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ABSTRACT Neural Architecture Search (NAS), a promising and fast-moving research field, aims to
automate the architectural design of Deep Neural Networks (DNNs) to achieve better performance on
the given task and dataset. NAS methods have been very successful in discovering efficient models for
various Computer Vision, Natural Language Processing, etc. Themajor obstacles to the advancement of NAS
techniques are the demand for large computation resources and fair evaluation of various search methods.
The differences in training pipeline and setting make it challenging to compare the efficiency of two NAS
algorithms. A large number of NASBenchmarks to simulate the architecture evaluation in seconds have been
released over the last few years to ease the computation burden of training neural networks and can aid in the
unbiased assessment of different search methods. This paper provides an extensive review of several publicly
available NAS Benchmarks in the literature. We provide technical details and a deeper understanding of each
benchmark and point out future directions.

INDEX TERMS Neural architecture search benchmarks, convolutional neural networks, hardware-aware
neural architecture search, hyperparameter optimization, RNN, LSTM.

I. INTRODUCTION
Deep Neural Networks (DNNs) have progressed at a rapid
pace over the past decade and deliver State-of-the-Art
(SOTA) performance in many tasks. Convolutional Neural
Networks (CNNs) [1], [2] are employed in many Computer
Vision applications due to their highest level of correctness,
while Recurrent Neural Networks (RNNs) and Transformers
are predominantly used for language-based tasks.

Neural Architecture Search (NAS) is an efficient and
rapidly evolving area which automates the design of neural
networks for a given dataset and task. NAS refers to using
a search algorithm to find the best-performing architecture
from a predefined search space while being more accurate
than the hand-craftedmodels. Over the past few years, several
search strategies have been developed, such as Reinforcement
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Learning [3], One-shot/Differentiable [4], Evolutionary [5],
Once-for-all [6], Random search [7], Distillation search [8],
Bayesian Optimization [9], Low/zero cost proxy search [10].
This ensures finding more robust models while significantly
reducing the human effort spent on tedious neural architec-
ture design and tuning. Hardware-Aware Neural Architecture
Search (HW-NAS) aims to search for a model such that the
searched topology not only attains desirable accuracy but also
efficiently executes on the target hardware.

The major challenges in developing efficient NAS algo-
rithms are (i) reproducibility problem, due to variation in
search space and experimental methodology, and hence com-
parison between methods is a very big issue, and (ii) the
computation complexity of NAS is high as it requires training
and evaluation of several networks on a large search space
and dataset, and hence NAS is inaccessible to researchers
who have limited computing resources. Therefore, in this
context, several Neural Architecture Search Benchmarks
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(NAS-Bench) such as NAS-Bench-101 [11], NAS-Bench-
201 [12], and NAS-Bench-NLP [13], etc., have been devel-
oped over the last few years to alleviate the evaluation cost
problem and improve reproducibility.

A typical NAS benchmark consists of precomputed evalu-
ation metrics, such as the validation accuracy, FLOPs, num-
ber of parameters, and latency on the hardware of all the
neural architectures present in the predefined search space.
These benchmarks are built through exhaustive evaluation
of enumerating and training every possible architecture from
the search space. During the search process, the metrics of
a model in the search space are queried from the bench-
mark to assess the quality (i.e., good or bad), allowing NAS
researchers to focus solely on the design of efficient search
algorithms without investing time and computing power on
model training. On the other hand, these benchmarks also
provide metadata for training within the predefined search
space, as it is crucial for the NAS methods to adopt a com-
mon training and testing procedure for reproducibility, rapid
prototyping, and comparison. We review several SOTA Neu-
ral Architecture Search Benchmarks and future directions
to explore this fast-evolving area. In our paper, we refer to
the benchmark dataset as the actual NAS benchmark, which
provides evaluation metrics of several architectures in the
search space, such as NAS-Bench-101 [11], while the term
dataset is used for the actual dataset of images/text to train the
neural network, such as CIFAR-10 [14] or ImageNet [15].

A. COMPARISON WITH OTHER PAPERS
In the past, several AutoML, NAS, and HW-NAS survey
papers have been published. These papers focus on various
aspects of search space, search algorithms, evaluation metrics
and do not extensively discuss NAS benchmarks in detail.
The existing surveys on Neural Architecture Search are out-
lined in Table 1.

TABLE 1. Summary of NAS surveys.

B. CONTRIBUTIONS
Our work is the first dedicated survey paper targeting Neural
Architecture Search Benchmarks. The main contributions of
this paper are as follows:

1) We investigate the necessity, types and challenges in a
NAS benchmark design.

2) We compare several publicly available NAS Bench-
marks and provide their technical details in terms
of structure, datasets, applications and hardware plat-
forms for the benefit of the research community.
We also identify the limitations of current benchmarks.

3) We compile GitHub repositories of all the NAS bench-
marks discussed in this paper and provide references
for easy access for researchers needing to use them.

4) We create a GitHub repository of all NAS Benchmarks
for quick access. This repository can be found at
https://github.com/krishnateja95/Neural_Architecture_
Search_Benchmark_Collection. The repository will be
updated as new benchmarks are developed in the future.

5) Using the outcome of the above studies, we then pro-
pose guidelines and provide best practices to build
a useful NAS Benchmark. The result of our study
in the growing field will assist the research commu-
nity in developing a better next generation of NAS
benchmarks.

C. SCOPE OF THE PAPER
Our paper is focused on the broad area of NAS Benchmarks
(till January 2023), where we study different search spaces,
challenges, functionality, the scope of each such benchmark,
and future steps. We assume that the readers are aware of
basic CNN, RNN operations and terminologies such as Con-
volution, Depthwise Convolution, Max/Avg Pooling, learn-
ing rate, and filter/channel size.

D. PAPER ORGANIZATION
Section II describes the common search spaces used in NAS
algorithms, followed by an overview of search techniques
in Section III. Section IV introduces the necessity, chal-
lenges, attributes and recommendations of NASBenchmarks.
Section V presents the description of each NAS bench-
mark for Computer Vision (CV) applications, followed by
non-vision tasks in Section VI. The HW-NAS Benchmarks
are discussed in Section VII, while Section VIII describes
NAS-HPO Benchmarks. In Section IX, we discuss the lim-
itations of current benchmarks and provide future directions,
while Section X concludes this paper by giving a high-level
contribution of this paper. Figure 1 provides the classification
of different NAS Benchmarks we review in this paper.

II. SEARCH SPACE
A NAS method typically consists of the following three
components: (1) Search space, a manually-built primitive
operation set and structure, whether cell-wise or layer-wise,
(2) Search Strategy or the core search algorithm through
which a network is searched on the search space, (3) Eval-
uation phase, where a predicted network is evaluated for its
performance. The first step in a NAS algorithm is to choose
the search space consisting of all possible neural architectures
from which the NAS method finds a suitable model. The
design of the search space neural for a network model is
combinatorial, and the complexity of the search algorithm
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FIGURE 1. Classification of NAS Benchmarks.

increases with an increase in the number of operations. It typ-
ically consists of a manually designed set of operations such
as Standard Convolution, Depthwise Convolution, etc. The
search space can be divided into two types based on the
construction of different operations within a single layer,
as follows: (i)Micro/Cell-level, (ii)Macro/layer-wise.

FIGURE 2. Cell-level Search Space.

A. MICRO/CELL SEARCH
The Micro search defines a cell-based structure that is
arranged in the form of a Directed Acyclic Graph (DAG),
as shown in Figure 2. Each edge in the graph represents an
operation to be searched in the search process. The neural
network is formed by stacking the searched DAG multiple
times, thereby reusing the same architecture throughout the
model. The operation on each edge is searched from the set
of predefined search elements. There exist two types of cells
based on the dimensions of input and output feature maps: a
“Normal Cell” does not change the height and width of fea-
ture throughout the cell, and a “Reduction Cell” downsamples
the feature map, i.e., the resolution of the output is halved
compared the input activation. NASNet [3] and DARTS [4]
are two examples of cell-based search spaces.

B. LAYER-WISE/MACRO SEARCH SPACE
The same cell structure throughout the network can have
a varying effect on the validation accuracy and implemen-
tation on the hardware. The branched structure in the cell
is not hardware-friendly due to the fragmented architecture,
resulting in high inference time. This limitation is resolved in
the layer-wise search space by searching different configura-
tions at each layer of the model to attain efficient networks.
MobileNetV2 [48], Facebook-Berkely-Net (FBnet) [49], and
its variants are commonly used as themacroarchitecture in the
layer-wise search space. These macroarchitectures typically
consist of the following modules: (1) a 3 × 3 Convolution as
head, (2) a series of MBConv/FBNet modules, (3) average
pooling and FC layer as the tail.

