upload
This commit is contained in:
38
zero-cost-nas/foresight/pruners/measures/grad_norm.py
Normal file
38
zero-cost-nas/foresight/pruners/measures/grad_norm.py
Normal file
@@ -0,0 +1,38 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
import copy
|
||||
|
||||
from . import measure
|
||||
from ..p_utils import get_layer_metric_array
|
||||
|
||||
@measure('grad_norm', bn=True)
|
||||
def get_grad_norm_arr(net, inputs, targets, loss_fn, split_data=1, skip_grad=False):
|
||||
net.zero_grad()
|
||||
N = inputs.shape[0]
|
||||
for sp in range(split_data):
|
||||
st=sp*N//split_data
|
||||
en=(sp+1)*N//split_data
|
||||
|
||||
outputs = net.forward(inputs[st:en])
|
||||
loss = loss_fn(outputs, targets[st:en])
|
||||
loss.backward()
|
||||
|
||||
grad_norm_arr = get_layer_metric_array(net, lambda l: l.weight.grad.norm() if l.weight.grad is not None else torch.zeros_like(l.weight), mode='param')
|
||||
|
||||
return grad_norm_arr
|
Reference in New Issue
Block a user