initial commit
This commit is contained in:
		
							
								
								
									
										0
									
								
								core/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										0
									
								
								core/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
								
								
									
										312
									
								
								core/datasets.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										312
									
								
								core/datasets.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,312 @@ | ||||
| # Data loading based on https://github.com/NVIDIA/flownet2-pytorch | ||||
|  | ||||
| import numpy as np | ||||
| import torch | ||||
| import torch.utils.data as data | ||||
| import torch.nn.functional as F | ||||
|  | ||||
| import os | ||||
| import cv2 | ||||
| import math | ||||
| import random | ||||
| from glob import glob | ||||
| import os.path as osp | ||||
|  | ||||
| from utils import frame_utils | ||||
| from utils.augmentor import FlowAugmentor, FlowAugmentorKITTI | ||||
|  | ||||
|  | ||||
| class CombinedDataset(data.Dataset): | ||||
|     def __init__(self, datasets): | ||||
|         self.datasets = datasets | ||||
|  | ||||
|     def __len__(self): | ||||
|         length = 0  | ||||
|         for i in range(len(self.datasets)): | ||||
|             length += len(self.datsaets[i]) | ||||
|         return length | ||||
|  | ||||
|     def __getitem__(self, index): | ||||
|         i = 0 | ||||
|         for j in range(len(self.datasets)): | ||||
|             if i + len(self.datasets[j]) >= index: | ||||
|                 yield self.datasets[j][index-i] | ||||
|                 break | ||||
|             i += len(self.datasets[j]) | ||||
|  | ||||
|     def __add__(self, other): | ||||
|         self.datasets.append(other) | ||||
|         return self | ||||
|  | ||||
| class FlowDataset(data.Dataset): | ||||
|     def __init__(self, args, image_size=None, do_augument=False): | ||||
|         self.image_size = image_size | ||||
|         self.do_augument = do_augument | ||||
|  | ||||
|         if self.do_augument: | ||||
|             self.augumentor = FlowAugmentor(self.image_size) | ||||
|  | ||||
|         self.flow_list = [] | ||||
|         self.image_list = [] | ||||
|  | ||||
|         self.init_seed = False | ||||
|  | ||||
|     def __getitem__(self, index): | ||||
|  | ||||
|         if not self.init_seed: | ||||
|             worker_info = torch.utils.data.get_worker_info() | ||||
|             if worker_info is not None: | ||||
|                 torch.manual_seed(worker_info.id) | ||||
|                 np.random.seed(worker_info.id) | ||||
|                 random.seed(worker_info.id) | ||||
|                 self.init_seed = True | ||||
|  | ||||
|         index = index % len(self.image_list) | ||||
|         flow = frame_utils.read_gen(self.flow_list[index]) | ||||
|         img1 = frame_utils.read_gen(self.image_list[index][0]) | ||||
|         img2 = frame_utils.read_gen(self.image_list[index][1]) | ||||
|  | ||||
|         img1 = np.array(img1).astype(np.uint8)[..., :3] | ||||
|         img2 = np.array(img2).astype(np.uint8)[..., :3] | ||||
|         flow = np.array(flow).astype(np.float32) | ||||
|  | ||||
|         if self.do_augument: | ||||
|             img1, img2, flow = self.augumentor(img1, img2, flow) | ||||
|  | ||||
|         img1 = torch.from_numpy(img1).permute(2, 0, 1).float() | ||||
|         img2 = torch.from_numpy(img2).permute(2, 0, 1).float() | ||||
|         flow = torch.from_numpy(flow).permute(2, 0, 1).float() | ||||
|         valid = torch.ones_like(flow[0]) | ||||
|  | ||||
|         return img1, img2, flow, valid | ||||
|  | ||||
