initial commit
This commit is contained in:
0
core/__init__.py
Normal file
0
core/__init__.py
Normal file
312
core/datasets.py
Normal file
312
core/datasets.py
Normal file
@@ -0,0 +1,312 @@
|
||||
# Data loading based on https://github.com/NVIDIA/flownet2-pytorch
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.utils.data as data
|
||||
import torch.nn.functional as F
|
||||
|
||||
import os
|
||||
import cv2
|
||||
import math
|
||||
import random
|
||||
from glob import glob
|
||||
import os.path as osp
|
||||
|
||||
from utils import frame_utils
|
||||
from utils.augmentor import FlowAugmentor, FlowAugmentorKITTI
|
||||
|
||||
|
||||
class CombinedDataset(data.Dataset):
|
||||
def __init__(self, datasets):
|
||||
self.datasets = datasets
|
||||
|
||||
def __len__(self):
|
||||
length = 0
|
||||
for i in range(len(self.datasets)):
|
||||
length += len(self.datsaets[i])
|
||||
return length
|
||||
|
||||
def __getitem__(self, index):
|
||||
i = 0
|
||||
for j in range(len(self.datasets)):
|
||||
if i + len(self.datasets[j]) >= index:
|
||||
yield self.datasets[j][index-i]
|
||||
break
|
||||
i += len(self.datasets[j])
|
||||
|
||||
def __add__(self, other):
|
||||
self.datasets.append(other)
|
||||
return self
|
||||
|
||||
class FlowDataset(data.Dataset):
|
||||
def __init__(self, args, image_size=None, do_augument=False):
|
||||
self.image_size = image_size
|
||||
self.do_augument = do_augument
|
||||
|
||||
if self.do_augument:
|
||||
self.augumentor = FlowAugmentor(self.image_size)
|
||||
|
||||
self.flow_list = []
|
||||
self.image_list = []
|
||||
|
||||
self.init_seed = False
|
||||
|
||||
def __getitem__(self, index):
|
||||
|
||||
if not self.init_seed:
|
||||
worker_info = torch.utils.data.get_worker_info()
|
||||
if worker_info is not None:
|
||||
torch.manual_seed(worker_info.id)
|
||||
np.random.seed(worker_info.id)
|
||||
random.seed(worker_info.id)
|
||||
self.init_seed = True
|
||||
|
||||
index = index % len(self.image_list)
|
||||
flow = frame_utils.read_gen(self.flow_list[index])
|
||||
img1 = frame_utils.read_gen(self.image_list[index][0])
|
||||
img2 = frame_utils.read_gen(self.image_list[index][1])
|
||||
|
||||
img1 = np.array(img1).astype(np.uint8)[..., :3]
|
||||
img2 = np.array(img2).astype(np.uint8)[..., :3]
|
||||
flow = np.array(flow).astype(np.float32)
|
||||
|
||||
if self.do_augument:
|
||||
img1, img2, flow = self.augumentor(img1, img2, flow)
|
||||
|
||||
img1 = torch.from_numpy(img1).permute(2, 0, 1).float()
|
||||
img2 = torch.from_numpy(img2).permute(2, 0, 1).float()
|
||||
flow = torch.from_numpy(flow).permute(2, 0, 1).float()
|
||||
valid = torch.ones_like(flow[0])
|
||||
|
||||
return img1, img2, flow, valid
|
||||
|
||||
def __len__(self):
|
||||
return len(self.image_list)
|
||||
|
||||
def __add(self, other):
|
||||
return CombinedDataset([self, other])
|
||||
|
||||
|
||||
class MpiSintelTest(FlowDataset):
|
||||
def __init__(self, args, root='datasets/Sintel/test', dstype='clean'):
|
||||
super(MpiSintelTest, self).__init__(args, image_size=None, do_augument=False)
|
||||
|
||||
self.root = root
|
||||
self.dstype = dstype
|
||||
|
||||
image_dir = osp.join(self.root, dstype)
|
||||
all_sequences = os.listdir(image_dir)
|
||||
|
||||
self.image_list = []
|
||||
for sequence in all_sequences:
|
||||
frames = sorted(glob(osp.join(image_dir, sequence, '*.png')))
|
||||
for i in range(len(frames)-1):
|
||||
self.image_list += [[frames[i], frames[i+1], sequence, i]]
|
||||
|
||||
def __getitem__(self, index):
|
||||
img1 = frame_utils.read_gen(self.image_list[index][0])
|
||||
img2 = frame_utils.read_gen(self.image_list[index][1])
|
||||
sequence = self.image_list[index][2]
|
||||
frame = self.image_list[index][3]
|
||||
|
||||
img1 = np.array(img1).astype(np.uint8)[..., :3]
|
||||
img2 = np.array(img2).astype(np.uint8)[..., :3]
|
||||
img1 = torch.from_numpy(img1).permute(2, 0, 1).float()
|
||||
img2 = torch.from_numpy(img2).permute(2, 0, 1).float()
|
||||
return img1, img2, sequence, frame
|
||||
|
||||
|
||||
class MpiSintel(FlowDataset):
|
||||
def __init__(self, args, image_size=None, do_augument=True, root='datasets/Sintel/training', dstype='clean'):
|
||||
super(MpiSintel, self).__init__(args, image_size, do_augument)
|
||||
if do_augument:
|
||||
self.augumentor.min_scale = -0.2
|
||||
self.augumentor.max_scale = 0.7
|
||||
|
||||
self.root = root
|
||||
self.dstype = dstype
|
||||
|
||||
flow_root = osp.join(root, 'flow')
|
||||
image_root = osp.join(root, dstype)
|
||||
|
||||
file_list = sorted(glob(osp.join(flow_root, '*/*.flo')))
|
||||
for flo in file_list:
|
||||
fbase = flo[len(flow_root)+1:]
|
||||
fprefix = fbase[:-8]
|
||||
fnum = int(fbase[-8:-4])
|
||||
|
||||
img1 = osp.join(image_root, fprefix + "%04d"%(fnum+0) + '.png')
|
||||
img2 = osp.join(image_root, fprefix + "%04d"%(fnum+1) + '.png')
|
||||
|
||||
if not osp.isfile(img1) or not osp.isfile(img2) or not osp.isfile(flo):
|
||||
continue
|
||||
|
||||
self.image_list.append((img1, img2))
|
||||
self.flow_list.append(flo)
|
||||
|
||||
|
||||
class FlyingChairs(FlowDataset):
|
||||
def __init__(self, args, image_size=None, do_augument=True, root='datasets/FlyingChairs_release/data'):
|
||||
super(FlyingChairs, self).__init__(args, image_size, do_augument)
|
||||
self.root = root
|
||||
self.augumentor.min_scale = -0.2
|
||||
self.augumentor.max_scale = 1.0
|
||||
|
||||
images = sorted(glob(osp.join(root, '*.ppm')))
|
||||
self.flow_list = sorted(glob(osp.join(root, '*.flo')))
|
||||
assert (len(images)//2 == len(self.flow_list))
|
||||
|
||||
self.image_list = []
|
||||
for i in range(len(self.flow_list)):
|
||||
im1 = images[2*i]
|
||||
im2 = images[2*i + 1]
|
||||
self.image_list.append([im1, im2])
|
||||
|
||||
|
||||
class SceneFlow(FlowDataset):
|
||||
def __init__(self, args, image_size, do_augument=True, root='datasets',
|
||||
dstype='frames_cleanpass', use_flyingthings=True, use_monkaa=False, use_driving=False):
|
||||
|
||||
super(SceneFlow, self).__init__(args, image_size, do_augument)
|
||||
self.root = root
|
||||
self.dstype = dstype
|
||||
|
||||
self.augumentor.min_scale = -0.2
|
||||
self.augumentor.max_scale = 0.8
|
||||
|
||||
if use_flyingthings:
|
||||
self.add_flyingthings()
|
||||
|
||||
if use_monkaa:
|
||||
self.add_monkaa()
|
||||
|
||||
if use_driving:
|
||||
self.add_driving()
|
||||
|
||||
def add_flyingthings(self):
|
||||
root = osp.join(self.root, 'FlyingThings3D')
|
||||
|
||||
for cam in ['left']:
|
||||
for direction in ['into_future', 'into_past']:
|
||||
image_dirs = sorted(glob(osp.join(root, self.dstype, 'TRAIN/*/*')))
|
||||
image_dirs = sorted([osp.join(f, cam) for f in image_dirs])
|
||||
|
||||
flow_dirs = sorted(glob(osp.join(root, 'optical_flow/TRAIN/*/*')))
|
||||
flow_dirs = sorted([osp.join(f, direction, cam) for f in flow_dirs])
|
||||
|
||||
for idir, fdir in zip(image_dirs, flow_dirs):
|
||||
images = sorted(glob(osp.join(idir, '*.png')) )
|
||||
flows = sorted(glob(osp.join(fdir, '*.pfm')) )
|
||||
for i in range(len(flows)-1):
|
||||
if direction == 'into_future':
|
||||
self.image_list += [[images[i], images[i+1]]]
|
||||