FIGURE 3. Layer-wise/Macro Search Space.

Figure 3 illustrates an example of the layer-wise
MBConv/FBNet search, where the input and output filter
sizes in the unit are kept constant while the filter expansion
(e) and kernel (k) sizes of themodule are searched. The search
space in ProxylessNAS [50] can be generically represented
as MBConv_e_k, where e indicates expansion ratio (e ∈

{3,6}) and k stands for kernel size (y ∈ {3,5,7}). Wu et al.
[49] introduced FB-Network, a macroarchitecture similar to
MobileNetV2, where the MBConv block is replaced with the
FBNet block. The 1 × 1 Pointwise Convolution is replaced
with the 1 × 1 Group Convolution. The search space is
represented as FBNet_e_k_g, where e and k indicate the
expansion ratio and kernel size, respectively, and g is for
group size.

III. NEURAL ARCHITECTURE SEARCH STRATEGIES AND
PERFORMANCE EVALUATION
Automated Machine Learning (AutoML) is a promising
method to automate the design pipeline of developing a
high-quality ML algorithm for a given task and resources.
The technique significantly reduces human effort and enables
non-ML experts to buildmodels for their applications without
worrying about ML and statistical knowledge. Hyperparam-
eter Optimization (HPO) is a method to adjust the hyper-
parameter values during training, often the most difficult
process which accounts for the success of Deep Learning.
The approaches for HPO include manual tuning (based on
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ML expertise), trial-and-error, random search, or grid search.
Neural Architecture Search [51], [52], [53] is a process of
automating the architecture optimization of DNNs, such as
searching for optimal operations or parameters at each level
of the network. Hardware-aware NAS (HW-NAS) methods
aim to search for a neural architecture that is accurate on
the given dataset and hardware-efficient, such as latency
or energy, compared to the manually designed networks.
The hardware performance metrics are incorporated into the
NAS algorithm to guide the hardware-aware search process.
This section classifies and summarizes several NASmethods.
In this section, we provide a brief overview of several NAS
algorithms. The best approach depends on the requirements
and the resources available, as each of these methods has its
own strengths and weaknesses. See White et al. [32] for an
in-depth latest survey on NAS.

A. REINFORCEMENT LEARNING-NAS (RL-NAS)
The pioneering NAS algorithm proposed by Zoph and Le [3]
is based on Reinforcement Learning (RL) principle to search
for efficient neural architectures. The algorithm consists of an
RNNmodel as a controller that interacts with the environment
of all possible neural architectures. In each iteration, the con-
troller predicts the architecture that is likely to generate good
accuracy, and the predicted model is trained end-to-end to
obtain its performance. The validation accuracy of the trained
models is used as a reward/feedback signal to update the
RNN such that it predicts the next architecture that can lead
to higher accuracy. In RL terms, this iterative methodology
allows the algorithm to move from one state (a given architec-
ture) to another (a potentially better architecture) in which the
accuracy increases. See the survey paper of Jaafra et al. [54]
for detailed explanation on Reinforcement Learning-based
NAS method.

B. ONE-SHOT/DIFFERENTIABLE/GRADIENT NAS
One-shot NAS methods reduce the computational burden by
encoding all possible neural architectures in the form of a
Supernetwork. This method leverages weight sharing notion,
thereby reusing the same weights for multiple architecture
combinations. This allows the search algorithm to conduct
training and evaluation in a single network rather than train-
ing and evaluating individual models separately. DARTS [4]
is one of the pathbreaking one-shot NAS algorithms that
formulates the search process in a differentiable manner by
initializing a learnable architectural parameter (α) for every
operation in the search space. The Supernetwork is trained
using gradient descent, and the final architecture is formed
by sampling the operation at each level with the highest α

parameter value. Although the One-shot method significantly
reduces the computational burden, it suffers from a lack of
interpretability and is sensitive to initialization. The differen-
tiable search can sometimes be difficult to interpret in terms
of the design principles. The Supernetwork can be sensitive to
parameter initialization, and the optimization may be trapped

in local minima. See the recent survey papers on Weight
Sharing [28], SuperNetwork [29] and Gradient Descent [30]
for more insights

C. EVOLUTIONARY NEURAL ARCHITECTURE SEARCH
The Evolutionary Learning search algorithms [5] use prin-
ciples of natural evolution, such as selection and mutation,
to search for good solutions to a problem. The Genetic Algo-
rithm in Evolutionary Learning is an iterative process of eval-
uating selected individuals according to a fitness function and
generating a new set of architectures using the characteris-
tics of best-performing models from the previous generation.
Initially, a population is randomly generated by sampling
different architectures from a large pool of networks in the
search space. Each individual is a specific neural architecture,
which is trained on the target task to determine fitness. The
weaker networks have less chance of surviving in the current
generation as it competes with candidates of a higher fitness
function. The next generation of top k networks is obtained
by mutation or crossover of top individual models in the
current generation of networks. Although this search process
is very effective, it requires a large amount of computation
time and resources. See the survey papers of Liu et al. [55]
and Zhou et al. [33] for a detailed explanation of Evolutionary
Learning-based NAS.

D. ONCE-FOR-ALL SEARCH
Once-For-All (OFA) [6] is a two-step method that combines
One-shot Supernetwork training and Evolutionary search.
OFA algorithm first trains an over-parameterized network of
maximum dimensions along each of the hyperparameters,
i.e., kernel and filter size. During the Evolutionary search
process, the predicted networks are sampled directly from the
Supernetwork and are evaluated to capture the validationmet-
rics without finetuning. The main advantage of this method
is avoiding retraining of the sampled networks as weights
are directly retained from the Supernetwork. Several methods
rely on the Once-for-all methodology by first training a large
CNN/Transformer Supernetwork and applying Evolutionary
search to find the optimal subnetwork.

E. RANDOM SEARCH
Random NAS [7] is a type of search algorithm in which
the search space of possible architectures is explored ran-
domly instead of a guided search process. In this method,
a set of possible neural network architectures are defined,
and the algorithm generates new models by randomly sam-
pling the operations at each level in the network. The per-
formance of each sampled architecture is evaluated on the
target dataset, and the best-performing models are selected
for further evaluation. Random NAS is simple, easy to imple-
ment, and does not require a complex learning and opti-
mization pipeline. Nonetheless, it can be less effective than
other well-defined NAS methods, such as Reinforcement or
Evolutionary, as they do not establish relationships between
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different neural architectures. Therefore, the random search
method can sometimes require a large number of iterations to
find an optimal solution.

F. ZERO-COST/LOW-COST PROXY-BASED NAS
The NAS methods with zero or low-cost proxies do not
require training any candidate model during the search pro-
cess [10]. It relies on a set of performance estimation tech-
niques to quickly evaluate the performance of the chosen
models. During the search process, a performance predictor
is used to evaluate the performance of the candidate model
without actually training them. For example, Zero-cost proxy
[56] devises a method to score a neural architecture at initial-
ization which is indicative of its final trained accuracy using
just a single minibatch. Although these low-cost estimation
strategies significantly reduce the compute burden, they may
not always produce efficient models as compared to the tradi-
tional training-based methods, as the performance estimator
may not truly reflect the performance of the trained models.

G. BAYESIAN OPTIMIZATION
Bayesian Optimization (BO) [9] uses statistical methods
which construct a surrogate model that maps the hyperparam-
eters to the performance of the model. It defines a probabilis-
tic Bayesian inference model of the search space and uses
this model to guide the search process in finding efficient
architectures. The search algorithm generates new architec-
tures in the search space region where the statistical model
predicts good architectures that are likely to be effective.
This process of constructing the model and finding the opti-
mal hyperparameters is repeated iteratively until the optimal
values are found, or the iteration reaches a predetermined
stopping criterion. A benefit of the Bayesian technique is that
it can efficiently search, even when it is large and the function
is noisy or non-smooth.

H. KNOWLEDGE DISTILLATION NAS
Knowledge Distillation [8] is a process of transferring knowl-
edge from a large complex model to a smaller and more effi-
cient network. The student model is trained to minimize the
difference between its predictions and the predictions from
the teacher model for the same input minibatch. Distillation
[57] is used to accelerate the NAS process by training the
student models to mimic the behavior of the teacher model,
which is a set of architectures that have been previously
trained, allowing NAS algorithms to quickly evaluate the
performance of a large number of candidate architectures.