|     def __len__(self): | ||||
|         return len(self.image_list) | ||||
|  | ||||
|     def __add(self, other): | ||||
|         return CombinedDataset([self, other]) | ||||
|  | ||||
|  | ||||
| class MpiSintelTest(FlowDataset): | ||||
|     def __init__(self, args, root='datasets/Sintel/test', dstype='clean'): | ||||
|         super(MpiSintelTest, self).__init__(args, image_size=None, do_augument=False) | ||||
|  | ||||
|         self.root = root | ||||
|         self.dstype = dstype | ||||
|  | ||||
|         image_dir = osp.join(self.root, dstype) | ||||
|         all_sequences = os.listdir(image_dir) | ||||
|  | ||||
|         self.image_list = [] | ||||
|         for sequence in all_sequences: | ||||
|             frames = sorted(glob(osp.join(image_dir, sequence, '*.png'))) | ||||
|             for i in range(len(frames)-1): | ||||
|                 self.image_list += [[frames[i], frames[i+1], sequence, i]] | ||||
|  | ||||
|     def __getitem__(self, index): | ||||
|         img1 = frame_utils.read_gen(self.image_list[index][0]) | ||||
|         img2 = frame_utils.read_gen(self.image_list[index][1]) | ||||
|         sequence = self.image_list[index][2] | ||||
|         frame = self.image_list[index][3] | ||||
|  | ||||
|         img1 = np.array(img1).astype(np.uint8)[..., :3] | ||||
|         img2 = np.array(img2).astype(np.uint8)[..., :3] | ||||
|         img1 = torch.from_numpy(img1).permute(2, 0, 1).float() | ||||
|         img2 = torch.from_numpy(img2).permute(2, 0, 1).float() | ||||
|         return img1, img2, sequence, frame | ||||
|  | ||||
|  | ||||
| class MpiSintel(FlowDataset): | ||||
|     def __init__(self, args, image_size=None, do_augument=True, root='datasets/Sintel/training', dstype='clean'): | ||||
|         super(MpiSintel, self).__init__(args, image_size, do_augument) | ||||
|         if do_augument: | ||||
|             self.augumentor.min_scale = -0.2 | ||||
|             self.augumentor.max_scale = 0.7 | ||||
|  | ||||
|         self.root = root | ||||
|         self.dstype = dstype | ||||
|  | ||||
|         flow_root = osp.join(root, 'flow') | ||||
|         image_root = osp.join(root, dstype) | ||||
|  | ||||
|         file_list = sorted(glob(osp.join(flow_root, '*/*.flo'))) | ||||
|         for flo in file_list: | ||||
|             fbase = flo[len(flow_root)+1:] | ||||
|             fprefix = fbase[:-8] | ||||
|             fnum = int(fbase[-8:-4]) | ||||
|  | ||||
|             img1 = osp.join(image_root, fprefix + "%04d"%(fnum+0) + '.png') | ||||
|             img2 = osp.join(image_root, fprefix + "%04d"%(fnum+1) + '.png') | ||||
|  | ||||
|             if not osp.isfile(img1) or not osp.isfile(img2) or not osp.isfile(flo): | ||||
|                 continue | ||||
|  | ||||
|             self.image_list.append((img1, img2)) | ||||
|             self.flow_list.append(flo) | ||||
|  | ||||
|  | ||||
| class FlyingChairs(FlowDataset): | ||||
|     def __init__(self, args, image_size=None, do_augument=True, root='datasets/FlyingChairs_release/data'): | ||||
|         super(FlyingChairs, self).__init__(args, image_size, do_augument) | ||||
|         self.root = root | ||||
|         self.augumentor.min_scale = -0.2 | ||||
|         self.augumentor.max_scale = 1.0 | ||||
|  | ||||
|         images = sorted(glob(osp.join(root, '*.ppm'))) | ||||
|         self.flow_list = sorted(glob(osp.join(root, '*.flo'))) | ||||
|         assert (len(images)//2 == len(self.flow_list)) | ||||
|  | ||||
|         self.image_list = [] | ||||
|         for i in range(len(self.flow_list)): | ||||
|             im1 = images[2*i] | ||||
|             im2 = images[2*i + 1] | ||||
|             self.image_list.append([im1, im2]) | ||||