self.flow_list += [flows[i]]
|
||||
elif direction == 'into_past':
|
||||
self.image_list += [[images[i+1], images[i]]]
|
||||
self.flow_list += [flows[i+1]]
|
||||
|
||||
def add_monkaa(self):
|
||||
pass # we don't use monkaa
|
||||
|
||||
def add_driving(self):
|
||||
pass # we don't use driving
|
||||
|
||||
|
||||
class KITTI(FlowDataset):
|
||||
def __init__(self, args, image_size=None, do_augument=True, is_test=False, is_val=False, do_pad=False, split=True, root='datasets/KITTI'):
|
||||
super(KITTI, self).__init__(args, image_size, do_augument)
|
||||
self.root = root
|
||||
self.is_test = is_test
|
||||
self.is_val = is_val
|
||||
self.do_pad = do_pad
|
||||
|
||||
if self.do_augument:
|
||||
self.augumentor = FlowAugumentorKITTI(self.image_size, args.eraser_aug, min_scale=-0.2, max_scale=0.5)
|
||||
|
||||
if self.is_test:
|
||||
images1 = sorted(glob(os.path.join(root, 'testing', 'image_2/*_10.png')))
|
||||
images2 = sorted(glob(os.path.join(root, 'testing', 'image_2/*_11.png')))
|
||||
for i in range(len(images1)):
|
||||
self.image_list += [[images1[i], images2[i]]]
|
||||
|
||||
else:
|
||||
flows = sorted(glob(os.path.join(root, 'training', 'flow_occ/*_10.png')))
|
||||
images1 = sorted(glob(os.path.join(root, 'training', 'image_2/*_10.png')))
|
||||
images2 = sorted(glob(os.path.join(root, 'training', 'image_2/*_11.png')))
|
||||
|
||||
for i in range(len(flows)):
|
||||
self.flow_list += [flows[i]]
|
||||
self.image_list += [[images1[i], images2[i]]]
|
||||
|
||||
|
||||
def __getitem__(self, index):
|
||||
|
||||
if self.is_test:
|
||||
frame_id = self.image_list[index][0]
|
||||
frame_id = frame_id.split('/')[-1]
|
||||
|
||||
img1 = frame_utils.read_gen(self.image_list[index][0])
|
||||
img2 = frame_utils.read_gen(self.image_list[index][1])
|
||||
|
||||
img1 = np.array(img1).astype(np.uint8)[..., :3]
|
||||
img2 = np.array(img2).astype(np.uint8)[..., :3]
|
||||
|
||||
img1 = torch.from_numpy(img1).permute(2, 0, 1).float()
|
||||
img2 = torch.from_numpy(img2).permute(2, 0, 1).float()
|
||||
return img1, img2, frame_id
|
||||
|
||||
|
||||
else:
|
||||
if not self.init_seed:
|
||||
worker_info = torch.utils.data.get_worker_info()
|
||||
if worker_info is not None:
|
||||
np.random.seed(worker_info.id)
|
||||
random.seed(worker_info.id)
|
||||
self.init_seed = True
|
||||
|
||||
index = index % len(self.image_list)
|
||||
frame_id = self.image_list[index][0]
|
||||
frame_id = frame_id.split('/')[-1]
|
||||
|
||||
img1 = frame_utils.read_gen(self.image_list[index][0])
|
||||
img2 = frame_utils.read_gen(self.image_list[index][1])
|
||||
flow, valid = frame_utils.readFlowKITTI(self.flow_list[index])
|
||||
|
||||
img1 = np.array(img1).astype(np.uint8)[..., :3]
|
||||
img2 = np.array(img2).astype(np.uint8)[..., :3]
|
||||
|
||||
if self.do_augument:
|
||||
img1, img2, flow, valid = self.augumentor(img1, img2, flow, valid)
|
||||
|
||||
img1 = torch.from_numpy(img1).permute(2, 0, 1).float()
|
||||
img2 = torch.from_numpy(img2).permute(2, 0, 1).float()
|
||||
flow = torch.from_numpy(flow).permute(2, 0, 1).float()
|
||||
valid = torch.from_numpy(valid).float()
|
||||
|
||||
if self.do_pad:
|
||||
ht, wd = img1.shape[1:]
|
||||
pad_ht = (((ht // 8) + 1) * 8 - ht) % 8
|
||||
pad_wd = (((wd // 8) + 1) * 8 - wd) % 8
|
||||
pad_ht1 = [0, pad_ht]
|
||||
pad_wd1 = [pad_wd//2, pad_wd - pad_wd//2]
|
||||
pad = pad_wd1 + pad_ht1
|
||||
|
||||
img1 = img1.view(1, 3, ht, wd)
|
||||
img2 = img2.view(1, 3, ht, wd)
|
||||
flow = flow.view(1, 2, ht, wd)
|
||||
valid = valid.view(1, 1, ht, wd)
|
||||
|
||||
img1 = torch.nn.functional.pad(img1, pad, mode='replicate')
|
||||
img2 = torch.nn.functional.pad(img2, pad, mode='replicate')
|
||||
flow = torch.nn.functional.pad(flow, pad, mode='constant', value=0)
|
||||
valid = torch.nn.functional.pad(valid, pad, mode='replicate', value=0)
|
||||
|
||||
img1 = img1.view(3, ht+pad_ht, wd+pad_wd)
|
||||
img2 = img2.view(3, ht+pad_ht, wd+pad_wd)
|
||||
flow = flow.view(2, ht+pad_ht, wd+pad_wd)
|
||||
valid = valid.view(ht+pad_ht, wd+pad_wd)
|
||||
|
||||
if self.is_test:
|
||||
return img1, img2, flow, valid, frame_id
|
||||
|
||||
return img1, img2, flow, valid
|
0
core/modules/__init__.py
Normal file
0
core/modules/__init__.py
Normal file
53
core/modules/corr.py
Normal file
53
core/modules/corr.py
Normal file
@@ -0,0 +1,53 @@
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from utils.utils import bilinear_sampler, coords_grid
|
||||
|
||||
class CorrBlock:
|
||||
def __init__(self, fmap1, fmap2, num_levels=4, radius=4):
|
||||
self.num_levels = num_levels
|
||||
self.radius = radius
|
||||
self.corr_pyramid = []
|
||||
|
||||
# all pairs correlation
|
||||
corr = CorrBlock.corr(fmap1, fmap2)
|
||||
|
||||
batch, h1, w1, dim, h2, w2 = corr.shape
|
||||
corr = corr.view(batch*h1*w1, dim, h2, w2)
|
||||
|
||||
self.corr_pyramid.append(corr)
|
||||
for i in range(self.num_levels):
|
||||
corr = F.avg_pool2d(corr, 2, stride=2)
|
||||
self.corr_pyramid.append(corr)
|
||||
|
||||
def __call__(self, coords):
|
||||
r = self.radius
|
||||
coords = coords.permute(0, 2, 3, 1)
|
||||
batch, h1, w1, _ = coords.shape
|
||||
|
||||
out_pyramid = []
|
||||
for i in range(self.num_levels):
|
||||
corr = self.corr_pyramid[i]
|
||||
dx = torch.linspace(-r, r, 2*r+1)
|
||||
dy = torch.linspace(-r, r, 2*r+1)
|
||||
delta = torch.stack(torch.meshgrid(dy, dx), axis=-1).to(coords.device)
|
||||
|
||||
centroid_lvl = coords.reshape(batch*h1*w1, 1, 1, 2) / 2**i
|
||||
delta_lvl = delta.view(1, 2*r+1, 2*r+1, 2)
|
||||
coords_lvl = centroid_lvl + delta_lvl
|
||||
|
||||
corr = bilinear_sampler(corr, coords_lvl)
|
||||
corr = corr.view(batch, h1, w1, -1)
|
||||
out_pyramid.append(corr)
|
||||
|
||||
out = torch.cat(out_pyramid, dim=-1)
|
||||
return out.permute(0, 3, 1, 2)
|
||||
|
||||
@staticmethod
|
||||
def corr(fmap1, fmap2):
|
||||
batch, dim, ht, wd = fmap1.shape
|
||||
fmap1 = fmap1.view(batch, dim, ht*wd)
|
||||
fmap2 = fmap2.view(batch, dim, ht*wd)
|
||||
|
||||
corr = torch.matmul(fmap1.transpose(1,2), fmap2)
|
||||
corr = corr.view(batch, ht, wd, 1, ht, wd)
|
||||
return corr / torch.sqrt(torch.tensor(dim).float())
|
269
core/modules/extractor.py
Normal file
269
core/modules/extractor.py
Normal file
@@ -0,0 +1,269 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class ResidualBlock(nn.Module):
|
||||
def __init__(self, in_planes, planes, norm_fn='group', stride=1):
|
||||
super(ResidualBlock, self).__init__()
|
||||
|
||||
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, padding=1, stride=stride)
|
||||
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
|
||||
num_groups = planes // 8
|
||||
|
||||
if norm_fn == 'group':
|
||||
self.norm1 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
|
||||
self.norm2 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
|
||||
if not stride == 1:
|
||||
self.norm3 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
|
||||
|
||||
elif norm_fn == 'batch':
|
||||
self.norm1 = nn.BatchNorm2d(planes)
|
||||
self.norm2 = nn.BatchNorm2d(planes)
|
||||
if not stride == 1:
|
||||
self.norm3 = nn.BatchNorm2d(planes)
|
||||
|