I. HARDWARE-AWARE NAS (HW-NAS)
The core principle in the HW-NAS method [35] is to include
the hardware performance metrics of the target hardware in
the reward/loss/optimization/fitness functions in one of the
NAS algorithms described previously. For a given model M,
let Acc(M) and Lat(M) represent the accuracy and hardware
latency of a predicted model, and “T” denote the target

latency of the searched model. The multi-objective function
can be written as Acc(M) *

(
Lat(M )
T

)γ

. See HW-NAS survey

papers [35], [36], [37], [38], [39] that describe NAS methods
on different hardware platforms.

J. PERFORMANCE EVALUATION
As we observed in all the search strategies, the evaluation
phase is the most critical step, which evaluates the perfor-
mance of a predicted architecture. It compares different net-
works generated by search algorithms to guide the search
algorithm to find optimal models. NAS Benchmarks play a
pivotal role in curtailing the cost of this expensive perfor-
mance estimation, which is typically done by full or partial
training of the predicting network. Xie et al. [34] summarized
several efficient evaluation methods for NAS.

IV. INTRODUCTION TO NAS BENCHMARKS
NAS Benchmarks are critical to aid the design process of
DNNs. There are several reasons why benchmarks play a
pivotal role in today’s fast-evolving NAS field. This section
provides an overview of NAS Benchmarks, the necessity of
using these benchmarks, challenges, types, and guidelines to
create such benchmarks.

A. NECESSITY OF NAS BENCHMARKS
(1) A NAS algorithm samples the top-performing architec-
tures from the pool of networks and evaluates the perfor-
mance metric of the sampled network, which is used to
guide the search algorithm to find the next best architecture.
The validation accuracy, typically obtained by training the
network, is expensive on a large dataset. Therefore, the main
limitation of NAS, in general, is the availability of compu-
tational resources and time for training, making it difficult
to conduct experiments for researchers who do not have
access to large-scale training systems. The benchmark dataset
provides the ground-truth model performance metrics of all
the candidate models in the search space either through a
precomputed dictionary or by predicting using a surrogate
model. This allows NASmethods to obtain a selectedmodel’s
accuracy in a smaller amount of time by querying the dataset
dictionary instead of fully training the architecture during the
search process.

(2)NAS researchers can solely focus on quickly validating
the effectiveness of their search algorithm in terms of relative
strengths and weaknesses by avoiding expensive training.
Therefore, the NAS Benchmarks greatly relieve the com-
putational burden for researchers who do not have access
to enough computing environments to accelerate these net-
works. The benchmarks are useful for comparing the perfor-
mance of different search strategies and for understanding the
trade-offs between different neural architectures.

(3) Although NAS methods tend to consistently improve
to increase efficiency, the training setup, such as the learning
rate and weight initialization, are different. A few studies
[58] have shown that seed design plays a key role in NAS
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methods, and yet many NAS papers do not discuss the role of
seed and related observations. TheNASBenchmarks enable a
fair comparison betweenNASmethods by providing standard
training and evaluation protocols, datasets, and metrics.

(4) The inconsistency in the training of selected architec-
ture could induce bias in the NAS algorithm to choose the
optimal model. The discrepancies include different data aug-
mentation, regularization, learning rate, batch size, etc. The
improper dataset division for inference of trained models also
leads to a difference in validation/testing accuracy. Hence,
NASBenchmarks provide an unbiased accuracy of the chosen
architecture during the search process.

(5) NAS benchmarks can also be utilized to develop sur-
rogate models to predict the accuracies of unseen networks
and unknown search spaces. For example, the input of the
surrogate model could be an untrained architecture in the
benchmark and the output being the predicted accuracy.
The researchers can use the predicted outputs of the surrogate
model to identify promising architectures for further study on
how they can be improved.

(6) The goal of HW-NAS Benchmarks is to democra-
tize HW-aware architecture search research to non-hardware
practitioners and make HW-NAS research reproducible and
easily accessible [12]. This involves careful measurement
of hardware performance metrics such as latency or energy
of the network in the search space on the real or simu-
lated hardware platform. Therefore, non-hardware experts
can obtain the latency of a layer or entire model by querying
the benchmark dataset. In a few cases where the implemen-
tation of Convolution/Recurrent/FC layers on hardware is
semi-optimized or sub-optimal, the inappropriate measure-
ment in latency leads to a bad search of hardware-efficient
networks. Thus, the HW-NAS benchmarks can facilitate a
fair comparison of different HW-NAS methods and searched
models. Also, these benchmarks can be used to predict the
latencies of unseen neural architectures.

B. TYPES OF NAS BENCHMARKS
There exist two different types of NAS Benchmarks based on
the process of querying/estimating the performance metrics
of the neural architecture. The two types of NAS Benchmarks
are (1) Tabular NAS Benchmark and (2) Surrogate Bench-
mark. A detailed explanation of both kinds of benchmarks is
detailed below:

1) TABULAR BENCHMARK
Tabular benchmark is the first kind and the most widely
constructed benchmark dataset. This database is built by enu-
merating all possible neural architectures in the predefined
search space and training every model end-to-end to capture
the related performance metrics. The benchmark returns the
table entry when a model’s performance is queried. The
process of creating this type of benchmark is expensive com-
putationally, as it requires training every architecture from
scratch. Siems et al. [59] motivated the issue with tabular

benchmarks by discussing the stochasticity in these bench-
marks. The authors claim that the randomness in mini-batch
training and its appearance in the performance of a model
makes the architecture a random variable. Consequently, the
tabular dataset contains the results of only a few draws as
the NAS benchmarks train the network not more than three
times. The presence of such bias in the evaluation formulates
the tabular benchmark into a simple estimator of performance
metrics based on the previous evaluations only. Thus, we can
assume that better estimators exist, outperforming the tabular
benchmarks. An unintended outcome of NAS tabular bench-
marks is that the existing ones are based on a relatively narrow
architectural space, as building a benchmark on a large search
space requires exhaustive training of all models. This leads to
undesirable results when transferred to large and contrasting
search spaces. Also, the tabular benchmarks require large
storage space, and the size increases with an increase in the
search space.

2) SURROGATE BENCHMARKS
The Surrogate Benchmarks estimate the performance of a
neural architecture through an auxiliary ML model, thereby
mimicking the functionality of the tabular benchmark. The
surrogate models are trained on the data generated by the
prior training of several architectures. Therefore, the vali-
dation accuracy of the untrained and unseen models can be
predicted using the secondary ML models much faster, thus
avoiding the need to store the entire tabular data. Although
these models only approximate the real benchmark, if curated
well, the surrogate models can perform better than the tabular
benchmarks, which was shown by some previous works [59],
[60]. A few examples of surrogate models are regression,
LGBoost, XGBoost, Graph Isomorphism Network (GIN),
NGBoost, µ-Support Vector Regression (SVR), Random
Forests (RF), etc. The surrogate benchmarks can be particu-
larly useful when searching for architectures on large datasets
where the tabular benchmarks can be computationally expen-
sive. Once-for-all [6] method employs an MLP network in
the Evolutionary search process to predict the accuracy and
latency of the network on the ImageNet dataset. There is
often a risk factor associated with the surrogate benchmarks
when there is a significant difference between the architec-
ture under test and the architectures on which the surrogate
benchmark is trained.

C. CHALLENGES/ATTRIBUTES OF EFFICIENT NAS
BENCHMARKS
There are several challenges for creating an efficient and
well-defined NAS benchmark as it involves many steps of
carefully designing the search space, possessing computa-
tion resources, and training pipeline [61]. An efficient NAS
algorithm should balance difficulty, expressive power, com-
plexity, novelty, and achievable performance. The attributes
and challenges in designing a benchmark are outlined
below:
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1) TASK DEFINITION
The main challenge is to define a diverse set of tasks and
datasets which are to be used in the benchmark. It is also
important to report the quality of the dataset, as well as
any augmentation or preprocessing that may be necessary.
Several NAS methods are evaluated on commonly avail-
able high-quality public datasets such as CIFAR or Ima-
geNet. Hence, the datasets should also be easily available to
researchers working in this domain.

