update
This commit is contained in:
107
correlation/foresight/pruners/measures/fisher.py
Normal file
107
correlation/foresight/pruners/measures/fisher.py
Normal file
@@ -0,0 +1,107 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
import types
|
||||
|
||||
from . import measure
|
||||
from ..p_utils import get_layer_metric_array, reshape_elements
|
||||
|
||||
|
||||
def fisher_forward_conv2d(self, x):
|
||||
x = F.conv2d(x, self.weight, self.bias, self.stride,
|
||||
self.padding, self.dilation, self.groups)
|
||||
#intercept and store the activations after passing through 'hooked' identity op
|
||||
self.act = self.dummy(x)
|
||||
return self.act
|
||||
|
||||
def fisher_forward_linear(self, x):
|
||||
x = F.linear(x, self.weight, self.bias)
|
||||
self.act = self.dummy(x)
|
||||
return self.act
|
||||
|
||||
@measure('fisher', bn=True, mode='channel')
|
||||
def compute_fisher_per_weight(net, inputs, targets, loss_fn, mode, split_data=1):
|
||||
|
||||
device = inputs.device
|
||||
|
||||
if mode == 'param':
|
||||
raise ValueError('Fisher pruning does not support parameter pruning.')
|
||||
|
||||
net.train()
|
||||
all_hooks = []
|
||||
for layer in net.modules():
|
||||
if isinstance(layer, nn.Conv2d) or isinstance(layer, nn.Linear):
|
||||
#variables/op needed for fisher computation
|
||||
layer.fisher = None
|
||||
layer.act = 0.
|
||||
layer.dummy = nn.Identity()
|
||||
|
||||
#replace forward method of conv/linear
|
||||
if isinstance(layer, nn.Conv2d):
|
||||
layer.forward = types.MethodType(fisher_forward_conv2d, layer)
|
||||
if isinstance(layer, nn.Linear):
|
||||
layer.forward = types.MethodType(fisher_forward_linear, layer)
|
||||
|
||||
#function to call during backward pass (hooked on identity op at output of layer)
|
||||
def hook_factory(layer):
|
||||
def hook(module, grad_input, grad_output):
|
||||
act = layer.act.detach()
|
||||
grad = grad_output[0].detach()
|
||||
if len(act.shape) > 2:
|
||||
g_nk = torch.sum((act * grad), list(range(2,len(act.shape))))
|
||||
else:
|
||||
g_nk = act * grad
|
||||
del_k = g_nk.pow(2).mean(0).mul(0.5)
|
||||
if layer.fisher is None:
|
||||
layer.fisher = del_k
|
||||
else:
|
||||
layer.fisher += del_k
|
||||
del layer.act #without deleting this, a nasty memory leak occurs! related: https://discuss.pytorch.org/t/memory-leak-when-using-forward-hook-and-backward-hook-simultaneously/27555
|
||||
return hook
|
||||
|
||||
#register backward hook on identity fcn to compute fisher info
|
||||
layer.dummy.register_backward_hook(hook_factory(layer))
|
||||
|
||||
N = inputs.shape[0]
|
||||
for sp in range(split_data):
|
||||
st=sp*N//split_data
|
||||
en=(sp+1)*N//split_data
|
||||
|
||||
net.zero_grad()
|
||||
outputs = net(inputs[st:en])
|
||||
loss = loss_fn(outputs, targets[st:en])
|
||||
loss.backward()
|
||||
|
||||
# retrieve fisher info
|
||||
def fisher(layer):
|
||||
if layer.fisher is not None:
|
||||
return torch.abs(layer.fisher.detach())
|
||||
else:
|
||||
return torch.zeros(layer.weight.shape[0]) #size=ch
|
||||
|
||||
grads_abs_ch = get_layer_metric_array(net, fisher, mode)
|
||||
|
||||
#broadcast channel value here to all parameters in that channel
|
||||
#to be compatible with stuff downstream (which expects per-parameter metrics)
|
||||
#TODO cleanup on the selectors/apply_prune_mask side (?)
|
||||
shapes = get_layer_metric_array(net, lambda l : l.weight.shape[1:], mode)
|
||||
|
||||
grads_abs = reshape_elements(grads_abs_ch, shapes, device)
|
||||
|
||||
return grads_abs
|
Reference in New Issue
Block a user