||||
elif norm_fn == 'instance':
|
||||
self.norm1 = nn.InstanceNorm2d(planes)
|
||||
self.norm2 = nn.InstanceNorm2d(planes)
|
||||
if not stride == 1:
|
||||
self.norm3 = nn.InstanceNorm2d(planes)
|
||||
|
||||
elif norm_fn == 'none':
|
||||
self.norm1 = nn.Sequential()
|
||||
self.norm2 = nn.Sequential()
|
||||
if not stride == 1:
|
||||
self.norm3 = nn.Sequential()
|
||||
|
||||
if stride == 1:
|
||||
self.downsample = None
|
||||
|
||||
else:
|
||||
self.downsample = nn.Sequential(
|
||||
nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm3)
|
||||
|
||||
|
||||
def forward(self, x):
|
||||
y = x
|
||||
y = self.relu(self.norm1(self.conv1(y)))
|
||||
y = self.relu(self.norm2(self.conv2(y)))
|
||||
|
||||
if self.downsample is not None:
|
||||
x = self.downsample(x)
|
||||
|
||||
return self.relu(x+y)
|
||||
|
||||
|
||||
|
||||
class BottleneckBlock(nn.Module):
|
||||
def __init__(self, in_planes, planes, norm_fn='group', stride=1):
|
||||
super(BottleneckBlock, self).__init__()
|
||||
|
||||
self.conv1 = nn.Conv2d(in_planes, planes//4, kernel_size=1, padding=0)
|
||||
self.conv2 = nn.Conv2d(planes//4, planes//4, kernel_size=3, padding=1, stride=stride)
|
||||
self.conv3 = nn.Conv2d(planes//4, planes, kernel_size=1, padding=0)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
|
||||
num_groups = planes // 8
|
||||
|
||||
if norm_fn == 'group':
|
||||
self.norm1 = nn.GroupNorm(num_groups=num_groups, num_channels=planes//4)
|
||||
self.norm2 = nn.GroupNorm(num_groups=num_groups, num_channels=planes//4)
|
||||
self.norm3 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
|
||||
if not stride == 1:
|
||||
self.norm4 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
|
||||
|
||||
elif norm_fn == 'batch':
|
||||
self.norm1 = nn.BatchNorm2d(planes//4)
|
||||
self.norm2 = nn.BatchNorm2d(planes//4)
|
||||
self.norm3 = nn.BatchNorm2d(planes)
|
||||
if not stride == 1:
|
||||
self.norm4 = nn.BatchNorm2d(planes)
|
||||
|
||||
elif norm_fn == 'instance':
|
||||
self.norm1 = nn.InstanceNorm2d(planes//4)
|
||||
self.norm2 = nn.InstanceNorm2d(planes//4)
|
||||
self.norm3 = nn.InstanceNorm2d(planes)
|
||||
if not stride == 1:
|
||||
self.norm4 = nn.InstanceNorm2d(planes)
|
||||
|
||||
elif norm_fn == 'none':
|
||||
self.norm1 = nn.Sequential()
|
||||
self.norm2 = nn.Sequential()
|
||||
self.norm3 = nn.Sequential()
|
||||
if not stride == 1:
|
||||
self.norm4 = nn.Sequential()
|
||||
|
||||
if stride == 1:
|
||||
self.downsample = None
|
||||
|
||||
else:
|
||||
self.downsample = nn.Sequential(
|
||||
nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm4)
|
||||
|
||||
|
||||
def forward(self, x):
|
||||
y = x
|
||||
y = self.relu(self.norm1(self.conv1(y)))
|
||||
y = self.relu(self.norm2(self.conv2(y)))
|
||||
y = self.relu(self.norm3(self.conv3(y)))
|
||||
|
||||
if self.downsample is not None:
|
||||
x = self.downsample(x)
|
||||
|
||||
return self.relu(x+y)
|
||||
|
||||
class BasicEncoder(nn.Module):
|
||||
def __init__(self, output_dim=128, norm_fn='batch', dropout=0.0):
|
||||
super(BasicEncoder, self).__init__()
|
||||
self.norm_fn = norm_fn
|
||||
|
||||
if self.norm_fn == 'group':
|
||||
self.norm1 = nn.GroupNorm(num_groups=8, num_channels=64)
|
||||
|
||||
elif self.norm_fn == 'batch':
|
||||
self.norm1 = nn.BatchNorm2d(64)
|
||||
|
||||
elif self.norm_fn == 'instance':
|
||||
self.norm1 = nn.InstanceNorm2d(64)
|
||||
|
||||
elif self.norm_fn == 'none':
|
||||
self.norm1 = nn.Sequential()
|
||||
|
||||
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3)
|
||||
self.relu1 = nn.ReLU(inplace=True)
|
||||
|
||||
self.in_planes = 64
|
||||
self.layer1 = self._make_layer(64, stride=1)
|
||||
self.layer2 = self._make_layer(96, stride=2)
|
||||
self.layer3 = self._make_layer(128, stride=2)
|
||||
|
||||
# output convolution
|
||||
self.conv2 = nn.Conv2d(128, output_dim, kernel_size=1)
|
||||
|
||||
if dropout > 0:
|
||||
self.dropout = nn.Dropout2d(p=dropout)
|
||||
else:
|
||||
self.dropout = None
|
||||
|
||||
for m in self.modules():
|
||||
if isinstance(m, nn.Conv2d):
|
||||
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
||||
elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)):
|
||||
if m.weight is not None:
|
||||
nn.init.constant_(m.weight, 1)
|
||||
if m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
|
||||
def _make_layer(self, dim, stride=1):
|
||||
layer1 = ResidualBlock(self.in_planes, dim, self.norm_fn, stride=stride)
|
||||
layer2 = ResidualBlock(dim, dim, self.norm_fn, stride=1)
|
||||
layers = (layer1, layer2)
|
||||
|
||||
self.in_planes = dim
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
|
||||
def forward(self, x):
|
||||
|
||||
# if input is list, combine batch dimension
|
||||
is_list = isinstance(x, tuple) or isinstance(x, list)
|
||||
if is_list:
|
||||
batch_dim = x[0].shape[0]
|
||||
x = torch.cat(x, dim=0)
|
||||
|
||||
x = self.conv1(x)
|
||||
x = self.norm1(x)
|
||||
x = self.relu1(x)
|
||||
|
||||
x = self.layer1(x)
|
||||
x = self.layer2(x)
|
||||
x = self.layer3(x)
|
||||
|
||||
x = self.conv2(x)
|
||||
|
||||
if self.dropout is not None:
|
||||
x = self.dropout(x)
|
||||
|
||||
if is_list:
|
||||
x = torch.split(x, [batch_dim, batch_dim], dim=0)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class SmallEncoder(nn.Module):
|
||||
def __init__(self, output_dim=128, norm_fn='batch', dropout=0.0):
|
||||
super(SmallEncoder, self).__init__()
|
||||
self.norm_fn = norm_fn
|
||||
|
||||
if self.norm_fn == 'group':
|
||||
self.norm1 = nn.GroupNorm(num_groups=8, num_channels=32)
|
||||
|
||||
elif self.norm_fn == 'batch':
|
||||
self.norm1 = nn.BatchNorm2d(32)
|
||||
|
||||
elif self.norm_fn == 'instance':
|
||||
self.norm1 = nn.InstanceNorm2d(32)
|
||||
|
||||
elif self.norm_fn == 'none':
|
||||
self.norm1 = nn.Sequential()
|
||||
|
||||
self.conv1 = nn.Conv2d(3, 32, kernel_size=7, stride=2, padding=3)
|
||||
self.relu1 = nn.ReLU(inplace=True)
|
||||
|
||||
self.in_planes = 32
|
||||
self.layer1 = self._make_layer(32, stride=1)
|
||||
self.layer2 = self._make_layer(64, stride=2)
|
||||
self.layer3 = self._make_layer(96, stride=2)
|
||||
|
||||
if dropout > 0:
|
||||
self.dropout = nn.Dropout2d(p=dropout)
|
||||
else:
|
||||
self.dropout = None
|
||||
|
||||
self.conv2 = nn.Conv2d(96, output_dim, kernel_size=1)
|
||||
|
||||
for m in self.modules():
|
||||
if isinstance(m, nn.Conv2d):
|
||||
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
||||
elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)):
|
||||
if m.weight is not None:
|
||||
nn.init.constant_(m.weight, 1)
|
||||
if m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
|
||||
def _make_layer(self, dim, stride=1):
|
||||
layer1 = BottleneckBlock(self.in_planes, dim, self.norm_fn, stride=stride)
|
||||
layer2 = BottleneckBlock(dim, dim, self.norm_fn, stride=1)
|
||||
layers = (layer1, layer2)
|
||||
|
||||
self.in_planes = dim
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
|
||||
def forward(self, x):
|
||||
|
||||
# if input is list, combine batch dimension
|
||||
is_list = isinstance(x, tuple) or isinstance(x, list)
|
||||
if is_list:
|
||||
batch_dim = x[0].shape[0]
