update
This commit is contained in:
71
correlation/foresight/pruners/measures/pearson.py
Normal file
71
correlation/foresight/pruners/measures/pearson.py
Normal file
@@ -0,0 +1,71 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
import copy
|
||||
import time
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
import numpy as np
|
||||
from torch import nn
|
||||
# import pandas as pd
|
||||
|
||||
from . import measure
|
||||
|
||||
|
||||
def get_score(net, x, target, device, split_data):
|
||||
result_list = []
|
||||
result_t = []
|
||||
def forward_hook(module, data_input, data_output):
|
||||
s = time.time()
|
||||
fea = data_output[0].detach().cpu().numpy()
|
||||
fea = fea.reshape(fea.shape[0], -1)
|
||||
# result = 1 / np.var(np.corrcoef(fea))
|
||||
result = np.var(np.corrcoef(fea))
|
||||
e = time.time()
|
||||
t = e - s
|
||||
result_list.append(result)
|
||||
result_t.append(t)
|
||||
|
||||
for name, modules in net.named_modules():
|
||||
modules.register_forward_hook(forward_hook)
|
||||
|
||||
|
||||
|
||||
N = x.shape[0]
|
||||
for sp in range(split_data):
|
||||
st = sp * N // split_data
|
||||
en = (sp + 1) * N // split_data
|
||||
y = net(x[st:en])
|
||||
# print(y)
|
||||
results = np.array(result_list)
|
||||
results = results[np.logical_not(np.isnan(results))]
|
||||
v = np.sum(results)
|
||||
t = sum(result_t)
|
||||
result_list.clear()
|
||||
result_t.clear()
|
||||
return v, t
|
||||
|
||||
|
||||
|
||||
@measure('pearson', bn=True)
|
||||
def compute_pearson(net, inputs, targets, split_data=1, loss_fn=None):
|
||||
device = inputs.device
|
||||
# Compute gradients (but don't apply them)
|
||||
net.zero_grad()
|
||||
|
||||
try:
|
||||
pearson, t = get_score(net, inputs, targets, device, split_data=split_data)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
pearson, t = np.nan, None
|
||||
return pearson, t
|
Reference in New Issue
Block a user