upload
This commit is contained in:
69
zero-cost-nas/foresight/pruners/measures/snip.py
Normal file
69
zero-cost-nas/foresight/pruners/measures/snip.py
Normal file
@@ -0,0 +1,69 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
import copy
|
||||
import types
|
||||
|
||||
from . import measure
|
||||
from ..p_utils import get_layer_metric_array
|
||||
|
||||
|
||||
def snip_forward_conv2d(self, x):
|
||||
return F.conv2d(x, self.weight * self.weight_mask, self.bias,
|
||||
self.stride, self.padding, self.dilation, self.groups)
|
||||
|
||||
def snip_forward_linear(self, x):
|
||||
return F.linear(x, self.weight * self.weight_mask, self.bias)
|
||||
|
||||
@measure('snip', bn=True, mode='param')
|
||||
def compute_snip_per_weight(net, inputs, targets, mode, loss_fn, split_data=1):
|
||||
for layer in net.modules():
|
||||
if isinstance(layer, nn.Conv2d) or isinstance(layer, nn.Linear):
|
||||
layer.weight_mask = nn.Parameter(torch.ones_like(layer.weight))
|
||||
layer.weight.requires_grad = False
|
||||
|
||||
# Override the forward methods:
|
||||
if isinstance(layer, nn.Conv2d):
|
||||
layer.forward = types.MethodType(snip_forward_conv2d, layer)
|
||||
|
||||
if isinstance(layer, nn.Linear):
|
||||
layer.forward = types.MethodType(snip_forward_linear, layer)
|
||||
|
||||
# Compute gradients (but don't apply them)
|
||||
net.zero_grad()
|
||||
N = inputs.shape[0]
|
||||
for sp in range(split_data):
|
||||
st=sp*N//split_data
|
||||
en=(sp+1)*N//split_data
|
||||
|
||||
outputs = net.forward(inputs[st:en])
|
||||
loss = loss_fn(outputs, targets[st:en])
|
||||
loss.backward()
|
||||
|
||||
# select the gradients that we want to use for search/prune
|
||||
def snip(layer):
|
||||
if layer.weight_mask.grad is not None:
|
||||
return torch.abs(layer.weight_mask.grad)
|
||||
else:
|
||||
return torch.zeros_like(layer.weight)
|
||||
|
||||
grads_abs = get_layer_metric_array(net, snip, mode)
|
||||
|
||||
return grads_abs
|
Reference in New Issue
Block a user