|  | ||||
|  | ||||
| class SceneFlow(FlowDataset): | ||||
|     def __init__(self, args, image_size, do_augument=True, root='datasets', | ||||
|             dstype='frames_cleanpass', use_flyingthings=True, use_monkaa=False, use_driving=False): | ||||
|          | ||||
|         super(SceneFlow, self).__init__(args, image_size, do_augument) | ||||
|         self.root = root | ||||
|         self.dstype = dstype | ||||
|  | ||||
|         self.augumentor.min_scale = -0.2 | ||||
|         self.augumentor.max_scale = 0.8 | ||||
|  | ||||
|         if use_flyingthings: | ||||
|             self.add_flyingthings() | ||||
|          | ||||
|         if use_monkaa: | ||||
|             self.add_monkaa() | ||||
|  | ||||
|         if use_driving: | ||||
|             self.add_driving() | ||||
|  | ||||
|     def add_flyingthings(self): | ||||
|         root = osp.join(self.root, 'FlyingThings3D') | ||||
|  | ||||
|         for cam in ['left']: | ||||
|             for direction in ['into_future', 'into_past']: | ||||
|                 image_dirs = sorted(glob(osp.join(root, self.dstype, 'TRAIN/*/*'))) | ||||
|                 image_dirs = sorted([osp.join(f, cam) for f in image_dirs]) | ||||
|  | ||||
|                 flow_dirs = sorted(glob(osp.join(root, 'optical_flow/TRAIN/*/*'))) | ||||
|                 flow_dirs = sorted([osp.join(f, direction, cam) for f in flow_dirs]) | ||||
|  | ||||
|                 for idir, fdir in zip(image_dirs, flow_dirs): | ||||
|                     images = sorted(glob(osp.join(idir, '*.png')) ) | ||||
|                     flows = sorted(glob(osp.join(fdir, '*.pfm')) ) | ||||
|                     for i in range(len(flows)-1): | ||||
|                         if direction == 'into_future': | ||||
|                             self.image_list += [[images[i], images[i+1]]] | ||||
|                             self.flow_list += [flows[i]] | ||||
|                         elif direction == 'into_past': | ||||
|                             self.image_list += [[images[i+1], images[i]]] | ||||
|                             self.flow_list += [flows[i+1]] | ||||
|        | ||||
|     def add_monkaa(self): | ||||
|         pass # we don't use monkaa | ||||
|  | ||||
|     def add_driving(self): | ||||
|         pass # we don't use driving | ||||
|  | ||||
|  | ||||
| class KITTI(FlowDataset): | ||||
|     def __init__(self, args, image_size=None, do_augument=True, is_test=False, is_val=False, do_pad=False, split=True, root='datasets/KITTI'): | ||||
|         super(KITTI, self).__init__(args, image_size, do_augument) | ||||
|         self.root = root | ||||
|         self.is_test = is_test | ||||
|         self.is_val = is_val | ||||
|         self.do_pad = do_pad | ||||
|  | ||||
|         if self.do_augument: | ||||
|             self.augumentor = FlowAugumentorKITTI(self.image_size, args.eraser_aug, min_scale=-0.2, max_scale=0.5) | ||||
|  | ||||
|         if self.is_test: | ||||
|             images1 = sorted(glob(os.path.join(root, 'testing', 'image_2/*_10.png'))) | ||||
|             images2 = sorted(glob(os.path.join(root, 'testing', 'image_2/*_11.png'))) | ||||
|             for i in range(len(images1)): | ||||
|                 self.image_list += [[images1[i], images2[i]]] | ||||
|  | ||||
|         else: | ||||
|             flows = sorted(glob(os.path.join(root, 'training', 'flow_occ/*_10.png'))) | ||||
|             images1 = sorted(glob(os.path.join(root, 'training', 'image_2/*_10.png'))) | ||||
|             images2 = sorted(glob(os.path.join(root, 'training', 'image_2/*_11.png'))) | ||||
|  | ||||
|             for i in range(len(flows)): | ||||
|                 self.flow_list += [flows[i]] | ||||
