# Copyright 2021 Samsung Electronics Co., Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= import torch import torch.nn as nn import torch.nn.functional as F import types from . import measure from ..p_utils import get_layer_metric_array, reshape_elements def fisher_forward_conv2d(self, x): x = F.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups) #intercept and store the activations after passing through 'hooked' identity op self.act = self.dummy(x) return self.act def fisher_forward_linear(self, x): x = F.linear(x, self.weight, self.bias) self.act = self.dummy(x) return self.act @measure('fisher', bn=True, mode='channel') def compute_fisher_per_weight(net, inputs, targets, loss_fn, mode, split_data=1): device = inputs.device if mode == 'param': raise ValueError('Fisher pruning does not support parameter pruning.') net.train() all_hooks = [] for layer in net.modules(): if isinstance(layer, nn.Conv2d) or isinstance(layer, nn.Linear): #variables/op needed for fisher computation layer.fisher = None layer.act = 0. layer.dummy = nn.Identity() #replace forward method of conv/linear if isinstance(layer, nn.Conv2d): layer.forward = types.MethodType(fisher_forward_conv2d, layer) if isinstance(layer, nn.Linear): layer.forward = types.MethodType(fisher_forward_linear, layer) #function to call during backward pass (hooked on identity op at output of layer) def hook_factory(layer): def hook(module, grad_input, grad_output): act = layer.act.detach() grad = grad_output[0].detach() if len(act.shape) > 2: g_nk = torch.sum((act * grad), list(range(2,len(act.shape)))) else: g_nk = act * grad del_k = g_nk.pow(2).mean(0).mul(0.5) if layer.fisher is None: layer.fisher = del_k else: layer.fisher += del_k del layer.act #without deleting this, a nasty memory leak occurs! related: https://discuss.pytorch.org/t/memory-leak-when-using-forward-hook-and-backward-hook-simultaneously/27555 return hook #register backward hook on identity fcn to compute fisher info layer.dummy.register_backward_hook(hook_factory(layer)) N = inputs.shape[0] for sp in range(split_data): st=sp*N//split_data en=(sp+1)*N//split_data net.zero_grad() outputs = net(inputs[st:en]) loss = loss_fn(outputs, targets[st:en]) loss.backward() # retrieve fisher info def fisher(layer): if layer.fisher is not None: return torch.abs(layer.fisher.detach()) else: return torch.zeros(layer.weight.shape[0]) #size=ch grads_abs_ch = get_layer_metric_array(net, fisher, mode) #broadcast channel value here to all parameters in that channel #to be compatible with stuff downstream (which expects per-parameter metrics) #TODO cleanup on the selectors/apply_prune_mask side (?) shapes = get_layer_metric_array(net, lambda l : l.weight.shape[1:], mode) grads_abs = reshape_elements(grads_abs_ch, shapes, device) return grads_abs