|
||||
x = torch.cat(x, dim=0)
|
||||
|
||||
x = self.conv1(x)
|
||||
x = self.norm1(x)
|
||||
x = self.relu1(x)
|
||||
|
||||
x = self.layer1(x)
|
||||
x = self.layer2(x)
|
||||
x = self.layer3(x)
|
||||
x = self.conv2(x)
|
||||
|
||||
# if self.dropout is not None:
|
||||
# x = self.dropout(x)
|
||||
|
||||
if is_list:
|
||||
x = torch.split(x, [batch_dim, batch_dim], dim=0)
|
||||
|
||||
return x
|
169
core/modules/update.py
Normal file
169
core/modules/update.py
Normal file
@@ -0,0 +1,169 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
# VariationalHidDropout from https://github.com/locuslab/trellisnet/tree/master/TrellisNet
|
||||
class VariationalHidDropout(nn.Module):
|
||||
def __init__(self, dropout=0.0):
|
||||
"""
|
||||
Hidden-to-hidden (VD-based) dropout that applies the same mask at every time step and every layer of TrellisNet
|
||||
:param dropout: The dropout rate (0 means no dropout is applied)
|
||||
"""
|
||||
super(VariationalHidDropout, self).__init__()
|
||||
self.dropout = dropout
|
||||
self.mask = None
|
||||
|
||||
def reset_mask(self, x):
|
||||
dropout = self.dropout
|
||||
|
||||
# Dimension (N, C, L)
|
||||
n, c, h, w = x.shape
|
||||
m = x.data.new(n, c, 1, 1).bernoulli_(1 - dropout)
|
||||
with torch.no_grad():
|
||||
mask = m / (1 - dropout)
|
||||
self.mask = mask
|
||||
return mask
|
||||
|
||||
def forward(self, x):
|
||||
if not self.training or self.dropout == 0:
|
||||
return x
|
||||
assert self.mask is not None, "You need to reset mask before using VariationalHidDropout"
|
||||
return self.mask * x
|
||||
|
||||
|
||||
class FlowHead(nn.Module):
|
||||
def __init__(self, input_dim=128, hidden_dim=256):
|
||||
super(FlowHead, self).__init__()
|
||||
self.conv1 = nn.Conv2d(input_dim, hidden_dim, 3, padding=1)
|
||||
self.conv2 = nn.Conv2d(hidden_dim, 2, 3, padding=1)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
|
||||
def forward(self, x):
|
||||
return self.conv2(self.relu(self.conv1(x)))
|
||||
|
||||
|
||||
class ConvGRU(nn.Module):
|
||||
def __init__(self, hidden_dim=128, input_dim=192+128):
|
||||
super(ConvGRU, self).__init__()
|
||||
self.convz = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1)
|
||||
self.convr = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1)
|
||||
self.convq = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1)
|
||||
|
||||
def forward(self, h, x):
|
||||
hx = torch.cat([h, x], dim=1)
|
||||
|
||||
z = torch.sigmoid(self.convz(hx))
|
||||
r = torch.sigmoid(self.convr(hx))
|
||||
q = torch.tanh(self.convq(torch.cat([r*h, x], dim=1)))
|
||||
|
||||
h = (1-z) * h + z * q
|
||||
return h
|
||||
|
||||
|
||||
class SepConvGRU(nn.Module):
|
||||
def __init__(self, hidden_dim=128, input_dim=192+128):
|
||||
super(SepConvGRU, self).__init__()
|
||||
self.convz1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2))
|
||||
self.convr1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2))
|
||||
self.convq1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2))
|
||||
|
||||
self.convz2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0))
|
||||
self.convr2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0))
|
||||
self.convq2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0))
|
||||
|
||||
|
||||
def forward(self, h, x):
|
||||
# horizontal
|
||||
hx = torch.cat([h, x], dim=1)
|
||||
z = torch.sigmoid(self.convz1(hx))
|
||||
r = torch.sigmoid(self.convr1(hx))
|
||||
q = torch.tanh(self.convq1(torch.cat([r*h, x], dim=1)))
|
||||
h = (1-z) * h + z * q
|
||||
|
||||
# vertical
|
||||
hx = torch.cat([h, x], dim=1)
|
||||
z = torch.sigmoid(self.convz2(hx))
|
||||
r = torch.sigmoid(self.convr2(hx))
|
||||
q = torch.tanh(self.convq2(torch.cat([r*h, x], dim=1)))
|
||||
h = (1-z) * h + z * q
|
||||
|
||||
return h
|
||||
|
||||
class SmallMotionEncoder(nn.Module):
|
||||
def __init__(self, args):
|
||||
super(SmallMotionEncoder, self).__init__()
|
||||
cor_planes = args.corr_levels * (2*args.corr_radius + 1)**2
|
||||
self.convc1 = nn.Conv2d(cor_planes, 96, 1, padding=0)
|
||||
self.convf1 = nn.Conv2d(2, 64, 7, padding=3)
|
||||
self.convf2 = nn.Conv2d(64, 32, 3, padding=1)
|
||||
self.conv = nn.Conv2d(128, 80, 3, padding=1)
|
||||
|
||||
def forward(self, flow, corr):
|
||||
cor = F.relu(self.convc1(corr))
|
||||
flo = F.relu(self.convf1(flow))
|
||||
flo = F.relu(self.convf2(flo))
|
||||
cor_flo = torch.cat([cor, flo], dim=1)
|
||||
out = F.relu(self.conv(cor_flo))
|
||||
return torch.cat([out, flow], dim=1)
|
||||
|
||||
class BasicMotionEncoder(nn.Module):
|
||||
def __init__(self, args):
|
||||
super(BasicMotionEncoder, self).__init__()
|
||||
cor_planes = args.corr_levels * (2*args.corr_radius + 1)**2
|
||||
self.convc1 = nn.Conv2d(cor_planes, 256, 1, padding=0)
|
||||
self.convc2 = nn.Conv2d(256, 192, 3, padding=1)
|
||||
self.convf1 = nn.Conv2d(2, 128, 7, padding=3)
|
||||
self.convf2 = nn.Conv2d(128, 64, 3, padding=1)
|
||||
self.conv = nn.Conv2d(64+192, 128-2, 3, padding=1)
|
||||
|
||||
def forward(self, flow, corr):
|
||||
cor = F.relu(self.convc1(corr))
|
||||
cor = F.relu(self.convc2(cor))
|
||||
flo = F.relu(self.convf1(flow))
|
||||
flo = F.relu(self.convf2(flo))
|
||||
|
||||
cor_flo = torch.cat([cor, flo], dim=1)
|
||||
out = F.relu(self.conv(cor_flo))
|
||||
return torch.cat([out, flow], dim=1)
|
||||
|
||||
class SmallUpdateBlock(nn.Module):
|
||||
def __init__(self, args, hidden_dim=96):
|
||||
super(SmallUpdateBlock, self).__init__()
|
||||
self.encoder = SmallMotionEncoder(args)
|
||||
self.gru = ConvGRU(hidden_dim=hidden_dim, input_dim=82+64)
|
||||
self.flow_head = FlowHead(hidden_dim, hidden_dim=128)
|
||||
|
||||
def forward(self, net, inp, corr, flow):
|
||||
motion_features = self.encoder(flow, corr)
|
||||
inp = torch.cat([inp, motion_features], dim=1)
|
||||
net = self.gru(net, inp)
|
||||
delta_flow = self.flow_head(net)
|
||||
|
||||
return net, delta_flow
|
||||
|
||||
class BasicUpdateBlock(nn.Module):
|
||||
def __init__(self, args, hidden_dim=128, input_dim=128):
|
||||
super(BasicUpdateBlock, self).__init__()
|
||||
self.encoder = BasicMotionEncoder(args)
|
||||
self.gru = SepConvGRU(hidden_dim=hidden_dim, input_dim=128+hidden_dim)
|
||||
self.flow_head = FlowHead(hidden_dim, hidden_dim=256)
|
||||
|
||||
self.drop_inp = VariationalHidDropout(dropout=args.dropout)
|
||||
self.drop_net = VariationalHidDropout(dropout=args.dropout)
|
||||
|
||||
def reset_mask(self, net, inp):
|
||||
self.drop_inp.reset_mask(inp)
|
||||
self.drop_net.reset_mask(net)
|
||||
|
||||
def forward(self, net, inp, corr, flow):
|
||||
motion_features = self.encoder(flow, corr)
|
||||
inp = torch.cat([inp, motion_features], dim=1)
|
||||
|
||||
if self.training:
|
||||
net = self.drop_net(net)
|
||||
inp = self.drop_inp(inp)
|
||||
|
||||
net = self.gru(net, inp)
|
||||
delta_flow = self.flow_head(net)
|
||||
|
||||
return net, delta_flow
|
99
core/raft.py
Normal file
99
core/raft.py
Normal file
@@ -0,0 +1,99 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from modules.update import BasicUpdateBlock, SmallUpdateBlock
|
||||
from modules.extractor import BasicEncoder, SmallEncoder