2) SEARCH SPACE
The search space is a key component in a NAS algorithm, and
any benchmark differs in terms of the search space as the rest
of the pipeline, such as training andmetric collection, remains
almost the same. The search space should be well-curated for
the corresponding search elements for the target application
and datasets. A wrong search space that does not have good
accuracy on the target dataset or an impractical search space
on which the search algorithms do not work might not be
helpful to the NAS research community. The search space
often limits the model performance gain on a given task. The
search algorithm should discover unusual designs to obtain
validation accuracy beyond a threshold. Additionally, the
search space should be flexible to allow for a wide range of
performance levels that are challenging and require advanced
search algorithms to find an efficient model.

3) ENUMERATION/SAMPLING
All the architectures in the predefined search space should
be properly enumerated well in Tabular Benchmark, and
it needs to be noted that repetitions do not happen. It is
very common in the micro/cell-based search space to have
isomorphic cells, networks with the same topology. NAS-
Bench-101 [11] utilizes an iterative graph hashing method to
detect whether two cell architectures are isomorphic. Also,
for Surrogate Benchmarks, the networks need to be sampled
in such a way that they are evenly distributed across a wide
range of accuracies, the number of parameters, FLOPs, etc.
The Surrogate Benchmarks, with more architectures clus-
tered around single/multiple regions, introduce bias in the
surrogate models.

4) EXPRESSIVENESS
A NAS Benchmark should be representative enough in such
a way that it considers mixed types of tasks and neural
architecture that are commonly encountered, such that a NAS
algorithm can be evaluated effectively for different scenarios.
Traditionally, the NAS algorithms limit their search elements
to reduce the search computation time. Nonetheless, consid-
ering a search space with diverse elements would be very
useful for building more robust models. It is also important to
define the space to ensure that the NAS algorithm has enough
freedom to explore a wide range of networks but not so
much freedom that the search process becomes impractical.
Additionally, depending only on a few benchmarks can lead

to over-fitting [62], and therefore, NAS algorithms should be
evaluated on a variety of benchmarks to understand the true
potential of the algorithm.

5) COMPLEXITY
The difficulty level of the benchmarks implies how hard it is
to attain acceptable performance on the given search space
and respective metrics. It also indicates how complicated is
the search space in terms of the number of operations allowed,
the complicated structure of the pathways within a network,
and the density of possible connections of nodes. A fewSOTA
benchmark datasets are easily designed in such a way that
random search methods can also work well. It is important
to create challenging benchmarks to obtain meaningful eval-
uations from the NAS algorithm, but not extremely difficult
that they are impossible to find networks in a reasonable time.
A challenging search space allows complex operations and
connections within the network and includes search elements
that are difficult to optimize, which leads to unconventional
or novel architectures. A good benchmark should provide
validation metrics for a wide range of complexity, such as
different numbers of classes or input dimensions, to test the
robustness of a NAS algorithm.

6) EVALUATION PROTOCOLS/METRICS
The main advantage of NAS Benchmarks is in assisting the
search process by quickly evaluating the predicted architec-
tures. Therefore, it is extremely important for NAS Bench-
marks to clearly define the evaluation metrics of the task
and dataset. For example, if a NAS Benchmark considers
multiple tasks, such as Image Segmentation and Detection,
all the corresponding validation metrics and protocols should
be properly presented.

7) TRAINING RESOURCES
The main difficulty in creating an efficient NAS Benchmark
lies in training every architecture on the target dataset to fetch
the training and evaluation metrics. The networks in bench-
marks require multiple runs as the performance of archi-
tecture can vary depending on the weight initialization and
other factors. Hence, a single run of a network may not fully
represent the true capabilities of a network. Therefore, owing
large-scale computation resources for repeated training, such
as GPUs or TPUs, is crucial. In the case of HW-NAS Bench-
marks, as the typical process involves capturing the hardware
metrics, the target device’s availability and expertise in the
efficient implementation of the network layers on the target
system is a big challenge.

8) OLD BENCHMARKS
It is helpful for NAS researchers to use the existing and
well-established benchmarks as a starting point to design
when designing a NAS benchmark. These benchmarks have
typically been widely used and validated in the literature
and can provide a useful baseline for comparison. However,
it may also be necessary to modify these benchmarks to
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better fit the specific needs of the NAS algorithm. Although
it requires the NAS algorithm to include competitive archi-
tecture spaces to increase performance on a given task, the
benchmarks that have proven helpful for the research com-
munity should not be discarded.

9) DOCUMENTATION
The tabular benchmark datasets should be released in an
easy-to-access format to easily query the metrics. The code
associated with the benchmark generation should also be
documented properly. The benchmarks should not be limited
to just the validation accuracy and must also report others
performance metrics such as the total number of weights,
memory, FLOPs, etc. The papers reporting benchmarks using
surrogate models should consider describing and document-
ing the code for the following: data collection, building sur-
rogate models, validation, and training data of both architec-
tures in the search space and surrogate model.

V. NAS BENCHMARKS FOR CNNs
This section provides an overview of prominent NAS Bench-
marks related to vision tasks such as Image Classification,
Object Detection, etc. We report the number of unique neural
architectures, tasks, type of architecture (cell-based or layer-
wise), training details, and the metrics reported for every
model in each benchmark.

A. NAS-BENCH-101
NAS-bench-101 [11] is a pioneering work and the first rig-
orous dataset for NAS reproducibility research. It provides
a tabular dataset of over 423k unique neural architectures
mapped to their training time and validation accuracy on
the CIFAR-10 dataset [14]. NAS-Bench-101 defines a graph
search space � of all CNN architectures with a fixed back-
bone, comprising of a head (3 × 3 Convolution), body, and a
tail (Average Pooling and an FC layer), as shown in Figure 4.
The body is built by alternatively stacking a block three times
between two down-sampling operations, where the stacked
block is a feed-forward structure of the three repeated cells.

FIGURE 4. Search Space in NAS-Bench-101 [11].

Each cell in the stacked block is a Directed Acyclic
Graph (DAG) with seven nodes and a maximum of nine

edges that can take any operation from the following: {1 ×

1 Convolution (Conv 1 × 1), 3 × 3 Convolution (Conv
3 × 3), Max Pooling (max-pool)}. Each cell is composed
of one input node (Node 0), one output node (Node 6), and
at most five internal nodes (Nodes 1-5) that can take any
operation in the predefined search space. Therefore, this NAS
benchmark dataset consists of 423,624 architectures obtained
by enumerating all possible DAGs within the search space.
Each architecture has been trained and evaluated three times
(three different initializations) with the same experimental
setting (like learning rate) in each run to prevent bias in the
implementation. The networks are trained on the CIFAR-10
dataset for a total of 108 epochs, and their fitness is evaluated
at various training epochs (4, 12, 36, and 108). The dataset
returns 0 for a missing neural architecture, and the best test
accuracy on CIFAR-10 out of all the networks is 94.23%. The
benchmark is not diverse enough in a way that it does not
contain diverse tasks and datasets. Although most networks
are centered around 90%, it has a long tail towards the low
accuracy cluster, i.e., around 10%. Despite limitations, NAS-
Bench-101 is still a powerful dataset to study the performance
of different NAS algorithms.

B. NAS-BENCH-201
NAS-bench-201 [12] is based onDARTS search space [4] and
is different from NAS-Bench-101 in terms of search space,
diagnostic information, and results on multiple datasets such
as CIFAR-10, CIFAR-100 [14], and ImageNet-16-120 [64].
NAS-bench-201 is a cell-based search space with four inter-
mediate nodes and five operations as follows: zeroize (none),
skip connection, 1 × 1 Convolution, 3 × 3 Convolution,
and Average Pooling. The macro-architecture contains three
cell stages (Figure 5) with 16, 32, and 64 channels, respec-
tively, in each stage and a residual module of stride two
between the three cells. The cell architecture is designed
only for normal cells, and the reduction cell is similar to
the structure of ResNet [65] to restrict the search space size.
There are 15,625 unique networks in the benchmark that are
trained and evaluated on the three different image classifi-
cation datasets to allow transfer learning. NAS-bench-201
benchmark dataset provides full training information about
training, validation, and test losses/accuracies on the three
mentioned datasets for a total of 200 epochs. The authors
show the effectiveness of the benchmark by evaluating it on
different NAS methods such as Regularized Evolution [66],
Random Search [7], DARTS [4]. The limitation of NAS-
Bench-201 is that it includes a relatively small number of
models compared tomany possible architectures that could be
tested. Therefore, this benchmark may not be a full represen-
tation of a wide range of networks. NAS-Bench-201 is small
and inexpressive, such as that simple search strategy like local
[67] or random search works well on this benchmark. The
search spaces of both NAS-Bench-101 and NAS-Bench-201
are fixed in terms of encoding spaces with a limited number
of nodes and edge types in a cell. The results obtained on
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FIGURE 5. The Topology and Search Space in NAS-bench-201 [12] and NATS-Bench [63].

this benchmark cannot be generalized on larger benchmarks,
datasets and other types of coding spaces.