|                 self.image_list += [[images1[i], images2[i]]] | ||||
|  | ||||
|  | ||||
|     def __getitem__(self, index): | ||||
|  | ||||
|         if self.is_test: | ||||
|             frame_id = self.image_list[index][0] | ||||
|             frame_id = frame_id.split('/')[-1] | ||||
|  | ||||
|             img1 = frame_utils.read_gen(self.image_list[index][0]) | ||||
|             img2 = frame_utils.read_gen(self.image_list[index][1]) | ||||
|  | ||||
|             img1 = np.array(img1).astype(np.uint8)[..., :3] | ||||
|             img2 = np.array(img2).astype(np.uint8)[..., :3] | ||||
|  | ||||
|             img1 = torch.from_numpy(img1).permute(2, 0, 1).float() | ||||
|             img2 = torch.from_numpy(img2).permute(2, 0, 1).float() | ||||
|             return img1, img2, frame_id | ||||
|  | ||||
|  | ||||
|         else: | ||||
|             if not self.init_seed: | ||||
|                 worker_info = torch.utils.data.get_worker_info() | ||||
|                 if worker_info is not None: | ||||
|                     np.random.seed(worker_info.id) | ||||
|                     random.seed(worker_info.id) | ||||
|                     self.init_seed = True | ||||
|  | ||||
|             index = index % len(self.image_list) | ||||
|             frame_id = self.image_list[index][0] | ||||
|             frame_id = frame_id.split('/')[-1] | ||||
|  | ||||
|             img1 = frame_utils.read_gen(self.image_list[index][0]) | ||||
|             img2 = frame_utils.read_gen(self.image_list[index][1]) | ||||
|             flow, valid = frame_utils.readFlowKITTI(self.flow_list[index]) | ||||
|  | ||||
|             img1 = np.array(img1).astype(np.uint8)[..., :3] | ||||
|             img2 = np.array(img2).astype(np.uint8)[..., :3] | ||||
|  | ||||
|             if self.do_augument: | ||||
|                 img1, img2, flow, valid = self.augumentor(img1, img2, flow, valid) | ||||
|  | ||||
|             img1 = torch.from_numpy(img1).permute(2, 0, 1).float() | ||||
|             img2 = torch.from_numpy(img2).permute(2, 0, 1).float() | ||||
|             flow = torch.from_numpy(flow).permute(2, 0, 1).float() | ||||
|             valid = torch.from_numpy(valid).float() | ||||
|  | ||||
|             if self.do_pad: | ||||
|                 ht, wd = img1.shape[1:] | ||||
|                 pad_ht = (((ht // 8) + 1) * 8 - ht) % 8 | ||||
|                 pad_wd = (((wd // 8) + 1) * 8 - wd) % 8 | ||||
|                 pad_ht1 = [0, pad_ht] | ||||
|                 pad_wd1 = [pad_wd//2, pad_wd - pad_wd//2] | ||||
|                 pad = pad_wd1 + pad_ht1 | ||||
|  | ||||
|                 img1 = img1.view(1, 3, ht, wd) | ||||
|                 img2 = img2.view(1, 3, ht, wd) | ||||
|                 flow = flow.view(1, 2, ht, wd) | ||||
|                 valid = valid.view(1, 1, ht, wd) | ||||
|  | ||||
|                 img1 = torch.nn.functional.pad(img1, pad, mode='replicate') | ||||
|                 img2 = torch.nn.functional.pad(img2, pad, mode='replicate') | ||||
|                 flow = torch.nn.functional.pad(flow, pad, mode='constant', value=0) | ||||
|                 valid = torch.nn.functional.pad(valid, pad, mode='replicate', value=0) | ||||
|  | ||||
|                 img1 = img1.view(3, ht+pad_ht, wd+pad_wd) | ||||
|                 img2 = img2.view(3, ht+pad_ht, wd+pad_wd) | ||||
|                 flow = flow.view(2, ht+pad_ht, wd+pad_wd) | ||||
|                 valid = valid.view(ht+pad_ht, wd+pad_wd) | ||||
|  | ||||
|             if self.is_test: | ||||
|                 return img1, img2, flow, valid, frame_id | ||||
|  | ||||
|             return img1, img2, flow, valid | ||||
							