|
||||
from modules.corr import CorrBlock
|
||||
from utils.utils import bilinear_sampler, coords_grid, upflow8
|
||||
|
||||
|
||||
class RAFT(nn.Module):
|
||||
def __init__(self, args):
|
||||
super(RAFT, self).__init__()
|
||||
self.args = args
|
||||
|
||||
if args.small:
|
||||
self.hidden_dim = hdim = 96
|
||||
self.context_dim = cdim = 64
|
||||
args.corr_levels = 4
|
||||
args.corr_radius = 3
|
||||
|
||||
else:
|
||||
self.hidden_dim = hdim = 128
|
||||
self.context_dim = cdim = 128
|
||||
args.corr_levels = 4
|
||||
args.corr_radius = 4
|
||||
|
||||
if 'dropout' not in args._get_kwargs():
|
||||
args.dropout = 0
|
||||
|
||||
# feature network, context network, and update block
|
||||
if args.small:
|
||||
self.fnet = SmallEncoder(output_dim=128, norm_fn='instance', dropout=args.dropout)
|
||||
self.cnet = SmallEncoder(output_dim=hdim+cdim, norm_fn='none', dropout=args.dropout)
|
||||
self.update_block = SmallUpdateBlock(self.args, hidden_dim=hdim)
|
||||
|
||||
else:
|
||||
self.fnet = BasicEncoder(output_dim=256, norm_fn='instance', dropout=args.dropout)
|
||||
self.cnet = BasicEncoder(output_dim=hdim+cdim, norm_fn='batch', dropout=args.dropout)
|
||||
self.update_block = BasicUpdateBlock(self.args, hidden_dim=hdim)
|
||||
|
||||
def freeze_bn(self):
|
||||
for m in self.modules():
|
||||
if isinstance(m, nn.BatchNorm2d):
|
||||
m.eval()
|
||||
|
||||
def initialize_flow(self, img):
|
||||
""" Flow is represented as difference between two coordinate grids flow = coords1 - coords0"""
|
||||
N, C, H, W = img.shape
|
||||
coords0 = coords_grid(N, H//8, W//8).to(img.device)
|
||||
coords1 = coords_grid(N, H//8, W//8).to(img.device)
|
||||
|
||||
# optical flow computed as difference: flow = coords1 - coords0
|
||||
return coords0, coords1
|
||||
|
||||
def forward(self, image1, image2, iters=12, flow_init=None, upsample=True):
|
||||
""" Estimate optical flow between pair of frames """
|
||||
|
||||
image1 = 2 * (image1 / 255.0) - 1.0
|
||||
image2 = 2 * (image2 / 255.0) - 1.0
|
||||
|
||||
hdim = self.hidden_dim
|
||||
cdim = self.context_dim
|
||||
|
||||
# run the feature network
|
||||
fmap1, fmap2 = self.fnet([image1, image2])
|
||||
corr_fn = CorrBlock(fmap1, fmap2, radius=self.args.corr_radius)
|
||||
|
||||
# run the context network
|
||||
cnet = self.cnet(image1)
|
||||
net, inp = torch.split(cnet, [hdim, cdim], dim=1)
|
||||
net, inp = torch.tanh(net), torch.relu(inp)
|
||||
|
||||
# if dropout is being used reset mask
|
||||
self.update_block.reset_mask(net, inp)
|
||||
coords0, coords1 = self.initialize_flow(image1)
|
||||
|
||||
flow_predictions = []
|
||||
for itr in range(iters):
|
||||
coords1 = coords1.detach()
|
||||
corr = corr_fn(coords1) # index correlation volume
|
||||
|
||||
flow = coords1 - coords0
|
||||
net, delta_flow = self.update_block(net, inp, corr, flow)
|
||||
|
||||
# F(t+1) = F(t) + \Delta(t)
|
||||
coords1 = coords1 + delta_flow
|
||||
|
||||
if upsample:
|
||||
flow_up = upflow8(coords1 - coords0)
|
||||
flow_predictions.append(flow_up)
|
||||
|
||||
else:
|
||||
flow_predictions.append(coords1 - coords0)
|
||||
|
||||
return flow_predictions
|
||||
|
||||
|
0
core/utils/__init__.py
Normal file
0
core/utils/__init__.py
Normal file
233
core/utils/augmentor.py
Normal file
233
core/utils/augmentor.py
Normal file
@@ -0,0 +1,233 @@
|
||||
import numpy as np
|
||||
import random
|
||||
import math
|
||||
import cv2
|
||||
from PIL import Image
|
||||
|
||||
import torch
|
||||
import torchvision
|
||||
import torch.nn.functional as F
|
||||
|
||||
class FlowAugmentor:
|
||||
def __init__(self, crop_size, min_scale=-0.2, max_scale=0.5):
|
||||
self.crop_size = crop_size
|
||||
self.augcolor = torchvision.transforms.ColorJitter(
|
||||
brightness=0.4,
|
||||
contrast=0.4,
|
||||
saturation=0.4,
|
||||
hue=0.5/3.14)
|
||||
|
||||
self.asymmetric_color_aug_prob = 0.2
|
||||
self.spatial_aug_prob = 0.8
|
||||
self.eraser_aug_prob = 0.5
|
||||
|
||||
self.min_scale = min_scale
|
||||
self.max_scale = max_scale
|
||||
self.max_stretch = 0.2
|
||||
self.stretch_prob = 0.8
|
||||
self.margin = 20
|
||||
|
||||
def color_transform(self, img1, img2):
|
||||
|
||||
if np.random.rand() < self.asymmetric_color_aug_prob:
|
||||
img1 = np.array(self.augcolor(Image.fromarray(img1)), dtype=np.uint8)
|
||||
img2 = np.array(self.augcolor(Image.fromarray(img2)), dtype=np.uint8)
|
||||
|
||||
else:
|
||||
image_stack = np.concatenate([img1, img2], axis=0)
|
||||
image_stack = np.array(self.augcolor(Image.fromarray(image_stack)), dtype=np.uint8)
|
||||
img1, img2 = np.split(image_stack, 2, axis=0)
|
||||
|
||||
return img1, img2
|
||||
|
||||
def eraser_transform(self, img1, img2, bounds=[50, 100]):
|
||||
ht, wd = img1.shape[:2]
|
||||
if np.random.rand() < self.eraser_aug_prob:
|
||||
mean_color = np.mean(img2.reshape(-1, 3), axis=0)
|
||||
for _ in range(np.random.randint(1, 3)):
|
||||
x0 = np.random.randint(0, wd)
|
||||
y0 = np.random.randint(0, ht)
|
||||
dx = np.random.randint(bounds[0], bounds[1])
|
||||
dy = np.random.randint(bounds[0], bounds[1])
|
||||
img2[y0:y0+dy, x0:x0+dx, :] = mean_color
|
||||
|
||||
return img1, img2
|
||||
|
||||
def spatial_transform(self, img1, img2, flow):
|
||||
# randomly sample scale
|
||||
|
||||
ht, wd = img1.shape[:2]
|
||||
min_scale = np.maximum(
|
||||
(self.crop_size[0] + 1) / float(ht),
|
||||
(self.crop_size[1] + 1) / float(wd))
|
||||
|
||||
max_scale = self.max_scale
|
||||
min_scale = max(min_scale, self.min_scale)
|
||||
|
||||
scale = 2 ** np.random.uniform(self.min_scale, self.max_scale)
|
||||
scale_x = scale
|
||||
scale_y = scale
|
||||
if np.random.rand() < self.stretch_prob:
|
||||
scale_x *= 2 ** np.random.uniform(-self.max_stretch, self.max_stretch)
|
||||
scale_y *= 2 ** np.random.uniform(-self.max_stretch, self.max_stretch)
|
||||
|
||||
scale_x = np.clip(scale_x, min_scale, None)
|
||||
scale_y = np.clip(scale_y, min_scale, None)
|
||||
|
||||
if np.random.rand() < self.spatial_aug_prob:
|
||||
# rescale the images
|
||||
img1 = cv2.resize(img1, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR)
|
||||
img2 = cv2.resize(img2, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR)
|
||||
flow = cv2.resize(flow, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR)
|
||||
flow = flow * [scale_x, scale_y]
|
||||
|
||||
if np.random.rand() < 0.5: # h-flip
|
||||
img1 = img1[:, ::-1]
|
||||
img2 = img2[:, ::-1]
|
||||
flow = flow[:, ::-1] * [-1.0, 1.0]
|
||||
|
||||
if np.random.rand() < 0.1: # v-flip
|
||||
img1 = img1[::-1, :]
|
||||
img2 = img2[::-1, :]
|
||||
flow = flow[::-1, :] * [1.0, -1.0]
|
||||
|
||||
y0 = np.random.randint(-self.margin, img1.shape[0] - self.crop_size[0] + self.margin)
|
||||
x0 = np.random.randint(-self.margin, img1.shape[1] - self.crop_size[1] + self.margin)
|
||||
|
||||
y0 = np.clip(y0, 0, img1.shape[0] - self.crop_size[0])
|
||||
x0 = np.clip(x0, 0, img1.shape[1] - self.crop_size[1])
|
||||
|
||||
img1 = img1[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]]
|
||||
img2 = img2[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]]
|
||||
