upload
This commit is contained in:
121
zero-cost-nas/foresight/dataset.py
Normal file
121
zero-cost-nas/foresight/dataset.py
Normal file
@@ -0,0 +1,121 @@
|
||||
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
from torch.utils.data import DataLoader
|
||||
from torchvision.datasets import MNIST, CIFAR10, CIFAR100, SVHN
|
||||
from torchvision.transforms import Compose, ToTensor, Normalize
|
||||
from torchvision import transforms
|
||||
|
||||
from .imagenet16 import *
|
||||
|
||||
|
||||
def get_cifar_dataloaders(train_batch_size, test_batch_size, dataset, num_workers, resize=None, datadir='_dataset'):
|
||||
|
||||
if 'ImageNet16' in dataset:
|
||||
mean = [x / 255 for x in [122.68, 116.66, 104.01]]
|
||||
std = [x / 255 for x in [63.22, 61.26 , 65.09]]
|
||||
size, pad = 16, 2
|
||||
elif 'cifar' in dataset:
|
||||
mean = (0.4914, 0.4822, 0.4465)
|
||||
std = (0.2023, 0.1994, 0.2010)
|
||||
size, pad = 32, 4
|
||||
elif 'svhn' in dataset:
|
||||
mean = (0.5, 0.5, 0.5)
|
||||
std = (0.5, 0.5, 0.5)
|
||||
size, pad = 32, 0
|
||||
elif dataset == 'ImageNet1k':
|
||||
from .h5py_dataset import H5Dataset
|
||||
size,pad = 224,2
|
||||
mean = (0.485, 0.456, 0.406)
|
||||
std = (0.229, 0.224, 0.225)
|
||||
#resize = 256
|
||||
|
||||
if resize is None:
|
||||
resize = size
|
||||
|
||||
train_transform = transforms.Compose([
|
||||
transforms.RandomCrop(size, padding=pad),
|
||||
transforms.Resize(resize),
|
||||
transforms.RandomHorizontalFlip(),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize(mean,std),
|
||||
])
|
||||
|
||||
test_transform = transforms.Compose([
|
||||
transforms.Resize(resize),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize(mean,std),
|
||||
])
|
||||
|
||||
if dataset == 'cifar10':
|
||||
train_dataset = CIFAR10(datadir, True, train_transform, download=True)
|
||||
test_dataset = CIFAR10(datadir, False, test_transform, download=True)
|
||||
elif dataset == 'cifar100':
|
||||
train_dataset = CIFAR100(datadir, True, train_transform, download=True)
|
||||
test_dataset = CIFAR100(datadir, False, test_transform, download=True)
|
||||
elif dataset == 'svhn':
|
||||
train_dataset = SVHN(datadir, split='train', transform=train_transform, download=True)
|
||||
test_dataset = SVHN(datadir, split='test', transform=test_transform, download=True)
|
||||
elif dataset == 'ImageNet16-120':
|
||||
train_dataset = ImageNet16(os.path.join(datadir, 'ImageNet16'), True , train_transform, 120)
|
||||
test_dataset = ImageNet16(os.path.join(datadir, 'ImageNet16'), False, test_transform , 120)
|
||||
elif dataset == 'ImageNet1k':
|
||||
train_dataset = H5Dataset(os.path.join(datadir, 'imagenet-train-256.h5'), transform=train_transform)
|
||||
test_dataset = H5Dataset(os.path.join(datadir, 'imagenet-val-256.h5'), transform=test_transform)
|
||||
|
||||
else:
|
||||
raise ValueError('There are no more cifars or imagenets.')
|
||||
|
||||
train_loader = DataLoader(
|
||||
train_dataset,
|
||||
train_batch_size,
|
||||
shuffle=True,
|
||||
num_workers=num_workers,
|
||||
pin_memory=True)
|
||||
test_loader = DataLoader(
|
||||
test_dataset,
|
||||
test_batch_size,
|
||||
shuffle=False,
|
||||
num_workers=num_workers,
|
||||
pin_memory=True)
|
||||
|
||||
return train_loader, test_loader
|
||||
|
||||
|
||||
def get_mnist_dataloaders(train_batch_size, val_batch_size, num_workers):
|
||||
|
||||
data_transform = Compose([transforms.ToTensor()])
|
||||
|
||||
# Normalise? transforms.Normalize((0.1307,), (0.3081,))
|
||||
|
||||
train_dataset = MNIST("_dataset", True, data_transform, download=True)
|
||||
test_dataset = MNIST("_dataset", False, data_transform, download=True)
|
||||
|
||||
train_loader = DataLoader(
|
||||
train_dataset,
|
||||
train_batch_size,
|
||||
shuffle=True,
|
||||
num_workers=num_workers,
|
||||
pin_memory=True)
|
||||
test_loader = DataLoader(
|
||||
test_dataset,
|
||||
val_batch_size,
|
||||
shuffle=False,
|
||||
num_workers=num_workers,
|
||||
pin_memory=True)
|
||||
|
||||
return train_loader, test_loader
|
||||
|
Reference in New Issue
Block a user