ± 1.21 69.98 ± 1.22 43.95 ± 2.05 44.44 ± 2.10

Random N/A 83.20 ± 13.28 86.61 ± 13.46 60.70 ± 12.55 60.83 ± 12.58 33.34 ± 9.39 33.13 ± 9.66
Optimal (N=10) N/A 89.92 ± 0.75 93.06 ± 0.59 69.61 ± 1.21 69.76 ± 1.25 43.11 ± 1.85 43.30 ± 1.87
Optimal (N=100) N/A 91.05 ± 0.28 93.84 ± 0.23 71.45 ± 0.79 71.56 ± 0.78 45.37 ± 0.61 45.67 ± 0.64

AREA 12000 91.20 ± 0.27 - 71.95 ± 0.99 - 45.70 ± 1.05 -

(b) NATS-Bench SSS

Non-weight sharing
REA 12000 90.37±0.20 93.22±0.16 70.23±0.50 70.11±0.61 45.30±0.69 45.54±0.92
RS 12000 90.10±0.26 93.03±0.25 69.57±0.57 69.72±0.61 45.01±0.74 45.42±0.86
REINFORCE 12000 90.25±0.23 93.16±0.21 69.84±0.59 69.96±0.57 45.06±0.77 45.24±1.18
BOHB 12000 90.07±0.28 93.01±0.24 69.75±0.60 69.90±0.60 45.11±0.69 45.56±0.81

NASWOT (N=10) 3.02 88.95 ± 0.88 88.66 ± 0.90 64.55 ± 4.57 64.54 ± 4.70 40.22 ± 3.73 40.48 ± 3.73
NASWOT (N=100) 32.36 89.68 ± 0.51 89.38 ± 0.54 66.71 ± 3.05 66.68 ± 3.25 42.68 ± 2.58 43.11 ± 2.42
NASWOT (N=1000) 248.23 90.14 ± 0.30 93.10 ± 0.31 68.96 ± 1.54 69.10 ± 1.61 44.57 ± 1.48 45.08 ± 1.55

ing methods are random search with parameter sharing
(RSPS, Li & Talwalkar, 2019), first-order DARTS (DARTS-
V1, Liu et al., 2019), second order DARTS (DARTS-V2, Liu
et al., 2019), GDAS (Dong & Yang, 2019b), SETN (Dong
& Yang, 2019a), and ENAS (Pham et al., 2018). The non-
weight sharing methods are random search with training
(RS), REA (Real et al., 2019), REINFORCE (Williams,
1992), and BOHB (Falkner et al., 2018). For implementa-
tion details we refer the reader to Dong & Yang (2020). The
hyperparameters in NAS-Bench-201 are fixed — these re-
sults may not be invariant to hyperparameter choices, which
may explain the low performance of e.g. DARTS.

All searches are performed on CIFAR-10, and the output
architecture is then trained and evaluated on each of CIFAR-
10, CIFAR-100, and ImageNet-16-120 for different dataset

splits. We report results in Table 2(a). Search times are re-
ported for a single GeForce GTX 1080 Ti GPU. As per the
NAS-Bench-201 setup, the non-weight sharing methods are
given a time budget of 12000 seconds. For NASWOT and
the non-weight sharing methods, accuracies are averaged
over 500 runs. For weight-sharing methods, accuracies are
reported over 3 runs. We report NASWOT for sample sizes
of N=10, N=100, and N=1000. NASWOT is able to outper-
form all of the weight sharing methods while requiring a
fraction of the search time.

The non-weight sharing methods do outperform NASWOT,
though they also incur a large search time cost. It is encour-
aging however, that in a matter of seconds, NASWOT is
able to find networks with performance close to the best
non-weight sharing algorithms, suggesting that network ar-
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chitectures themselves contain almost as much information
about final performance at initialisation as after training.

Table 2(a) also shows the effect of sample size (N). We show
the accuracy of networks chosen by our method for each N.
We list optimal accuracy for each N, and random selection
over the whole benchmark, both averaged over 500 runs. We
observe that sample size increases NASWOT performance.

NATS-Bench. Dong et al. (2021) expanded on the original
NAS-Bench-201 work to include a further search space:
NATS-Bench SSS. The same non-weight sharing meth-
ods were evaluated as in NAS-Bench-201. Unlike NAS-
Bench-201, search and evaluation are performed on the
same dataset. Implementation details are available in Dong
et al. (2021). We observe that sample size increases NAS-
WOT performance significantly on NATS-Bench SSS, to
the point where it is extremely similar to other methods.

A key practical benefit of NASWOT is its rapid execution
time. This may be important when repeating NAS several
times, for instance for several hardware devices or datasets.
This affords us the ability in future to specialise neural
architectures for a task and resource environment cheaply,
demanding only a few seconds per setup. Figure 7 shows
our method in contrast to other NAS methods for NAS-
Bench-201, showing the trade-off between final network
accuracy and search time.

4.1. Assisted Regularised EA — AREA

Our proposed score can be straightforwardly incorporated
into existing NAS algorithms. To demonstrate this we im-
plemented a variant of REA (Real et al., 2019), which we
call Assisted-REA (AREA). REA starts with a randomly-
selected population (10 in our experiments). AREA instead
randomly-samples a larger population (in our experiments
we double the randomly-selected population size to 20) and
uses our score (Equation 2) to select the initial population
(of size 10) for the REA algorithm. Pseudocode can be
found in Algorithm 2 with results on NAS-Bench-101 and
NAS-Bench-201 in Tables 1 and 2. AREA outerforms REA
on NAS-Bench-201 (CIFAR-100, ImageNet-16-120) but
is very similar to REA on NAS-Bench-101. We hope that
future work will build on this algorithm further.

5. Conclusion
NAS has previously suffered from intractable search spaces
and heavy search costs. Recent advances in producing
tractable search spaces, through NAS benchmarks, have
allowed us to investigate if such search costs can be avoided.
In this work, we have shown that it is possible to navigate
these spaces with a search algorithm—NASWOT—in a
matter of seconds, relying on simple, intuitive observations
made on initialised neural networks, that challenges more

Algorithm 2 Assisted Regularised EA — AREA

population = []
generator = RandomGenerator()
for i=1:M do

net = generator.generate()
scored net = net.score()
population.append(scored net)

Keep the top N scored networks in the population
history = []
for net in population do

trained net = net.train()
history.append(trained net)

while time limit not exceeded do
Sample sub-population, S, without replacement

from population
Select network in S with highest accuracy as parent
Mutate parent network to produce child
Train child network
Remove oldest network from population
population.append(child network)
history.append(child network)

chosen net = Network in history with highest accuracy

Figure 7. Plot showing the search time (as measured using a
1080Ti) against final accuracy of the proposed NAS-Bench-201
network for a number of search strategies.

expensive black box methods involving training. Future ap-
plications of this approach to architecture search may allow
us to use NAS to specialise architectures over multiple tasks
and devices without the need for long training stages. We
also demonstrate how our approach can be combined into an
existing NAS algorithm. This work is not without its limita-
tions; our scope is restricted to convolutional architectures
for image classification. However, we hope that this will be
a powerful first step towards removing training from NAS
and making architecture search cheaper, and more readily
available to practitioners.
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