upload
This commit is contained in:
69
zero-cost-nas/foresight/pruners/measures/synflow.py
Normal file
69
zero-cost-nas/foresight/pruners/measures/synflow.py
Normal file
@@ -0,0 +1,69 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
import torch
|
||||
|
||||
from . import measure
|
||||
from ..p_utils import get_layer_metric_array
|
||||
|
||||
|
||||
@measure('synflow', bn=False, mode='param')
|
||||
@measure('synflow_bn', bn=True, mode='param')
|
||||
def compute_synflow_per_weight(net, inputs, targets, mode, split_data=1, loss_fn=None):
|
||||
|
||||
device = inputs.device
|
||||
|
||||
#convert params to their abs. Keep sign for converting it back.
|
||||
@torch.no_grad()
|
||||
def linearize(net):
|
||||
signs = {}
|
||||
for name, param in net.state_dict().items():
|
||||
signs[name] = torch.sign(param)
|
||||
param.abs_()
|
||||
return signs
|
||||
|
||||
#convert to orig values
|
||||
@torch.no_grad()
|
||||
def nonlinearize(net, signs):
|
||||
for name, param in net.state_dict().items():
|
||||
if 'weight_mask' not in name:
|
||||
param.mul_(signs[name])
|
||||
|
||||
# keep signs of all params
|
||||
signs = linearize(net)
|
||||
|
||||
# Compute gradients with input of 1s
|
||||
net.zero_grad()
|
||||
net.double()
|
||||
input_dim = list(inputs[0,:].shape)
|
||||
inputs = torch.ones([1] + input_dim).double().to(device)
|
||||
output = net.forward(inputs)
|
||||
torch.sum(output).backward()
|
||||
|
||||
# select the gradients that we want to use for search/prune
|
||||
def synflow(layer):
|
||||
if layer.weight.grad is not None:
|
||||
return torch.abs(layer.weight * layer.weight.grad)
|
||||
else:
|
||||
return torch.zeros_like(layer.weight)
|
||||
|
||||
grads_abs = get_layer_metric_array(net, synflow, mode)
|
||||
|
||||
# apply signs of all params
|
||||
nonlinearize(net, signs)
|
||||
|
||||
return grads_abs
|
||||
|
||||
|
Reference in New Issue
Block a user