flow = flow[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]]
|
||||
|
||||
return img1, img2, flow
|
||||
|
||||
def __call__(self, img1, img2, flow):
|
||||
img1, img2 = self.color_transform(img1, img2)
|
||||
img1, img2 = self.eraser_transform(img1, img2)
|
||||
img1, img2, flow = self.spatial_transform(img1, img2, flow)
|
||||
|
||||
img1 = np.ascontiguousarray(img1)
|
||||
img2 = np.ascontiguousarray(img2)
|
||||
flow = np.ascontiguousarray(flow)
|
||||
|
||||
return img1, img2, flow
|
||||
|
||||
|
||||
class FlowAugmentorKITTI:
|
||||
def __init__(self, crop_size, min_scale=-0.2, max_scale=0.5):
|
||||
self.crop_size = crop_size
|
||||
self.augcolor = torchvision.transforms.ColorJitter(
|
||||
brightness=0.3, contrast=0.3, saturation=0.3, hue=0.3/3.14)
|
||||
|
||||
self.max_scale = max_scale
|
||||
self.min_scale = min_scale
|
||||
|
||||
self.spatial_aug_prob = 0.8
|
||||
self.eraser_aug_prob = 0.5
|
||||
|
||||
def color_transform(self, img1, img2):
|
||||
image_stack = np.concatenate([img1, img2], axis=0)
|
||||
image_stack = np.array(self.augcolor(Image.fromarray(image_stack)), dtype=np.uint8)
|
||||
img1, img2 = np.split(image_stack, 2, axis=0)
|
||||
return img1, img2
|
||||
|
||||
def eraser_transform(self, img1, img2):
|
||||
ht, wd = img1.shape[:2]
|
||||
if np.random.rand() < self.eraser_aug_prob:
|
||||
mean_color = np.mean(img2.reshape(-1, 3), axis=0)
|
||||
for _ in range(np.random.randint(1, 3)):
|
||||
x0 = np.random.randint(0, wd)
|
||||
y0 = np.random.randint(0, ht)
|
||||
dx = np.random.randint(50, 100)
|
||||
dy = np.random.randint(50, 100)
|
||||
img2[y0:y0+dy, x0:x0+dx, :] = mean_color
|
||||
|
||||
return img1, img2
|
||||
|
||||
def resize_sparse_flow_map(self, flow, valid, fx=1.0, fy=1.0):
|
||||
ht, wd = flow.shape[:2]
|
||||
coords = np.meshgrid(np.arange(wd), np.arange(ht))
|
||||
coords = np.stack(coords, axis=-1)
|
||||
|
||||
coords = coords.reshape(-1, 2).astype(np.float32)
|
||||
flow = flow.reshape(-1, 2).astype(np.float32)
|
||||
valid = valid.reshape(-1).astype(np.float32)
|
||||
|
||||
coords0 = coords[valid>=1]
|
||||
flow0 = flow[valid>=1]
|
||||
|
||||
ht1 = int(round(ht * fy))
|
||||
wd1 = int(round(wd * fx))
|
||||
|
||||
coords1 = coords0 * [fx, fy]
|
||||
flow1 = flow0 * [fx, fy]
|
||||
|
||||
xx = np.round(coords1[:,0]).astype(np.int32)
|
||||
yy = np.round(coords1[:,1]).astype(np.int32)
|
||||
|
||||
v = (xx > 0) & (xx < wd1) & (yy > 0) & (yy < ht1)
|
||||
xx = xx[v]
|
||||
yy = yy[v]
|
||||
flow1 = flow1[v]
|
||||
|
||||
flow_img = np.zeros([ht1, wd1, 2], dtype=np.float32)
|
||||
valid_img = np.zeros([ht1, wd1], dtype=np.int32)
|
||||
|
||||
flow_img[yy, xx] = flow1
|
||||
valid_img[yy, xx] = 1
|
||||
|
||||
return flow_img, valid_img
|
||||
|
||||
def spatial_transform(self, img1, img2, flow, valid):
|
||||
# randomly sample scale
|
||||
|
||||
ht, wd = img1.shape[:2]
|
||||
min_scale = np.maximum(
|
||||
(self.crop_size[0] + 1) / float(ht),
|
||||
(self.crop_size[1] + 1) / float(wd))
|
||||
|
||||
scale = 2 ** np.random.uniform(self.min_scale, self.max_scale)
|
||||
scale_x = np.clip(scale, min_scale, None)
|
||||
scale_y = np.clip(scale, min_scale, None)
|
||||
|
||||
if np.random.rand() < self.spatial_aug_prob:
|
||||
# rescale the images
|
||||
img1 = cv2.resize(img1, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR)
|
||||
img2 = cv2.resize(img2, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR)
|
||||
flow, valid = self.resize_sparse_flow_map(flow, valid, fx=scale_x, fy=scale_y)
|
||||
|
||||
if np.random.rand() < 0.5: # h-flip
|
||||
img1 = img1[:, ::-1]
|
||||
img2 = img2[:, ::-1]
|
||||
flow = flow[:, ::-1] * [-1.0, 1.0]
|
||||
valid = valid[:, ::-1]
|
||||
|
||||
margin_y = 20
|
||||
margin_x = 50
|
||||
|
||||
y0 = np.random.randint(0, img1.shape[0] - self.crop_size[0] + margin_y)
|
||||
x0 = np.random.randint(-margin_x, img1.shape[1] - self.crop_size[1] + margin_x)
|
||||
|
||||
y0 = np.clip(y0, 0, img1.shape[0] - self.crop_size[0])
|
||||
x0 = np.clip(x0, 0, img1.shape[1] - self.crop_size[1])
|
||||
|
||||
img1 = img1[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]]
|
||||
img2 = img2[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]]
|
||||
flow = flow[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]]
|
||||
valid = valid[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]]
|
||||
return img1, img2, flow, valid
|
||||
|
||||
|
||||
def __call__(self, img1, img2, flow, valid):
|
||||
img1, img2 = self.color_transform(img1, img2)
|
||||
img1, img2 = self.eraser_transform(img1, img2)
|
||||
img1, img2, flow, valid = self.spatial_transform(img1, img2, flow, valid)
|
||||
|
||||
img1 = np.ascontiguousarray(img1)
|
||||
img2 = np.ascontiguousarray(img2)
|
||||
flow = np.ascontiguousarray(flow)
|
||||
valid = np.ascontiguousarray(valid)
|
||||
|
||||
return img1, img2, flow, valid
|
275
core/utils/flow_viz.py
Normal file
275
core/utils/flow_viz.py
Normal file
@@ -0,0 +1,275 @@
|
||||
# MIT License
|
||||
#
|
||||
# Copyright (c) 2018 Tom Runia
|
||||
#
|
||||
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
# of this software and associated documentation files (the "Software"), to deal
|
||||
# in the Software without restriction, including without limitation the rights
|
||||
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
# copies of the Software, and to permit persons to whom the Software is
|
||||
# furnished to do so, subject to conditions.
|
||||
#
|
||||
# Author: Tom Runia
|
||||
# Date Created: 2018-08-03
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def make_colorwheel():
|
||||
'''
|
||||
Generates a color wheel for optical flow visualization as presented in:
|
||||
Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007)
|
||||
URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf
|
||||
According to the C++ source code of Daniel Scharstein
|
||||
According to the Matlab source code of Deqing Sun
|
||||
'''
|
||||
|
||||
RY = 15
|
||||
YG = 6
|
||||
GC = 4
|
||||
CB = 11
|
||||
BM = 13
|
||||
MR = 6
|
||||
|
||||
ncols = RY + YG + GC + CB + BM + MR
|
||||
colorwheel = np.zeros((ncols, 3))
|
||||
col = 0
|
||||
|
||||
# RY
|
||||
colorwheel[0:RY, 0] = 255
|
||||
colorwheel[0:RY, 1] = np.floor(255*np.arange(0,RY)/RY)
|
||||
col = col+RY
|
||||
# YG
|
||||
colorwheel[col:col+YG, 0] = 255 - np.floor(255*np.arange(0,YG)/YG)
|
||||
colorwheel[col:col+YG, 1] = 255
|
||||
col = col+YG
|
||||
# GC
|
||||
colorwheel[col:col+GC, 1] = 255
|
||||
colorwheel[col:col+GC, 2] = np.floor(255*np.arange(0,GC)/GC)
|
||||
col = col+GC
|
||||
# CB
|
||||
colorwheel[col:col+CB, 1] = 255 - np.floor(255*np.arange(CB)/CB)
|
||||
colorwheel[col:col+CB, 2] = 255
|
||||
col = col+CB
|
||||
# BM
|
||||
colorwheel[col:col+BM, 2] = 255
|
||||
colorwheel[col:col+BM, 0] = np.floor(255*np.arange(0,BM)/BM)
|
||||
col = col+BM
|
||||
# MR
|
||||
colorwheel[col:col+MR, 2] = 255 - np.floor(255*np.arange(MR)/MR)
|
||||
colorwheel[col:col+MR, 0] = 255
|
||||
return colorwheel
|
||||
|
||||
|
||||
def flow_compute_color(u, v, convert_to_bgr=False):
|
||||
'''
|
||||
Applies the flow color wheel to (possibly clipped) flow components u and v.