C. NATS-BENCH
NATS-Bench [63] is a direct extension to NAS-bench-201
[12] with an enlarged search space and more architectures in
the benchmark dataset. The search space (Figure 5) is equiv-
alent to the macro skeleton in NAS-bench-201 benchmark
[12], with the inclusion of the channel size in the cells as the
search elements. NATS-Bench consists of two search spaces
with different distributions: (1) NATS-Bench TSS: a topol-
ogy search space consisting of 15,625 architectures which
have varying operations at each edge of the cell and fixed
channel/filter sizes (same as NAS-bench-201), (2) NATS-
Bench SSS: a size search space of 32,768 networks where
the number of channels is variable from the following list:
{8, 16, 24, 32, 40, 48, 56, 64}.

D. NAS-BENCH-301
NAS-Bench-301 [59], [60] provides training time, accuracy
(training, validation, and test), and the number of parameters
for every randomly sampled 60k models in the cell-based
search space on the CIFAR-10 dataset. The search space is
based on the DARTS-based space with the following seven
search elements: 3 × 3.5×5 Separable Convolution, 3 ×

3.5×5 Dilation Convolution, Max Pooling, Avg Pooling, and
Skip connection. Even though the total number of unique
architectures possible with the DARTS-based space and the
seven search elements is more than 1018, only 60k models are
trained as the authors use an auxiliary ML model to predict
the performance of other networks in the search space. The
surrogate model, made up of a Graph Isomorphism Network
(GIN), is used to query the metrics of other unknown trained
networks. The authors empirically show that the surrogate
model trained on the subset of 60k trained networks can
outperform the tabular benchmark. The three best-performing
surrogate models are LGBoost, XGBoost and GIN, and they
outperform other models such as Random Forests, Support
Vector Regression and NGBoost. The main limitation of
this method is the number of models sampled to train the
surrogate model. The authors sample only 60k, which is
6*10−7% of the total 1018 networks. The models are sampled

using Random search, which makes it hard to justify that the
sampled architectures are representative of the large search
space, and thus the generality is questionable.

E. NAS-BENCH-1Shot1
NAS-Bench-1Shot1 [68] is a benchmark dataset to bridge
the gap between the discrete space in NAS-Bench-101 [11]
and the continuous space of One-shot NAS such as the dif-
ferentiable NAS. The NAS-Bench-101 is successful in the
fair evaluation of different NAS techniques, but it cannot be
directly utilized in the One-shot methods [4], [69] due to the
benchmark’s discrete nature. Figure 6 depicts the construc-
tion of a supernetwork in the One-shot NAS method where
the weights of all discrete architectures are shared within a
supermodel. On the other hand, Figure 4 illustrates an exam-
ple of an individual architecture present in the NAS-Bench-
101 dataset [11]. Therefore, the NAS-Bench-101 architecture
space does not match the space present in the One-shot
methods, requiring modifications to the former (NAS-Bench-
101) to adapt to the latter (One-shot). NAS-Bench-1Shot1
includes a set of three benchmarks based on the number
of parent nodes, containing 6240, 29160, and 363648 net-
works, respectively, to track the performance of the searched
networks computationally cheaply. The process of querying
validation metrics from the discrete space of NAS-Bench-
101 is as follows: (1) First, the operation at each choice edge
is chosen based on the highest architectural weight, (2) The
parent node of each choice edge is chosen from the k choices,
(3) A discrete cell structure is constructed from the operation
and node list, and the performance metrics can be obtained
from the benchmark.

F. NAS-BENCH-MR
Ding et al. proposed NAS-Bench-MR [70], a multi-task NAS
benchmark specific to four different vision applications for
learning task-transferable networks. The authors explored
the possibility of building benchmarks for vision applica-
tion for tasks other than the traditional Image Classifica-
tion task, as most of the previous works focused on this
single task. They pointed out that networks like ResNet
[65] work well on Image Classification but fail to deliver
expected performance on other vision tasks. Therefore,
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FIGURE 6. Supernetwork in One-Shot NAS [68].

manually designing a single architecture for numerous pro-
poses is difficult in practice. The authors developed amethod-
ology to learn a versatile model that is able fit multiple
datasets and work better on following diverse vision tasks:
(i) Image Classification on ImageNet [15], (ii) Segmenta-
tion on Cityscapes [71], (iii) 3D Detection on KITTI [72],
(iv) Video Recognition on HMDB51 [73]. The search space
is a multi-resolution universal search space that includes
numbers of resolutions, blocks, and channels as the search
elements. It contains mixed granularities of feature map rep-
resentations for different applications, like high-resolution
for segmentation and low-resolution maps for Image classi-
fication. NAS-Bench-MR randomly samples 2.5k networks
from themulti-resolution search space and trains on the previ-
ously mentioned datasets under nine different settings. NAS-
Bench-201 and NAS-Bench-MR differ in neural architecture
size, search space, and training setting. The features, such as
the number of channels, blocks, and resolutions, are fixed
in the former benchmark, while the latter includes them in
the search space. NAS-Bench-MR accommodates deeper,
shallower, wider, and narrower models by including high and
low-level feature maps.

G. NAS-BENCH-MACRO
NAS-Bench-Macro [74] provides the validation accuracy,
number of parameters, and FLOPs of various networks on
a layer-wise search space. MobileNetV2-like backbone net-
work [48], consisting of a 3 × 3 Convolution layer, eight
sequential searchable blocks, and an FC layer for classifica-
tion is used as a search space. The choices in the search space
for the searchable units are as follows: (i) Identity or skip
connection, (ii)MBConv block of kernel size 3 and expansion
ratio 3 (MBConv_3_3), (iii) MBConv block of kernel size
5 and expansion ratio 6 (MBConv_5_6). Therefore, the total
number of unique architectures for eight searchable units
and three choices in the NAS-Bench-Macro benchmark is

38 = 6561. Each network architecture is trained thrice on
different seeds on the CIFAR-10 dataset with a batch size
of 256. Their mean validation accuracies in three runs are
reported as the final validation accuracy. The best-performing
network in the entire benchmark dataset has a test accuracy
of 93.13%, and the average accuracy of all models is roughly
90.4% on the CIFAR-10 dataset.

H. TransNAS-BENCH-101
TransNAS-Bench-101 [75] is a tabular dataset for transfer
learning across seven vision tasks, mainly for transferability
and generalizability of NAS algorithms. The main goal is to
find universal architectures across heterogeneous tasks, ease
the comparability issue and curtail the computation hurdle
of transferable NAS. TransNAS-Bench considers two search
spaces with different search elements, defined as follows:
(i) Cell-based search space similar to NAS-Bench-201 [12]
with the following search elements: 1 × 1 Convolution, 3 ×

3 Convolution, Zeroize and Skip Connection resulting in
4096 models, (ii) Macro search space of repeating residual
blocks where the search space is composed of the number
of blocks (network depth) and block operations at which
the feature map is reduced to half, and the number of fil-
ters is doubled, resulting in 3256 unique models. A total
of 7352 distinct neural architectures are trained on seven
vision tasks such as Object Classification, Scene Classifica-
tion, Room Layout, Jigsaw, Auto Encoder, Surface Normal,
Semantic Segmentation, and diagnostic data such as task
performance (Eg: Validation accuracy), inference execution
time, and FLOPs are reported. The FLOPs of the individual
model are calculated on the input image of size (224, 224, 3),
and the inference latency is measured on one Nvidia V100
GPU on the image of dimension (1080, 720, 3).

