update
This commit is contained in:
73
correlation/foresight/pruners/measures/meco.py
Normal file
73
correlation/foresight/pruners/measures/meco.py
Normal file
@@ -0,0 +1,73 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
import copy
|
||||
import time
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from . import measure
|
||||
|
||||
|
||||
def get_score(net, x, target, device, split_data):
|
||||
result_list = []
|
||||
x = torch.randn(size=(1, 3, 64, 64)).to(device)
|
||||
net.to(device)
|
||||
def forward_hook(module, data_input, data_output):
|
||||
|
||||
fea = data_output[0].detach()
|
||||
fea = fea.reshape(fea.shape[0], -1)
|
||||
n = fea.shape[0]
|
||||
corr = torch.corrcoef(fea)
|
||||
corr[torch.isnan(corr)] = 0
|
||||
corr[torch.isinf(corr)] = 0
|
||||
values = torch.linalg.eig(corr)[0]
|
||||
# result = np.real(np.min(values)) / np.real(np.max(values))
|
||||
result = torch.min(torch.real(values))
|
||||
result_list.append(result)
|
||||
|
||||
for name, modules in net.named_modules():
|
||||
modules.register_forward_hook(forward_hook)
|
||||
|
||||
|
||||
|
||||
N = x.shape[0]
|
||||
for sp in range(split_data):
|
||||
st = sp * N // split_data
|
||||
en = (sp + 1) * N // split_data
|
||||
y = net(x[st:en])
|
||||
# break
|
||||
results = torch.tensor(result_list)
|
||||
results = results[torch.logical_not(torch.isnan(results))]
|
||||
v = torch.sum(results)
|
||||
result_list.clear()
|
||||
return v.item()
|
||||
|
||||
|
||||
|
||||
@measure('meco', bn=True)
|
||||
def compute_meco(net, inputs, targets, split_data=1, loss_fn=None):
|
||||
device = inputs.device
|
||||
# Compute gradients (but don't apply them)
|
||||
net.zero_grad()
|
||||
|
||||
|
||||
try:
|
||||
meco = get_score(net, inputs, targets, device, split_data=split_data)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
meco = np.nan, None
|
||||
return meco
|
Reference in New Issue
Block a user