|
||||
According to the C++ source code of Daniel Scharstein
|
||||
According to the Matlab source code of Deqing Sun
|
||||
:param u: np.ndarray, input horizontal flow
|
||||
:param v: np.ndarray, input vertical flow
|
||||
:param convert_to_bgr: bool, whether to change ordering and output BGR instead of RGB
|
||||
:return:
|
||||
'''
|
||||
|
||||
flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8)
|
||||
|
||||
colorwheel = make_colorwheel() # shape [55x3]
|
||||
ncols = colorwheel.shape[0]
|
||||
|
||||
rad = np.sqrt(np.square(u) + np.square(v))
|
||||
a = np.arctan2(-v, -u)/np.pi
|
||||
|
||||
fk = (a+1) / 2*(ncols-1) + 1
|
||||
k0 = np.floor(fk).astype(np.int32)
|
||||
k1 = k0 + 1
|
||||
k1[k1 == ncols] = 1
|
||||
f = fk - k0
|
||||
|
||||
for i in range(colorwheel.shape[1]):
|
||||
|
||||
tmp = colorwheel[:,i]
|
||||
col0 = tmp[k0] / 255.0
|
||||
col1 = tmp[k1] / 255.0
|
||||
col = (1-f)*col0 + f*col1
|
||||
|
||||
idx = (rad <= 1)
|
||||
col[idx] = 1 - rad[idx] * (1-col[idx])
|
||||
col[~idx] = col[~idx] * 0.75 # out of range?
|
||||
|
||||
# Note the 2-i => BGR instead of RGB
|
||||
ch_idx = 2-i if convert_to_bgr else i
|
||||
flow_image[:,:,ch_idx] = np.floor(255 * col)
|
||||
|
||||
return flow_image
|
||||
|
||||
|
||||
def flow_to_color(flow_uv, clip_flow=None, convert_to_bgr=False):
|
||||
'''
|
||||
Expects a two dimensional flow image of shape [H,W,2]
|
||||
According to the C++ source code of Daniel Scharstein
|
||||
According to the Matlab source code of Deqing Sun
|
||||
:param flow_uv: np.ndarray of shape [H,W,2]
|
||||
:param clip_flow: float, maximum clipping value for flow
|
||||
:return:
|
||||
'''
|
||||
|
||||
assert flow_uv.ndim == 3, 'input flow must have three dimensions'
|
||||
assert flow_uv.shape[2] == 2, 'input flow must have shape [H,W,2]'
|
||||
|
||||
if clip_flow is not None:
|
||||
flow_uv = np.clip(flow_uv, 0, clip_flow)
|
||||
|
||||
u = flow_uv[:,:,0]
|
||||
v = flow_uv[:,:,1]
|
||||
|
||||
rad = np.sqrt(np.square(u) + np.square(v))
|
||||
rad_max = np.max(rad)
|
||||
|
||||
epsilon = 1e-5
|
||||
u = u / (rad_max + epsilon)
|
||||
v = v / (rad_max + epsilon)
|
||||
|
||||
return flow_compute_color(u, v, convert_to_bgr)
|
||||
|
||||
|
||||
|
||||
UNKNOWN_FLOW_THRESH = 1e7
|
||||
SMALLFLOW = 0.0
|
||||
LARGEFLOW = 1e8
|
||||
|
||||
def make_color_wheel():
|
||||
"""
|
||||
Generate color wheel according Middlebury color code
|
||||
:return: Color wheel
|
||||
"""
|
||||
RY = 15
|
||||
YG = 6
|
||||
GC = 4
|
||||
CB = 11
|
||||
BM = 13
|
||||
MR = 6
|
||||
|
||||
ncols = RY + YG + GC + CB + BM + MR
|
||||
|
||||
colorwheel = np.zeros([ncols, 3])
|
||||
|
||||
col = 0
|
||||
|
||||
# RY
|
||||
colorwheel[0:RY, 0] = 255
|
||||
colorwheel[0:RY, 1] = np.transpose(np.floor(255*np.arange(0, RY) / RY))
|
||||
col += RY
|
||||
|
||||
# YG
|
||||
colorwheel[col:col+YG, 0] = 255 - np.transpose(np.floor(255*np.arange(0, YG) / YG))
|
||||
colorwheel[col:col+YG, 1] = 255
|
||||
col += YG
|
||||
|
||||
# GC
|
||||
colorwheel[col:col+GC, 1] = 255
|
||||
colorwheel[col:col+GC, 2] = np.transpose(np.floor(255*np.arange(0, GC) / GC))
|
||||
col += GC
|
||||
|
||||
# CB
|
||||
colorwheel[col:col+CB, 1] = 255 - np.transpose(np.floor(255*np.arange(0, CB) / CB))
|
||||
colorwheel[col:col+CB, 2] = 255
|
||||
col += CB
|
||||
|
||||
# BM
|
||||
colorwheel[col:col+BM, 2] = 255
|
||||
colorwheel[col:col+BM, 0] = np.transpose(np.floor(255*np.arange(0, BM) / BM))
|
||||
col += + BM
|
||||
|
||||
# MR
|
||||
colorwheel[col:col+MR, 2] = 255 - np.transpose(np.floor(255 * np.arange(0, MR) / MR))
|
||||
colorwheel[col:col+MR, 0] = 255
|
||||
|
||||
return colorwheel
|
||||
|
||||
|
||||
|
||||
def compute_color(u, v):
|
||||
"""
|
||||
compute optical flow color map
|
||||
:param u: optical flow horizontal map
|
||||
:param v: optical flow vertical map
|
||||
:return: optical flow in color code
|
||||
"""
|
||||
[h, w] = u.shape
|
||||
img = np.zeros([h, w, 3])
|
||||
nanIdx = np.isnan(u) | np.isnan(v)
|
||||
u[nanIdx] = 0
|
||||
v[nanIdx] = 0
|
||||
|
||||
colorwheel = make_color_wheel()
|
||||
ncols = np.size(colorwheel, 0)
|
||||
|
||||
rad = np.sqrt(u**2+v**2)
|
||||
|
||||
a = np.arctan2(-v, -u) / np.pi
|
||||
|
||||
fk = (a+1) / 2 * (ncols - 1) + 1
|
||||
|
||||
k0 = np.floor(fk).astype(int)
|
||||
|
||||
k1 = k0 + 1
|
||||
k1[k1 == ncols+1] = 1
|
||||
f = fk - k0
|
||||
|
||||
for i in range(0, np.size(colorwheel,1)):
|
||||
tmp = colorwheel[:, i]
|
||||
col0 = tmp[k0-1] / 255
|
||||
col1 = tmp[k1-1] / 255
|
||||
col = (1-f) * col0 + f * col1
|
||||
|
||||
idx = rad <= 1
|
||||
col[idx] = 1-rad[idx]*(1-col[idx])
|
||||
notidx = np.logical_not(idx)
|
||||
|
||||
col[notidx] *= 0.75
|
||||
img[:, :, i] = np.uint8(np.floor(255 * col*(1-nanIdx)))
|
||||
|
||||
return img
|
||||
|
||||
# from https://github.com/gengshan-y/VCN
|
||||
def flow_to_image(flow):
|
||||
"""
|
||||
Convert flow into middlebury color code image
|
||||
:param flow: optical flow map
|
||||
:return: optical flow image in middlebury color
|
||||
"""
|
||||
u = flow[:, :, 0]
|
||||
v = flow[:, :, 1]
|
||||
|
||||
maxu = -999.
|
||||
maxv = -999.
|
||||
minu = 999.
|
||||
minv = 999.
