update
This commit is contained in:
110
correlation/foresight/pruners/measures/zen.py
Normal file
110
correlation/foresight/pruners/measures/zen.py
Normal file
@@ -0,0 +1,110 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
import numpy as np
|
||||
|
||||
from . import measure
|
||||
|
||||
|
||||
def network_weight_gaussian_init(net: nn.Module):
|
||||
with torch.no_grad():
|
||||
for n, m in net.named_modules():
|
||||
if isinstance(m, nn.Conv2d):
|
||||
nn.init.normal_(m.weight)
|
||||
if hasattr(m, 'bias') and m.bias is not None:
|
||||
nn.init.zeros_(m.bias)
|
||||
elif isinstance(m, nn.BatchNorm2d):
|
||||
try:
|
||||
nn.init.ones_(m.weight)
|
||||
nn.init.zeros_(m.bias)
|
||||
except:
|
||||
pass
|
||||
elif isinstance(m, nn.Linear):
|
||||
nn.init.normal_(m.weight)
|
||||
if hasattr(m, 'bias') and m.bias is not None:
|
||||
nn.init.zeros_(m.bias)
|
||||
else:
|
||||
continue
|
||||
|
||||
return net
|
||||
|
||||
|
||||
def get_zen(gpu, model, mixup_gamma=1e-2, resolution=32, batch_size=64, repeat=32,
|
||||
fp16=False):
|
||||
info = {}
|
||||
nas_score_list = []
|
||||
if gpu is not None:
|
||||
device = torch.device(gpu)
|
||||
else:
|
||||
device = torch.device('cpu')
|
||||
|
||||
if fp16:
|
||||
dtype = torch.half
|
||||
else:
|
||||
dtype = torch.float32
|
||||
|
||||
with torch.no_grad():
|
||||
for repeat_count in range(repeat):
|
||||
network_weight_gaussian_init(model)
|
||||
input = torch.randn(size=[batch_size, 3, resolution, resolution], device=device, dtype=dtype)
|
||||
input2 = torch.randn(size=[batch_size, 3, resolution, resolution], device=device, dtype=dtype)
|
||||
mixup_input = input + mixup_gamma * input2
|
||||
output = model.forward_pre_GAP(input)
|
||||
mixup_output = model.forward_pre_GAP(mixup_input)
|
||||
|
||||
nas_score = torch.sum(torch.abs(output - mixup_output), dim=[1, 2, 3])
|
||||
nas_score = torch.mean(nas_score)
|
||||
|
||||
# compute BN scaling
|
||||
log_bn_scaling_factor = 0.0
|
||||
for m in model.modules():
|
||||
if isinstance(m, nn.BatchNorm2d):
|
||||
try:
|
||||
bn_scaling_factor = torch.sqrt(torch.mean(m.running_var))
|
||||
log_bn_scaling_factor += torch.log(bn_scaling_factor)
|
||||
except:
|
||||
pass
|
||||
pass
|
||||
pass
|
||||
nas_score = torch.log(nas_score) + log_bn_scaling_factor
|
||||
nas_score_list.append(float(nas_score))
|
||||
|
||||
std_nas_score = np.std(nas_score_list)
|
||||
avg_precision = 1.96 * std_nas_score / np.sqrt(len(nas_score_list))
|
||||
avg_nas_score = np.mean(nas_score_list)
|
||||
|
||||
info = float(avg_nas_score)
|
||||
return info
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
@measure('zen', bn=True)
|
||||
def compute_zen(net, inputs, targets, split_data=1, loss_fn=None):
|
||||
device = inputs.device
|
||||
# Compute gradients (but don't apply them)
|
||||
net.zero_grad()
|
||||
|
||||
|
||||
try:
|
||||
zen = get_zen(device,net)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
zen= np.nan
|
||||
|
||||
return zen
|
Reference in New Issue
Block a user