I. NAS-BENCH-360
NAS-Bench-360 [76] is a benchmark suite for evaluating
SOTA NAS algorithms on ten diverse application domains,
datasets, task dimensionalities, and learning methods on an
academic budget. Unlike other benchmarks, this benchmark
does not provide a tabular dictionary of different metrics
or evaluate architectures in the search space. Instead, this
benchmark dataset organizes different tasks, search elements,
search spaces, and datasets to help the NAS community
quickly obtain information about variegated tasks for fast
evaluation of their NAS methods. The tasks and associ-
ated datasets are as follows: (1) Standard Image Classifica-
tion using DenseNet-BC search space [77] on CIFAR-100
dataset [14], (2) Classifying spherically projected images
[78], (3) Classifying Electromyography signals on NinaPro
DB5 dataset [79], (4) Labeling sound events FSD50K [80],
(5) Solving partial differential equations (PDEs) [81], (6) Pro-
tein distance prediction [82], (7) Identifying cosmic ray con-
tamination [83], (8)Detecting heart disease [84], (9) Satellite
image time series analysis [85], (10) Predicting functional
effects from genetic sequences on DeepSEA [86].
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J. NAS-BENCH-x11
Single-fidelity is defined as accessing the training/validation
loss/accuracy information of a network at only the final
epoch, while multi-fidelity refers to obtaining the training
metric at any arbitrary epochs during the end-to-end training.
It is possible to integrate a fewmulti-fidelity methods, such as
early stopping and learning curve exploration, into the NAS
algorithms tomake themmore efficient. The earlier discussed
NAS benchmarks allowed either single-fidelity or very lim-
ited multi-fidelity. For example, NAS-Bench-301 contains
statistics only at epoch 100, while NAS-Bench-101 stores the
validation accuracies only at the following epoch numbers: 4,
12, 36, and 108. NAS-Bench-x11 [87] resolves this issue by
predicting the full training information at any random epoch
through a surrogate model rather than just the best validation
accuracy. The authors introduce three surrogate benchmarks,
namely NAS-Bench-111, NAS-Bench-311, and NAS-Bench-
NLP11, that build on top of NAS-Bench-101, NAS-Bench-
301, and NAS-Bench-NLP to estimate the full learning curve
information. The three surrogate benchmarks are generated
from the original benchmarks using a method based on sin-
gular value decomposition and noise modeling. The authors
show the effectiveness of the benchmark by applying on
popular NAS methods, such as Regularized Evolution [66],
Local Search [67], and BANANAS [9].

K. NAS-BENCH-SUITE
Mehta et al. [88] studied the existing benchmarks and made
the followings assumptions about NASmethods: (1) If a NAS
method performs well on a particular benchmark such as
NAS-Bench-101 or NAS-Bench-201, it does not automati-
cally work on other benchmarks with a different search space,
(2) The default hyperparameters of the existing NAS algo-
rithms may not be robust, and there is still room to tune them
better, (3) The tuning of hyperparameters of a NAS algorithm
on a specific benchmark or search space and these to other
space could make the performance of the search method
remarkably worse. Hence, it can be concluded that a NAS
method that works on tiny subsets of search space or bench-
marks does not transfer well across different tasks or datasets,
and thus generalizing is a question. NAS-Bench-Suite [88] is
a collection of several previously discussed benchmarks such
as NAS-Bench-101 [11], NAS-Bench-201 [12], NAS-Bench-
301 [59], NAS-Bench-1Shot1 [68], TransNAS-Bench-101
[70], NAS-Bench-MR [70], NAS-Bench-x11 [87]. The suite
also consists of NAS-Bench-NLP [13] and NAS-Bench-ASR
[89] that are reviewed in the upcoming section. NAS-Bench-
Suite is an extensible collection of numerous benchmarks
of 25 combinations of search spaces and datasets, queryable
through a unified interface for reproducibility and gener-
alizability. This work reduces the burden of researchers to
gather information on different search space benchmarks and
datasets to evaluate the NAS algorithms, thereby assisting the
community in developing methods that are more generaliz-
able on new and unseen applications.

L. NAS-BENCH-SUITE-ZERO
Zero-cost proxy is a technique to estimate the relative per-
formance of an architecture from a single minibatch of input
data. NAS-Bench-Suite-Zero [90], a benchmark collection
of 13 Zero-cost proxies on 28 tasks, is used to analyze the
generalizability and complementary information. The authors
also present a concrete method to reduce bias to improve
the efficiency of Zero cost proxy methods. The search
space and tasks are directly acquired from NAS-Bench-101,
NAS-Bench-201, NAS-Bench-301, and TransNAS-Bench-
101. NAS-Bench-Suite-Zero extends NAS-Bench-Suite by
adding two datasets from NAS-Bench-360, and four datasets
from Taskonomy [91].

M. BenchENAS
BenchENAS [92] is a benchmark for a fair evaluation of Evo-
lutionary Neural Architecture Search methods. The bench-
mark consists of nine representative Evolutionary search
algorithms, which include LargeEvo [93], CGP-CNN [94],
Generic CNN [95], HierarchicalCNN [96], AE-CNN [97],
EvoCNN [98], NSGA-Net [99], RegularizedEvo [66], CNN-
GA [100]. The metrics in the benchmark include accuracy,
#FLOPS, #parameters on MNIST [101], CIFAR and Ima-
geNet datasets for different optimizers, learning rates and
batch sizes. The experiments on BenchNAS provide insights
into the strengths and weaknesses of each ENAS algorithm.

VI. NAS BENCHMARKS FOR NON-VISION APPLICATIONS
In the previous section, we discussed benchmarks specific
to Vision applications that are primarily built on Convolu-
tion based networks. In this section, we discuss the NAS
benchmarks on non-CV tasks, such as Natural Language
Processing (NLP), Automatic SpeechRecognition (ASR) and
architectures such ad Graph Neural Networks (GNNs).

A. NAS-BENCH-NLP
NAS-Bench-NLP [102] is the first tabular NAS benchmark
for tasks in Natural Language Processing domain, such as
next word prediction. The search space consists of a novel
search space that is comprised of the standard RNN archi-
tecture and the modified LSTM and GRU cells. The search
space resembles NAS-Bench-101 as the DAG structure has
at most 25 nodes, and each cell can take one out of the seven
elements. The search elements in the benchmark consist of
the following seven choices: Linear: f(x1, x2,. . . xn) = W1x1 +

W2x2 + . . .Wnxn + b, Blending (element-wise): f(z, x, y) = z
⊙ x+ (1− z)⊙ y, Element-wise product and sum, Activation
Functions: Tanh, Sigmoid, and Leaky ReLU. The benchmark
generated around 14k models and their training performance
on the Penn Tree Bank (PTB) dataset [103], 4k of them are
trained thrice with different settings, and the rest are trained
only once. The best performing 289 networks on the PTB
dataset are additionally trained on the WikiText-2 dataset
[104]. The dataset provides the following information about
each network in the search space: the number of parameters,
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training time, and validation perplexities at 5, 10, 25, and
50 epochs. This benchmark cannot be used for modern NAS
research in NLP, as Transformer NAS research [42] is way
ahead of LSTM and GRU. In fact, the future work of NAS-
Bench-NLP [13] pointed out that their benchmarks are not
as efficient as Transformer models. Therefore, the next direc-
tion to explore in NLP NAS benchmark design is to create
efficient benchmarks on Transformers.

B. NAS-BENCH-ASR
Mehrotra et al. proposed NAS-Bench-ASR [89], the first
benchmark for the Automatic Speech Recognition (ASR)
task, evaluated on the TIMIT audio dataset [105]. The bench-
mark is a tabular dataset consisting of 8,242 unique network
architectures trained for three predefined epochs, each with
different initializations. The fundamental unit in the search
space is a convolution-based cell or DAG topology in the
overall macroarchitecture. The DAG consists of four nodes
(T1, T2, T3, T4) and two types of edges: main and skip. The
main edge is composed of six operations: linear, four convo-
lutions with different choices of the kernel and dilation size ∈

{(5, 1), (5, 2), (7, 1), (7, 2)}. The skip edge is either an identity
or a zero operation that generates a tensor of zeros of the input
dimension. The benchmark provides validation accuracy per
epoch, and the final test accuracy on the TIMIT audio dataset
[105]. Additionally, it also gives the number of parameters,
FLOPs, and latencies of these networks on diverse platforms
such as desktop (Tesla 1080Ti) and embedded GPUs (Jetson
Nano) for different batch sizes. The networks performing
very well on the TIMIT dataset are transferred to the larger
LibriSpeech dataset [106].

