MeCo/correlation/models/cell_infers/cells.py

156 lines
5.2 KiB
Python
Raw Permalink Normal View History

2024-01-23 03:08:45 +01:00
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
#####################################################
import torch
import torch.nn as nn
from copy import deepcopy
from xautodl.models.cell_operations import OPS
# Cell for NAS-Bench-201
class InferCell(nn.Module):
def __init__(
self, genotype, C_in, C_out, stride, affine=True, track_running_stats=True
):
super(InferCell, self).__init__()
self.layers = nn.ModuleList()
self.node_IN = []
self.node_IX = []
self.genotype = deepcopy(genotype)
for i in range(1, len(genotype)):
node_info = genotype[i - 1]
cur_index = []
cur_innod = []
for (op_name, op_in) in node_info:
if op_in == 0:
layer = OPS[op_name](
C_in, C_out, stride, affine, track_running_stats
)
else:
layer = OPS[op_name](C_out, C_out, 1, affine, track_running_stats)
cur_index.append(len(self.layers))
cur_innod.append(op_in)
self.layers.append(layer)
self.node_IX.append(cur_index)
self.node_IN.append(cur_innod)
self.nodes = len(genotype)
self.in_dim = C_in
self.out_dim = C_out
def extra_repr(self):
string = "info :: nodes={nodes}, inC={in_dim}, outC={out_dim}".format(
**self.__dict__
)
laystr = []
for i, (node_layers, node_innods) in enumerate(zip(self.node_IX, self.node_IN)):
y = [
"I{:}-L{:}".format(_ii, _il)
for _il, _ii in zip(node_layers, node_innods)
]
x = "{:}<-({:})".format(i + 1, ",".join(y))
laystr.append(x)
return (
string
+ ", [{:}]".format(" | ".join(laystr))
+ ", {:}".format(self.genotype.tostr())
)
def forward(self, inputs):
nodes = [inputs]
for i, (node_layers, node_innods) in enumerate(zip(self.node_IX, self.node_IN)):
node_feature = sum(
self.layers[_il](nodes[_ii])
for _il, _ii in zip(node_layers, node_innods)
)
nodes.append(node_feature)
return nodes[-1]
# Learning Transferable Architectures for Scalable Image Recognition, CVPR 2018
class NASNetInferCell(nn.Module):
def __init__(
self,
genotype,
C_prev_prev,
C_prev,
C,
reduction,
reduction_prev,
affine,
track_running_stats,
):
super(NASNetInferCell, self).__init__()
self.reduction = reduction
if reduction_prev:
self.preprocess0 = OPS["skip_connect"](
C_prev_prev, C, 2, affine, track_running_stats
)
else:
self.preprocess0 = OPS["nor_conv_1x1"](
C_prev_prev, C, 1, affine, track_running_stats
)
self.preprocess1 = OPS["nor_conv_1x1"](
C_prev, C, 1, affine, track_running_stats
)
if not reduction:
nodes, concats = genotype["normal"], genotype["normal_concat"]
else:
nodes, concats = genotype["reduce"], genotype["reduce_concat"]
self._multiplier = len(concats)
self._concats = concats
self._steps = len(nodes)
self._nodes = nodes
self.edges = nn.ModuleDict()
for i, node in enumerate(nodes):
for in_node in node:
name, j = in_node[0], in_node[1]
stride = 2 if reduction and j < 2 else 1
node_str = "{:}<-{:}".format(i + 2, j)
self.edges[node_str] = OPS[name](
C, C, stride, affine, track_running_stats
)
# [TODO] to support drop_prob in this function..
def forward(self, s0, s1, unused_drop_prob):
s0 = self.preprocess0(s0)
s1 = self.preprocess1(s1)
states = [s0, s1]
for i, node in enumerate(self._nodes):
clist = []
for in_node in node:
name, j = in_node[0], in_node[1]
node_str = "{:}<-{:}".format(i + 2, j)
op = self.edges[node_str]
clist.append(op(states[j]))
states.append(sum(clist))
return torch.cat([states[x] for x in self._concats], dim=1)
class AuxiliaryHeadCIFAR(nn.Module):
def __init__(self, C, num_classes):
"""assuming input size 8x8"""
super(AuxiliaryHeadCIFAR, self).__init__()
self.features = nn.Sequential(
nn.ReLU(inplace=True),
nn.AvgPool2d(
5, stride=3, padding=0, count_include_pad=False
), # image size = 2 x 2
nn.Conv2d(C, 128, 1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 768, 2, bias=False),
nn.BatchNorm2d(768),
nn.ReLU(inplace=True),
)
self.classifier = nn.Linear(768, num_classes)
def forward(self, x):
x = self.features(x)
x = self.classifier(x.view(x.size(0), -1))
return x