update to oxford and aircraft
This commit is contained in:
		| @@ -71,7 +71,7 @@ def parse_arguments(): | ||||
|     parser.add_argument('--write_freq', type=int, default=1, help='frequency of write to file') | ||||
|     parser.add_argument('--start', type=int, default=0, help='start index') | ||||
|     parser.add_argument('--end', type=int, default=0, help='end index') | ||||
|     parser.add_argument('--noacc', default=False, action='store_true', | ||||
|     parser.add_argument('--noacc', default=True, action='store_true', | ||||
|                         help='avoid loading NASBench2 api an instead load a pickle file with tuple (index, arch_str)') | ||||
|     args = parser.parse_args() | ||||
|     args.device = torch.device("cuda:" + str(args.gpu) if torch.cuda.is_available() else "cpu") | ||||
| @@ -94,7 +94,14 @@ if __name__ == '__main__': | ||||
|     x, y = next(iter(train_loader)) | ||||
|  | ||||
|     cached_res = [] | ||||
|     pre = 'cf' if 'cifar' in args.dataset else 'im' | ||||
|     if 'cifar' in args.dataset : | ||||
|         pre = 'cf' | ||||
|     elif 'Image' in args.dataset: | ||||
|         pre = 'im' | ||||
|     elif 'oxford' in args.dataset: | ||||
|         pre = 'ox' | ||||
|     elif 'air' in args.dataset: | ||||
|         pre = 'ai' | ||||
|     pfn = f'nb2_{args.search_space}_{pre}{get_num_classes(args)}_seed{args.seed}_dl{args.dataload}_dlinfo{args.dataload_info}_initw{args.init_w_type}_initb{args.init_b_type}_{args.batch_size}.p' | ||||
|     op = os.path.join(args.outdir, pfn) | ||||
|  | ||||
|   | ||||
| @@ -18,6 +18,7 @@ | ||||
| from torchvision.datasets import MNIST, CIFAR10, CIFAR100, SVHN | ||||
| from torchvision.transforms import Compose, ToTensor, Normalize | ||||
| from torchvision import transforms | ||||
| import torchvision.datasets as dset | ||||
| from torch.utils.data import TensorDataset, DataLoader | ||||
| import torch | ||||
|  | ||||
| @@ -44,6 +45,14 @@ def get_cifar_dataloaders(train_batch_size, test_batch_size, dataset, num_worker | ||||
|         mean = (0.485, 0.456, 0.406) | ||||
|         std  = (0.229, 0.224, 0.225) | ||||
|         #resize = 256 | ||||
|     elif dataset == 'aircraft': | ||||
|         mean = (0.4785, 0.5100, 0.5338) | ||||
|         std  = (0.1845, 0.1830, 0.2060) | ||||
|         size, pad = 224, 2 | ||||
|     elif dataset == 'oxford': | ||||
|         mean = (0.4811, 0.4492, 0.3957) | ||||
|         std  = (0.2260, 0.2231, 0.2249) | ||||
|         size, pad = 32, 0 | ||||
|     elif 'random' in dataset: | ||||
|         mean = (0.5, 0.5, 0.5) | ||||
|         std = (1, 1, 1) | ||||
| @@ -65,6 +74,7 @@ def get_cifar_dataloaders(train_batch_size, test_batch_size, dataset, num_worker | ||||
|         transforms.ToTensor(), | ||||
|         transforms.Normalize(mean,std), | ||||
|     ]) | ||||
|     root = '/nfs/data3/hanzhang/MeCo/data' | ||||
|  | ||||
|     if dataset == 'cifar10': | ||||
|         train_dataset = CIFAR10(datadir, True, train_transform, download=True) | ||||
| @@ -72,6 +82,40 @@ def get_cifar_dataloaders(train_batch_size, test_batch_size, dataset, num_worker | ||||
|     elif dataset == 'cifar100': | ||||
|         train_dataset = CIFAR100(datadir, True, train_transform, download=True) | ||||
|         test_dataset = CIFAR100(datadir, False, test_transform, download=True) | ||||
|     elif dataset == 'aircraft':  | ||||
|         lists = [transforms.RandomCrop(size, padding=pad), transforms.ToTensor(), transforms.Normalize(mean, std)] | ||||
|         # if resize != None :  | ||||
|         #     print(resize) | ||||
|         #     lists += [CUTOUT(resize)] | ||||
|         train_transform = transforms.Compose(lists) | ||||
|         test_transform  = transforms.Compose([transforms.Resize((224,224)), transforms.ToTensor(), transforms.Normalize(mean, std)]) | ||||
|         train_data = dset.ImageFolder(os.path.join(root, 'train_sorted_images'), train_transform) | ||||
|         test_data  = dset.ImageFolder(os.path.join(root, 'test_sorted_images'),  test_transform) | ||||
|     elif dataset == 'oxford': | ||||
|         lists = [transforms.RandomCrop(size, padding=pad), transforms.ToTensor(), transforms.Normalize(mean, std)] | ||||
|         # if resize != None :  | ||||
|         #     print(resize) | ||||
|         #     lists += [CUTOUT(resize)] | ||||
|         train_transform = transforms.Compose(lists) | ||||
|         test_transform  = transforms.Compose([transforms.Resize((224,224)), transforms.ToTensor(), transforms.Normalize(mean, std)]) | ||||
|  | ||||
|         train_data = torch.load(os.path.join(root, 'train85.pth')) | ||||
|         test_data  = torch.load(os.path.join(root, 'test15.pth')) | ||||
|  | ||||
|         train_tensor_data = [(image, label) for image, label in train_data] | ||||
|         test_tensor_data = [(image, label) for image, label in test_data] | ||||
|         sum_data = train_tensor_data + test_tensor_data | ||||
|  | ||||
|         train_images = [image for image, label in train_tensor_data] | ||||
|         train_labels = torch.tensor([label for image, label in train_tensor_data]) | ||||
|         test_images = [image for image, label in test_tensor_data] | ||||
|         test_labels = torch.tensor([label for image, label in test_tensor_data]) | ||||
|  | ||||
|         train_tensors = torch.stack([train_transform(image) for image in train_images]) | ||||
|         test_tensors = torch.stack([test_transform(image) for image in test_images]) | ||||
|  | ||||
|         train_dataset = TensorDataset(train_tensors, train_labels) | ||||
|         test_dataset = TensorDataset(test_tensors, test_labels) | ||||
|     elif dataset == 'svhn': | ||||
|         train_dataset = SVHN(datadir, split='train', transform=train_transform, download=True) | ||||
|         test_dataset = SVHN(datadir, split='test', transform=test_transform, download=True) | ||||
| @@ -97,8 +141,6 @@ def get_cifar_dataloaders(train_batch_size, test_batch_size, dataset, num_worker | ||||
|         shuffle=False, | ||||
|         num_workers=num_workers, | ||||
|         pin_memory=True) | ||||
|  | ||||
|  | ||||
|     return train_loader, test_loader | ||||
|  | ||||
|  | ||||
|   | ||||
		Reference in New Issue
	
	Block a user