C. NAS-BENCH-GRAPH
The wide presence of graph data led to the development
of Graph Neural Networks (GNNs) [107] for various tasks
such as node classification, link prediction, and graph pattern
recognition. Naturally, Graph Neural Architecture Search
[108] has gained momentum in searching for efficient GNN
models. NAS-Bench-Graph [109] is the first benchmark to
support unified, reproducible, and efficient evaluation for
Graph Neural Architecture Search. This benchmark features
26,206 unique GNN architectures, which are compact com-
pared to the large-scale benchmarks but expressive in nature.
The architectures in this benchmark are trained on nine
diverse graph datasets and reported metrics such as train,
validation, and test accuracy in every training epoch, the
latency, the number of trainable parameters, etc. NAS-Bench-
Graph also provides latency on Intel CPU and Nvidia GPU
hardware platforms.

VII. HW-NAS BENCHMARKS
The hardware-agnostic NAS benchmarks discussed in the
previous sections offer only the training-related metrics and
do not necessarily provide the hardware performance met-
rics such as latency, energy, memory consumption, etc.
Therefore, these benchmarks limit the usage in developing

HW-aware NAS algorithms, especially for non-hardware
researchers. The diverse methodologies in the latency mea-
surement pipeline, programming environment, and limited
hardware knowledge make it difficult for the search algo-
rithms to find optimal architecture for real-time deploy-
ment and comparison of different HW-NAS methods. The
Hardware-aware NAS Benchmarks can alleviate this burden
by providing precomputed hardware performance metrics
on multiple platforms for efficiency in the search process,
reproducibility, and systematic comparison.

A. LatBench
Dudziak et al. proposed LatBench [110], a large-
scale runtime latency dataset for multi-objective Neural
Architecture Search on many devices, including desk-
top/mobile/embedded CPU/GPU/TPU/DSP. This benchmark
differs from the earlier benchmarks, where the previous
authors approximated the latency using proxies or summing
up layer-wise latencies. The authors of LatBench run each
network architecture in the NAS-Bench-201 search space to
capture the latencies. The benchmark obtains latencies on
the following device setting: (i) Desktop CPU: Intel Core i7-
7820X, (ii)Desktop GPU: Nvidia GTX 1080 Ti, (iii) Embed-
ded GPU: Nvidia Jetson Nano, (iv) Embedded TPU - Google
EdgeTPU, (v) Mobile GPU - Qualcomm Adreno 612 GPU,
(vi)Mobile DSP - QualcommHexagon 690DSP. The Tensor-
flow framework with the 1.15.0 version is used to run models
on the Desktop CPU, Desktop GPU, and Embedded GPU,
while TensorFlow Lite Runtime 2.1.0 is used for Embedded
TPU. On the other hand, Snapdragon Neural Processing
Engine (SNPE) software with version 1.36.0.746 is employed
to accelerate networks onMobile GPU andMobile DSP. Each
model in the NAS-Bench-201 dataset is run 1000 times on the
aforementioned non-mobile device setting using a batch size
of 1 and 32 × 32 patch size. Along with the latency dataset,
the authors also proposed Binary Relation Predictor-NAS
(BRP-NAS) to predict the end-to-end latency based on a
Graph Convolution Network (GCN) that outperforms proxy
metrics or layer-wise latencies on different devices.

B. HW-NAS-BENCH
Dong and Yang et al. proposed HW-NAS-Bench [12],
a Hardware-aware architecture search benchmark to gather
hardware cost metrics on a diverse set of platforms, including
Nvidia Edge GPU Jetson TX2 (Edge GPU), Raspberry Pi 4,
Edge TPU Dev Board (Edge TPU), Pixel 3 (Mobile Phone),
Eyeriss (ASIC), XilinxZC706 (FPGA). It differs from the
previous LatBench in terms of selected devices, hardware
metrics, search space, hardware evaluation metric pipeline,
and the verification of obtained benchmarks. LatBench is
limited to very few commercial devices, while HW-NAS-
BENCH extends the estimation on non-commercial accelera-
tors such as Eyeriss and Xilinx FPGA, along with evaluation
on commercial systems. LatBench considers latency evalu-
ation only in the NAS-Bench-201 space, while HW-NAS-
Bench evaluates latency and energy of every architecture
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in the following search spaces: Cell-based (46875 models
in NAS-Bench-201) and layer-wise (1021 models in FBNet)
search spaces. Additionally, HW-NAS-Bench provides a
comprehensive description for collecting the desired hard-
ware cost on these devices and verifies that the platform-
specific HW-NAS can lead to optimal network-cost solutions
through their analysis. The authors performed the hardware
cost collection in parallel and spent about a month to obtain
the desiredmetrics on theNAS-Bench-201 space. The latency
of models in the FBNet search space is estimated by summing
the latencies of individual operations instead of measuring
the end-to-end latency on the target hardware due to the
presence of a large number of architectures in the search
space. This leads to ignoring optimizations such as cache
reuse, layer fusion etc. The authors show the importance of
HW-NAS-Bench by evaluating using ProxylessNAS [50] on
CIFAR-100.

C. BLOX
BLOX [111] provides validation metrics of 91,125 models
on a macro search space trained on the CIFAR-100 dataset.
The latency of every model in the search space is reported on
Nvidia GTX 1080 Ti and Qualcomm Snapdragon 888 with
Hexagon 780 DSP. The search elements include Vgg16-
style 3 × 3 Convolution, ResNet-style bottleneck with 5 ×

5 Depthwise Separable Convolution and EfficientNet-style
Fused Inverted Bottleneck modules. BLOX enables the
study of emerging blockwise knowledge distillation search
algorithms, such as DONNA [112]. The benchmark only
evaluates models with three stages, whereas the bench-
mark, like NAS-Bench-Macro, studies up to eight stages.
Although BLOX is useful for emerging blockwise search and
layer-wise search space, it provides evaluations only on a
single dataset (CIFAR-100). The best accuracy is only 76.6%,
whereas methods like P-DARTS [113] report an accuracy of
more than 80%.

D. EC-NAS-BENCH
EC-NAS-Bench [114] is an energy consumption-aware
tabular benchmark for multi-objective optimization NAS
research. The Benchmark provides training energy consump-
tion, power consumption of CPUs, GPUs, and DRAM, and
carbon footprint for all architectures present in the NAS-
Bench-101 dataset. The models are trained only for four
epochs on a single Nvidia Quadro RTX 6000 GPU, follow-
ing the same training hyperparameter setting and strategy of
NAS-Bench-101. The surrogate time and energy measure-
ments for all the runs are obtained through a surrogate linear
scaling model. EC-NAS-Bench quantifies the resource costs
specific to model training and reports the total resource costs
and computational overhead. The Benchmark is evaluated
on the multi-objective optimization NAS strategies, and the
results showed that the Pareto-optimal solutions offer better
trade-offs between the hardware performance metrics and the
model training energy consumption.

VIII. NAS-HPO BENCHMARKS
The benchmarks discussed in the previous sections are based
on neural architecture optimization. In addition to the neu-
ral operators, the hyperparameters during the training pro-
cess affect the model performance. This section explores
joint Hyperparameter Optimization and Neural Architecture
Search Benchmarks for further NAS research.

A. NAS-HPO-BENCH
NAS-HPO-Bench [115] incorporates hyperparameter and
architecture search elements in a single benchmark on a
plain two-layer MLP network on four regression datasets.
The benchmark consists of 62208 feed-forward configu-
rations on the following datasets: Protein structure [116],
Slice localization [117], Naval propulsion [118], and Parkin-
son’s telemonitoring [119]. The initial learning rate, batch
size, learning rate scheduler, activation functions, and neuron
size in both FC layers are chosen from the following pool:
{.0005,.001,.005,.01,.05,.1}, {8, 16, 32, 64}, {cosine, fix}
and {relu, tanh}, {16, 32, 64, 128, 256, 512}, respectively.

B. NAS-HPO-BENCH-II
NAS-HPO-Bench-II [120] is built by combining the
cell-based neural architecture search space and training-
related hyperparameters such as the learning rate and batch
size. The benchmark consists of 4k unique cell architectures
built from the following search elements: 3× 3 Convolution,
3 × 3 Average Pooling of stride 1, Skip connection, and a
Zero operation. The batch size and learning rate are chosen
from {16, 32, 64, 128, 256, 512} and {0.003125, 0.00625,
0.0125, 0.025, 0.5, 0.1, 0,2, 0.4}, respectively, resulting in a
total of 192k configurations (4k*6*8 = 192k). Each model
with a different setting is trained thrice for 12 epochs on
the CIFAR-10 dataset and reports training/validation/testing
accuracies, losses, and the time elapsed for every epoch.
Finally, a surrogate model is built to estimate the performance
of every architecture after 200 epochs. The dataset for train-
ing the surrogate model is built by training 100 randomly
sampled networks from the search space on all the combi-
nations of learning rate and batch size, thereby producing
4.8k pairs.

