# Copyright 2021 Samsung Electronics Co., Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from ..models import * def get_some_data(train_dataloader, num_batches, device): traindata = [] dataloader_iter = iter(train_dataloader) for _ in range(num_batches): traindata.append(next(dataloader_iter)) inputs = torch.cat([a for a,_ in traindata]) targets = torch.cat([b for _,b in traindata]) inputs = inputs.to(device) targets = targets.to(device) return inputs, targets def get_some_data_grasp(train_dataloader, num_classes, samples_per_class, device): datas = [[] for _ in range(num_classes)] labels = [[] for _ in range(num_classes)] mark = dict() dataloader_iter = iter(train_dataloader) while True: inputs, targets = next(dataloader_iter) for idx in range(inputs.shape[0]): x, y = inputs[idx:idx+1], targets[idx:idx+1] category = y.item() if len(datas[category]) == samples_per_class: mark[category] = True continue datas[category].append(x) labels[category].append(y) if len(mark) == num_classes: break x = torch.cat([torch.cat(_, 0) for _ in datas]).to(device) y = torch.cat([torch.cat(_) for _ in labels]).view(-1).to(device) return x, y def get_layer_metric_array(net, metric, mode): metric_array = [] for layer in net.modules(): if mode=='channel' and hasattr(layer,'dont_ch_prune'): continue if isinstance(layer, nn.Conv2d) or isinstance(layer, nn.Linear): metric_array.append(metric(layer)) return metric_array def reshape_elements(elements, shapes, device): def broadcast_val(elements, shapes): ret_grads = [] for e,sh in zip(elements, shapes): ret_grads.append(torch.stack([torch.Tensor(sh).fill_(v) for v in e], dim=0).to(device)) return ret_grads if type(elements[0]) == list: outer = [] for e,sh in zip(elements, shapes): outer.append(broadcast_val(e,sh)) return outer else: return broadcast_val(elements, shapes) def count_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad)