upload
This commit is contained in:
164
zero-cost-nas/foresight/models/nasbench2_ops.py
Normal file
164
zero-cost-nas/foresight/models/nasbench2_ops.py
Normal file
@@ -0,0 +1,164 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
import os
|
||||
import argparse
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
class ReLUConvBN(nn.Module):
|
||||
|
||||
def __init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation, affine, track_running_stats=True, use_bn=True, name='ReLUConvBN'):
|
||||
super(ReLUConvBN, self).__init__()
|
||||
self.name = name
|
||||
if use_bn:
|
||||
self.op = nn.Sequential(
|
||||
nn.ReLU(inplace=False),
|
||||
nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, bias=not affine),
|
||||
nn.BatchNorm2d(out_channels, affine=affine, track_running_stats=track_running_stats)
|
||||
)
|
||||
else:
|
||||
self.op = nn.Sequential(
|
||||
nn.ReLU(inplace=False),
|
||||
nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, bias=not affine)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.op(x)
|
||||
|
||||
class Identity(nn.Module):
|
||||
def __init__(self, name='Identity'):
|
||||
self.name = name
|
||||
super(Identity, self).__init__()
|
||||
|
||||
def forward(self, x):
|
||||
return x
|
||||
|
||||
class Zero(nn.Module):
|
||||
|
||||
def __init__(self, stride, name='Zero'):
|
||||
self.name = name
|
||||
super(Zero, self).__init__()
|
||||
self.stride = stride
|
||||
|
||||
def forward(self, x):
|
||||
if self.stride == 1:
|
||||
return x.mul(0.)
|
||||
return x[:,:,::self.stride,::self.stride].mul(0.)
|
||||
|
||||
class POOLING(nn.Module):
|
||||
def __init__(self, kernel_size, stride, padding, name='POOLING'):
|
||||
super(POOLING, self).__init__()
|
||||
self.name = name
|
||||
self.avgpool = nn.AvgPool2d(kernel_size=kernel_size, stride=1, padding=1, count_include_pad=False)
|
||||
|
||||
def forward(self, x):
|
||||
return self.avgpool(x)
|
||||
|
||||
|
||||
class reduction(nn.Module):
|
||||
def __init__(self, in_channels, out_channels):
|
||||
super(reduction, self).__init__()
|
||||
self.residual = nn.Sequential(
|
||||
nn.AvgPool2d(kernel_size=2, stride=2, padding=0),
|
||||
nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0, bias=False))
|
||||
|
||||
self.conv_a = ReLUConvBN(in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=2, padding=1, dilation=1, affine=True, track_running_stats=True)
|
||||
self.conv_b = ReLUConvBN(in_channels=out_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1, dilation=1, affine=True, track_running_stats=True)
|
||||
|
||||
def forward(self, x):
|
||||
basicblock = self.conv_a(x)
|
||||
basicblock = self.conv_b(basicblock)
|
||||
residual = self.residual(x)
|
||||
return residual + basicblock
|
||||
|
||||
class stem(nn.Module):
|
||||
def __init__(self, out_channels, use_bn=True):
|
||||
super(stem, self).__init__()
|
||||
if use_bn:
|
||||
self.net = nn.Sequential(
|
||||
nn.Conv2d(in_channels=3, out_channels=out_channels, kernel_size=3, padding=1, bias=False),
|
||||
nn.BatchNorm2d(out_channels))
|
||||
else:
|
||||
self.net = nn.Sequential(
|
||||
nn.Conv2d(in_channels=3, out_channels=out_channels, kernel_size=3, padding=1, bias=False)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.net(x)
|
||||
|
||||
class top(nn.Module):
|
||||
def __init__(self, in_dims, num_classes, use_bn=True):
|
||||
super(top, self).__init__()
|
||||
if use_bn:
|
||||
self.lastact = nn.Sequential(nn.BatchNorm2d(in_dims), nn.ReLU(inplace=True))
|
||||
else:
|
||||
self.lastact = nn.ReLU(inplace=True)
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(in_dims, num_classes)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.lastact(x)
|
||||
x = self.global_pooling(x)
|
||||
x = x.view(x.size(0), -1)
|
||||
logits = self.classifier(x)
|
||||
return logits
|
||||
|
||||
|
||||
class SearchCell(nn.Module):
|
||||
|
||||
def __init__(self, in_channels, out_channels, stride, affine, track_running_stats, use_bn=True, num_nodes=4, keep_mask=None):
|
||||
super(SearchCell, self).__init__()
|
||||
self.num_nodes = num_nodes
|
||||
self.options = nn.ModuleList()
|
||||
for curr_node in range(self.num_nodes-1):
|
||||
for prev_node in range(curr_node+1):
|
||||
for _op_name in OPS.keys():
|
||||
op = OPS[_op_name](in_channels, out_channels, stride, affine, track_running_stats, use_bn)
|
||||
self.options.append(op)
|
||||
|
||||
if keep_mask is not None:
|
||||
self.keep_mask = keep_mask
|
||||
else:
|
||||
self.keep_mask = [True]*len(self.options)
|
||||
|
||||
def forward(self, x):
|
||||
outs = [x]
|
||||
|
||||
idx = 0
|
||||
for curr_node in range(self.num_nodes-1):
|
||||
edges_in = []
|
||||
for prev_node in range(curr_node+1): # n-1 prev nodes
|
||||
for op_idx in range(len(OPS.keys())):
|
||||
if self.keep_mask[idx]:
|
||||
edges_in.append(self.options[idx](outs[prev_node]))
|
||||
idx += 1
|
||||
node_output = sum(edges_in)
|
||||
outs.append(node_output)
|
||||
|
||||
return outs[-1]
|
||||
|
||||
|
||||
|
||||
OPS = {
|
||||
'none' : lambda in_channels, out_channels, stride, affine, track_running_stats, use_bn: Zero(stride, name='none'),
|
||||
'avg_pool_3x3' : lambda in_channels, out_channels, stride, affine, track_running_stats, use_bn: POOLING(3, 1, 1, name='avg_pool_3x3'),
|
||||
'nor_conv_3x3' : lambda in_channels, out_channels, stride, affine, track_running_stats, use_bn: ReLUConvBN(in_channels, out_channels, 3, 1, 1, 1, affine, track_running_stats, use_bn, name='nor_conv_3x3'),
|
||||
'nor_conv_1x1' : lambda in_channels, out_channels, stride, affine, track_running_stats, use_bn: ReLUConvBN(in_channels, out_channels, 1, 1, 0, 1, affine, track_running_stats, use_bn, name='nor_conv_1x1'),
|
||||
'skip_connect' : lambda in_channels, out_channels, stride, affine, track_running_stats, use_bn: Identity(name='skip_connect'),
|
||||
}
|
||||
|
||||
|
Reference in New Issue
Block a user