update
This commit is contained in:
76
zero-cost-nas/foresight/pruners/measures/gradsign.py
Normal file
76
zero-cost-nas/foresight/pruners/measures/gradsign.py
Normal file
@@ -0,0 +1,76 @@
|
||||
# Copyright 2021 Samsung Electronics Co., Ltd.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
import numpy as np
|
||||
|
||||
from . import measure
|
||||
|
||||
|
||||
def get_flattened_metric(net, metric):
|
||||
grad_list = []
|
||||
for layer in net.modules():
|
||||
if isinstance(layer, nn.Conv2d) or isinstance(layer, nn.Linear):
|
||||
grad_list.append(metric(layer).flatten())
|
||||
flattened_grad = np.concatenate(grad_list)
|
||||
|
||||
return flattened_grad
|
||||
|
||||
|
||||
def get_grad_conflict(net, inputs, targets, loss_fn):
|
||||
N = inputs.shape[0]
|
||||
batch_grad = []
|
||||
for i in range(N):
|
||||
net.zero_grad()
|
||||
outputs = net.forward(inputs[[i]])
|
||||
loss = loss_fn(outputs, targets[[i]])
|
||||
loss.backward()
|
||||
flattened_grad = get_flattened_metric(net, lambda
|
||||
l: l.weight.grad.data.clone().cpu().numpy() if l.weight.grad is not None else torch.zeros_like(
|
||||
l.weight).clone().cpu().numpy())
|
||||
batch_grad.append(flattened_grad)
|
||||
batch_grad = np.stack(batch_grad)
|
||||
direction_code = np.sign(batch_grad)
|
||||
direction_code = abs(direction_code.sum(axis=0))
|
||||
score = np.nansum(direction_code)
|
||||
return score
|
||||
|
||||
|
||||
def get_gradsign(input, target, net, device, loss_fn):
|
||||
s = []
|
||||
net = net.to(device)
|
||||
x, target = input, target
|
||||
# x2 = torch.clone(x)
|
||||
# x2 = x2.to(device)
|
||||
x, target = x.to(device), target.to(device)
|
||||
s.append(get_grad_conflict(net=net, inputs=x, targets=target, loss_fn=loss_fn))
|
||||
s = np.mean(s)
|
||||
return s
|
||||
|
||||
@measure('gradsign', bn=True)
|
||||
def compute_gradsign(net, inputs, targets, split_data=1, loss_fn=None):
|
||||
device = inputs.device
|
||||
# Compute gradients (but don't apply them)
|
||||
net.zero_grad()
|
||||
|
||||
|
||||
try:
|
||||
gradsign = get_gradsign(inputs, targets, net, device, loss_fn)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
gradsign= np.nan
|
||||
|
||||
return gradsign
|
Reference in New Issue
Block a user