								
								
									
										0
									
								
								core/modules/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										0
									
								
								core/modules/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
								
								
									
										53
									
								
								core/modules/corr.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										53
									
								
								core/modules/corr.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,53 @@ | ||||
| import torch | ||||
| import torch.nn.functional as F | ||||
| from utils.utils import bilinear_sampler, coords_grid | ||||
|  | ||||
| class CorrBlock: | ||||
|     def __init__(self, fmap1, fmap2, num_levels=4, radius=4): | ||||
|         self.num_levels = num_levels | ||||
|         self.radius = radius | ||||
|         self.corr_pyramid = [] | ||||
|  | ||||
|         # all pairs correlation | ||||
|         corr = CorrBlock.corr(fmap1, fmap2) | ||||
|  | ||||
|         batch, h1, w1, dim, h2, w2 = corr.shape | ||||
|         corr = corr.view(batch*h1*w1, dim, h2, w2) | ||||
|          | ||||
|         self.corr_pyramid.append(corr) | ||||
|         for i in range(self.num_levels): | ||||
|             corr = F.avg_pool2d(corr, 2, stride=2) | ||||
|             self.corr_pyramid.append(corr) | ||||
|  | ||||
|     def __call__(self, coords): | ||||
|         r = self.radius | ||||
|         coords = coords.permute(0, 2, 3, 1) | ||||
|         batch, h1, w1, _ = coords.shape | ||||
|  | ||||
|         out_pyramid = [] | ||||
|         for i in range(self.num_levels): | ||||
|             corr = self.corr_pyramid[i] | ||||
|             dx = torch.linspace(-r, r, 2*r+1) | ||||
|             dy = torch.linspace(-r, r, 2*r+1) | ||||
|             delta = torch.stack(torch.meshgrid(dy, dx), axis=-1).to(coords.device) | ||||
|  | ||||
|             centroid_lvl = coords.reshape(batch*h1*w1, 1, 1, 2) / 2**i | ||||
|             delta_lvl = delta.view(1, 2*r+1, 2*r+1, 2) | ||||
|             coords_lvl = centroid_lvl + delta_lvl | ||||
|  | ||||
|             corr = bilinear_sampler(corr, coords_lvl) | ||||
|             corr = corr.view(batch, h1, w1, -1) | ||||
|             out_pyramid.append(corr) | ||||
|  | ||||
|         out = torch.cat(out_pyramid, dim=-1) | ||||
|         return out.permute(0, 3, 1, 2) | ||||
|  | ||||
|     @staticmethod | ||||
|     def corr(fmap1, fmap2): | ||||
|         batch, dim, ht, wd = fmap1.shape | ||||
|         fmap1 = fmap1.view(batch, dim, ht*wd) | ||||
|         fmap2 = fmap2.view(batch, dim, ht*wd) | ||||
|          | ||||
|         corr = torch.matmul(fmap1.transpose(1,2), fmap2) | ||||
|         corr = corr.view(batch, ht, wd, 1, ht, wd) | ||||
|         return corr / torch.sqrt(torch.tensor(dim).float()) | ||||
							
								
								
									
										269
									
								
								core/modules/extractor.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										269
									