C. LCBench
LCBench [121] studies the multi-fidelity optimization with
respect to the learning curves on the joint space of archi-
tectural and training hyperparameters across 35 OpenML
datasets [122]. The MLP search space includes common
architecture and training hyperparameters such as the number
of layers, number of units, size, learning rate, L2 regulariza-
tion, momentum, and dropout rate. The benchmark dataset
provides train, test, and validation accuracy/loss, global, and
layer-wise gradient statistics of 2000 models.

Apart from NAS-HPO Benchmarks, a few HPO-only are
HPOBench [123], LassoBench [124], YAHPO Gym [125].
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TABLE 2. Summary of various NAS benchmarks.
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IX. DISCUSSION, LIMITATIONS AND FUTURE WORK
In this section, we discuss the limitations of existing Neural
Architecture Search benchmarks and provide possible future
directions. In Table 2, we provide a brief overview of all
the NAS benchmarks that summarizes search space, size,
operations, tasks, and the GitHub repository URLs of every
benchmark. The current Benchmarks are helpful for NAS
researchers, and in the future, we believe specific attention
is needed to the following exciting:

A. NAS BENCHMARKS FOR LARGE SCALE DATASET
The major limitation of the SOTA benchmarks is the avail-
ability of validation accuracy on large-scale datasets, such
as ImageNet [15]. This is understandable due to the fact
that training large networks multiple times on a large dataset
requires massive computing resources. The current bench-
marks on small-scale datasets are useful for research pur-
poses, but many NAS works have shown that the results on
small-scale datasets do not efficiently transfer to large-scale
datasets. A direction to explore in creating NAS Benchmarks
for a large-scale dataset is designing better Surrogate models.
The majority of SOTA NAS Benchmarks are considered on a
very narrow search space of cell-based architecture and con-
sist of only a few hundred or thousand neural networks. How-
ever, layer-wise search spaces like FBNet consist of nearly
1021 unique models, making it very difficult to build a tabular
dataset. Therefore, surrogate models are extremely crucial for
large search spaces to estimate the validationmetrics of all the
neural architectures. Once-for-all methodology [6] can also
be used tomeasure the validation accuracy, which samples the
desired network from a Supernetwork. Although the sampled
networks generate close to near true accuracy, they can be
used in the search process to find efficient models. Given
the large amount of computation required, research groups
around the world who have access to large-scale computing
clusters can come together and work in a coordinated fashion
to develop Benchmarks for large datasets.

B. BUILDING A NAS BENCHMARK COMMUNITY
If possible, a consortium can be established for NAS Bench-
marks in the future, similar to the MLperf community [149],
[150], [151], [152], where all the code and benchmark
datasets should be stored for quick access to researchers.
A leaderboard should be established in the public domain
indicating themost effective approaches on each of the bench-
marks. Also, competitions in the leadingML conferences can
be held, where people can submit their NAS algorithm for
evaluation on NAS benchmarks.

C. SEARCH SPACE
The search elements and spaces limit the NAS methods
to find robust and efficient neural architectures. Most of
the NAS Benchmarks are based on micro-search space
where a cell architecture is repeated throughout the network.
However, several HW-NAS algorithms have shown that a

cell-based network is inefficient on several hardware plat-
forms and instead adopt layer-wise search space such as
MobileNetV2 [48] and MobileNetV3 [153]. The accuracy
margin of the networks on these search spaces is not sig-
nificantly high compared to the manually designed models,
requiring the development of benchmarks in the other search
spaces like EfficientNet [154]. Besides the traditional CNN
structures in ResNet [65] and MobileNet [155], NAS has
been successful in finding efficient models on various other
search spaces, such as Transformers [156], Vision Trans-
former [157], Mixture-of-Expert (MoE) [158], and Graph
Neural Networks [159]. Hence, the NAS community needs
benchmarks in these diverse and prominent search spaces
to push the ceiling beyond CNNs, even for computer vision
applications.

D. HW-NAS BENCHMARKS
Although there is quite a lot of work on NAS Benchmarks,
there are only a handful of HW-NAS Benchmarks available,
as described in Section VII. Although the current benchmarks
on cell-based architectures are useful for research purposes,
layer-wise search space network evaluation on real/simulated
hardware platforms is extremely critical for real-time deploy-
ment. There exist diversified hardware platforms such as
tiny MCUs, server CPUs, multi-GPUs, in-computing mem-
ory (ReRAM), and many layer-wise spaces such as ResNet,
MobileNetV3, EfficientNet, and several tasks, datasets, and
applications for which NAS benchmarks can be targeted.
The AI chip companies can boost the HW-NAS research
community by releasing the NAS benchmarks consisting of
performancemetrics of architectures on various search spaces
on their hardware. This can guarantee the optimal implemen-
tation of DNNs on hardware and set a standard for network
comparison. The SOTA HW-NAS Benchmarks include only
a dense Convolution layer while excluding sparse multiplica-
tion in both cell and layer-wise search space. Also, the current
HW-NAS benchmarks do not consider sparsity-supporting
hardware and mixed precision Quantization. Hence, the
NAS community needs sparse andmixed-precision quantized
benchmarks to search for more robust models that are small
in size and faster on hardware.

E. NAS BENCHMARKS FOR OTHER APPLICATIONS
As we reviewed several NAS Benchmarks, it was evident that
most of the works targeted Image Classification applications
and very few other Vision and language tasks. NAS has been
very successful in discovering SOTAmodels for various other
applications such as Object Detection [160], Semantic Seg-
mentation [161], Machine Translation [162], etc. Therefore,
building an optimized NAS Benchmark for other tasks can be
crucial for NAS research.

F. NETWORK AND ACCELERATOR CO-SEARCH
The neural architecture and hardware accelerator co-search
is a problem where the neural network and ASIC dimensions
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are simultaneously searched to get the best performance in
both worlds. The benchmarks related to co-search remain
untouched or least explored. The authors of DANCE [163]
measure the latency and energy metrics of 1.8 million
network-hardware pairs from the MobileNetV2 search space
and different sizes of the accelerator, but the open-source
implementation is not available. Although the HW-NAS-
Bench includes the evaluation of several architectures on
accelerators, the results cannot be used directly for the
co-search problem as the micro-architectural properties of
the hardware, such as an array, register, and RAM size, are
fixed. As a result, the ML-system community requires neural
architectures with different search spaces to be evaluated on
different shapes and sizes of the accelerator to boost the
co-search research.

G. INTEGRATING WITH DL FRAMEWORKS
The significant development of NAS Benchmarks over the
years led to the creation of several toolkits and frameworks
for these benchmark datasets. Neural Network Intelligence
(NNI) [164] is an AutoML toolkit for NAS, HPO, and
model compression that includes NAS-Bench-101 and NAS-
Bench-201. Archai [165], a platform for NAS to ensure
reproducibility and fair comparison, includes NAS bench-
marks from several search spaces and searchmethods. Hence,
rapid inclusion of all the NAS benchmarks is crucial for fast
querying and efficient comparison. NAS-Bench-Suite [88]
is the first step towards including several NAS Benchmarks
under a single framework.

As we emphasized the challenges and need for more effi-
cient benchmarks to push the limits of NAS, in the coming
years, we foresee a boom in NAS benchmarks that are more
diverse with respect to search space, applications, hardware
platforms, a blend of tabular and surrogate, training aspects
with proper APIs and documentation to support easy access
of several metrics.

X. CONCLUSION
NAS Benchmarks provide a set of precomputed metrics of
several architectures and evaluation protocols, which allows
NAS researchers to quickly evaluate and compare different
methods. In recent years, these Benchmarks have signifi-
cantly contributed to the development of novel NAS algo-
rithms. We, in this paper, provided an overview of recent
advances in this narrow and emerging field and summa-
rized many SOTA NAS Benchmarks. We mainly discussed
the structure of each Benchmark and provided URLs for
every open-sourced work. Many search methods rely on NAS
benchmarks to show the efficiency of their search algorithm.
Going forward, NAS Benchmarks will be influential in the
development of efficient search algorithms. The NAS Bench-
marks have come a long way and become mature in the last
few years, aiding the optimization of NAS algorithms. Hence,
more well-defined, documented, and easy-to-use benchmarks
are needed to assist this process.
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