|
||||
|
||||
idxUnknow = (abs(u) > UNKNOWN_FLOW_THRESH) | (abs(v) > UNKNOWN_FLOW_THRESH)
|
||||
u[idxUnknow] = 0
|
||||
v[idxUnknow] = 0
|
||||
|
||||
maxu = max(maxu, np.max(u))
|
||||
minu = min(minu, np.min(u))
|
||||
|
||||
maxv = max(maxv, np.max(v))
|
||||
minv = min(minv, np.min(v))
|
||||
|
||||
rad = np.sqrt(u ** 2 + v ** 2)
|
||||
maxrad = max(-1, np.max(rad))
|
||||
|
||||
u = u/(maxrad + np.finfo(float).eps)
|
||||
v = v/(maxrad + np.finfo(float).eps)
|
||||
|
||||
img = compute_color(u, v)
|
||||
|
||||
idx = np.repeat(idxUnknow[:, :, np.newaxis], 3, axis=2)
|
||||
img[idx] = 0
|
||||
|
||||
return np.uint8(img)
|
124
core/utils/frame_utils.py
Normal file
124
core/utils/frame_utils.py
Normal file
@@ -0,0 +1,124 @@
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
from os.path import *
|
||||
import re
|
||||
import cv2
|
||||
|
||||
TAG_CHAR = np.array([202021.25], np.float32)
|
||||
|
||||
def readFlow(fn):
|
||||
""" Read .flo file in Middlebury format"""
|
||||
# Code adapted from:
|
||||
# http://stackoverflow.com/questions/28013200/reading-middlebury-flow-files-with-python-bytes-array-numpy
|
||||
|
||||
# WARNING: this will work on little-endian architectures (eg Intel x86) only!
|
||||
# print 'fn = %s'%(fn)
|
||||
with open(fn, 'rb') as f:
|
||||
magic = np.fromfile(f, np.float32, count=1)
|
||||
if 202021.25 != magic:
|
||||
print('Magic number incorrect. Invalid .flo file')
|
||||
return None
|
||||
else:
|
||||
w = np.fromfile(f, np.int32, count=1)
|
||||
h = np.fromfile(f, np.int32, count=1)
|
||||
# print 'Reading %d x %d flo file\n' % (w, h)
|
||||
data = np.fromfile(f, np.float32, count=2*int(w)*int(h))
|
||||
# Reshape data into 3D array (columns, rows, bands)
|
||||
# The reshape here is for visualization, the original code is (w,h,2)
|
||||
return np.resize(data, (int(h), int(w), 2))
|
||||
|
||||
def readPFM(file):
|
||||
file = open(file, 'rb')
|
||||
|
||||
color = None
|
||||
width = None
|
||||
height = None
|
||||
scale = None
|
||||
endian = None
|
||||
|
||||
header = file.readline().rstrip()
|
||||
if header == b'PF':
|
||||
color = True
|
||||
elif header == b'Pf':
|
||||
color = False
|
||||
else:
|
||||
raise Exception('Not a PFM file.')
|
||||
|
||||
dim_match = re.match(rb'^(\d+)\s(\d+)\s$', file.readline())
|
||||
if dim_match:
|
||||
width, height = map(int, dim_match.groups())
|
||||
else:
|
||||
raise Exception('Malformed PFM header.')
|
||||
|
||||
scale = float(file.readline().rstrip())
|
||||
if scale < 0: # little-endian
|
||||
endian = '<'
|
||||
scale = -scale
|
||||
else:
|
||||
endian = '>' # big-endian
|
||||
|
||||
data = np.fromfile(file, endian + 'f')
|
||||
shape = (height, width, 3) if color else (height, width)
|
||||
|
||||
data = np.reshape(data, shape)
|
||||
data = np.flipud(data)
|
||||
return data
|
||||
|
||||
def writeFlow(filename,uv,v=None):
|
||||
""" Write optical flow to file.
|
||||
|
||||
If v is None, uv is assumed to contain both u and v channels,
|
||||
stacked in depth.
|
||||
Original code by Deqing Sun, adapted from Daniel Scharstein.
|
||||
"""
|
||||
nBands = 2
|
||||
|
||||
if v is None:
|
||||
assert(uv.ndim == 3)
|
||||
assert(uv.shape[2] == 2)
|
||||
u = uv[:,:,0]
|
||||
v = uv[:,:,1]
|
||||
else:
|
||||
u = uv
|
||||
|
||||
assert(u.shape == v.shape)
|
||||
height,width = u.shape
|
||||
f = open(filename,'wb')
|
||||
# write the header
|
||||
f.write(TAG_CHAR)
|
||||
np.array(width).astype(np.int32).tofile(f)
|
||||
np.array(height).astype(np.int32).tofile(f)
|
||||
# arrange into matrix form
|
||||
tmp = np.zeros((height, width*nBands))
|
||||
tmp[:,np.arange(width)*2] = u
|
||||
tmp[:,np.arange(width)*2 + 1] = v
|
||||
tmp.astype(np.float32).tofile(f)
|
||||
f.close()
|
||||
|
||||
|
||||
def readFlowKITTI(filename):
|
||||
flow = cv2.imread(filename, cv2.IMREAD_ANYDEPTH|cv2.IMREAD_COLOR)
|
||||
flow = flow[:,:,::-1].astype(np.float32)
|
||||
flow, valid = flow[:, :, :2], flow[:, :, 2]
|
||||
flow = (flow - 2**15) / 64.0
|
||||
return flow, valid
|
||||
|
||||
def writeFlowKITTI(filename, uv):
|
||||
uv = 64.0 * uv + 2**15
|
||||
valid = np.ones([uv.shape[0], uv.shape[1], 1])
|
||||
uv = np.concatenate([uv, valid], axis=-1).astype(np.uint16)
|
||||
cv2.imwrite(filename, uv[..., ::-1])
|
||||
|
||||
|
||||
def read_gen(file_name, pil=False):
|
||||
ext = splitext(file_name)[-1]
|
||||
if ext == '.png' or ext == '.jpeg' or ext == '.ppm' or ext == '.jpg':
|
||||
return Image.open(file_name)
|
||||
elif ext == '.bin' or ext == '.raw':
|
||||
return np.load(file_name)
|
||||
elif ext == '.flo':
|
||||
return readFlow(file_name).astype(np.float32)
|
||||
elif ext == '.pfm':
|
||||
flow = readPFM(file_name).astype(np.float32)
|
||||
return flow[:, :, :-1]
|
||||
return []
|
62
core/utils/utils.py
Normal file
62
core/utils/utils.py
Normal file
@@ -0,0 +1,62 @@
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import numpy as np
|
||||
from scipy import interpolate
|
||||
|
||||
|
||||
def bilinear_sampler(img, coords, mode='bilinear', mask=False):
|
||||
""" Wrapper for grid_sample, uses pixel coordinates """
|
||||
H, W = img.shape[-2:]
|
||||
xgrid, ygrid = coords.split([1,1], dim=-1)
|
||||
xgrid = 2*xgrid/(W-1) - 1
|
||||
ygrid = 2*ygrid/(H-1) - 1
|
||||
|
||||
grid = torch.cat([xgrid, ygrid], dim=-1)
|
||||
img = F.grid_sample(img, grid, align_corners=True)
|
||||
|
||||
if mask:
|
||||
mask = (xgrid > -1) & (ygrid > -1) & (xgrid < 1) & (ygrid < 1)
|
||||
return img, mask.float()
|
||||
|
||||
return img
|
||||
|
||||
def forward_interpolate(flow):
|
||||
flow = flow.detach().cpu().numpy()
|
||||
dx, dy = flow[0], flow[1]
|
||||
|
||||
ht, wd = dx.shape
|
||||
x0, y0 = np.meshgrid(np.arange(wd), np.arange(ht))
|
||||
|
||||
x1 = x0 + dx
|
||||
y1 = y0 + dy
|
||||
|
||||
x1 = x1.reshape(-1)
|
||||
y1 = y1.reshape(-1)
|
||||
dx = dx.reshape(-1)
|
||||
dy = dy.reshape(-1)
|
||||
|
||||
valid = (x1 > 0) & (x1 < wd) & (y1 > 0) & (y1 < ht)
|
||||
x1 = x1[valid]
|
||||
y1 = y1[valid]
|
||||
dx = dx[valid]
|
||||
dy = dy[valid]
|
||||
|
||||
flow_x = interpolate.griddata(
|
||||
(x1, y1), dx, (x0, y0), method='nearest')
|
||||
|
||||
flow_y = interpolate.griddata(
|
||||
(x1, y1), dy, (x0, y0), method='nearest')
|
||||
|
||||
flow = np.stack([flow_x, flow_y], axis=0)
|
||||
return torch.from_numpy(flow).float()
|
||||
|
||||
|
||||
def coords_grid(batch, ht, wd):
|
||||
coords = torch.meshgrid(torch.arange(ht), torch.arange(wd))
|
||||
coords = torch.stack(coords[::-1], dim=0).float()
|
||||
return coords[None].repeat(batch, 1, 1, 1)
|
||||
|
||||
|
||||
def upflow8(flow, mode='bilinear'):
|
||||
new_size = (8 * flow.shape[2], 8 * flow.shape[3])
|
||||
return 8 * F.interpolate(flow, size=new_size, mode=mode, align_corners=True)
|
Reference in New Issue
Block a user