								
								core/modules/extractor.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,269 @@ | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
|  | ||||
|  | ||||
| class ResidualBlock(nn.Module): | ||||
|     def __init__(self, in_planes, planes, norm_fn='group', stride=1): | ||||
|         super(ResidualBlock, self).__init__() | ||||
|    | ||||
|         self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, padding=1, stride=stride) | ||||
|         self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1) | ||||
|         self.relu = nn.ReLU(inplace=True) | ||||
|  | ||||
|         num_groups = planes // 8 | ||||
|  | ||||
|         if norm_fn == 'group': | ||||
|             self.norm1 = nn.GroupNorm(num_groups=num_groups, num_channels=planes) | ||||
|             self.norm2 = nn.GroupNorm(num_groups=num_groups, num_channels=planes) | ||||
|             if not stride == 1: | ||||
|                 self.norm3 = nn.GroupNorm(num_groups=num_groups, num_channels=planes) | ||||
|          | ||||
|         elif norm_fn == 'batch': | ||||
|             self.norm1 = nn.BatchNorm2d(planes) | ||||
|             self.norm2 = nn.BatchNorm2d(planes) | ||||
|             if not stride == 1: | ||||
|                 self.norm3 = nn.BatchNorm2d(planes) | ||||
|          | ||||
|         elif norm_fn == 'instance': | ||||
|             self.norm1 = nn.InstanceNorm2d(planes) | ||||
|             self.norm2 = nn.InstanceNorm2d(planes) | ||||
|             if not stride == 1: | ||||
|                 self.norm3 = nn.InstanceNorm2d(planes) | ||||
|  | ||||
|         elif norm_fn == 'none': | ||||
|             self.norm1 = nn.Sequential() | ||||
|             self.norm2 = nn.Sequential() | ||||
|             if not stride == 1: | ||||
|                 self.norm3 = nn.Sequential() | ||||
|  | ||||
|         if stride == 1: | ||||
|             self.downsample = None | ||||
|          | ||||
|         else:     | ||||
|             self.downsample = nn.Sequential( | ||||
|                 nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm3) | ||||
|  | ||||
|  | ||||
|     def forward(self, x): | ||||
|         y = x | ||||
|         y = self.relu(self.norm1(self.conv1(y))) | ||||
|         y = self.relu(self.norm2(self.conv2(y))) | ||||
|  | ||||
|         if self.downsample is not None: | ||||
|             x = self.downsample(x) | ||||
|  | ||||
|         return self.relu(x+y) | ||||
|  | ||||
|  | ||||
|  | ||||
| class BottleneckBlock(nn.Module): | ||||
|     def __init__(self, in_planes, planes, norm_fn='group', stride=1): | ||||
|         super(BottleneckBlock, self).__init__() | ||||
|    | ||||
|         self.conv1 = nn.Conv2d(in_planes, planes//4, kernel_size=1, padding=0) | ||||
|         self.conv2 = nn.Conv2d(planes//4, planes//4, kernel_size=3, padding=1, stride=stride) | ||||
|         self.conv3 = nn.Conv2d(planes//4, planes, kernel_size=1, padding=0) | ||||
|         self.relu = nn.ReLU(inplace=True) | ||||
|  | ||||
|         num_groups = planes // 8 | ||||
|  | ||||
|         if norm_fn == 'group': | ||||
|             self.norm1 = nn.GroupNorm(num_groups=num_groups, num_channels=planes//4) | ||||
|             self.norm2 = nn.GroupNorm(num_groups=num_groups, num_channels=planes//4) | ||||
|             self.norm3 = nn.GroupNorm(num_groups=num_groups, num_channels=planes) | ||||
|             if not stride == 1: | ||||
|                 self.norm4 = nn.GroupNorm(num_groups=num_groups, num_channels=planes) | ||||
|          | ||||
|         elif norm_fn == 'batch': | ||||
|             self.norm1 = nn.BatchNorm2d(planes//4) | ||||
|             self.norm2 = nn.BatchNorm2d(planes//4) | ||||
|             self.norm3 = nn.BatchNorm2d(planes) | ||||
|             if not stride == 1: | ||||
|                 self.norm4 = nn.BatchNorm2d(planes) | ||||
|          | ||||
|         elif norm_fn == 'instance': | ||||
|             self.norm1 = nn.InstanceNorm2d(planes//4) | ||||
|             self.norm2 = nn.InstanceNorm2d(planes//4) | ||||
|             self.norm3 = nn.InstanceNorm2d(planes) | ||||
|             if not stride == 1: | ||||
|                 self.norm4 = nn.InstanceNorm2d(planes) | ||||
|  | ||||
|         elif norm_fn == 'none': | ||||
|             self.norm1 = nn.Sequential() | ||||
|             self.norm2 = nn.Sequential() | ||||
|             self.norm3 = nn.Sequential() | ||||
|             if not stride == 1: | ||||
|                 self.norm4 = nn.Sequential() | ||||
|  | ||||
|         if stride == 1: | ||||
|             self.downsample = None | ||||
|          | ||||
|         else:     | ||||
|             self.downsample = nn.Sequential( | ||||
|                 nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm4) | ||||
|  | ||||
|  | ||||
|     def forward(self, x): | ||||
|         y = x | ||||
|         y = self.relu(self.norm1(self.conv1(y))) | ||||
|         y = self.relu(self.norm2(self.conv2(y))) | ||||
|         y = self.relu(self.norm3(self.conv3(y))) | ||||
|  | ||||
|         if self.downsample is not None: | ||||
|             x = self.downsample(x) | ||||
|  | ||||
|         return self.relu(x+y) | ||||
|  | ||||
| class BasicEncoder(nn.Module): | ||||
|     def __init__(self, output_dim=128, norm_fn='batch', dropout=0.0): | ||||
|         super(BasicEncoder, self).__init__() | ||||
|         self.norm_fn = norm_fn | ||||
|  | ||||
|         if self.norm_fn == 'group': | ||||
|             self.norm1 = nn.GroupNorm(num_groups=8, num_channels=64) | ||||
|              | ||||
|         elif self.norm_fn == 'batch': | ||||
|             self.norm1 = nn.BatchNorm2d(64) | ||||
|  | ||||
|         elif self.norm_fn == 'instance': | ||||
|             self.norm1 = nn.InstanceNorm2d(64) | ||||
|  | ||||
|         elif self.norm_fn == 'none': | ||||
|             self.norm1 = nn.Sequential() | ||||
|  | ||||
|         self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3) | ||||
|         self.relu1 = nn.ReLU(inplace=True) | ||||
|  | ||||
|         self.in_planes = 64 | ||||
|         self.layer1 = self._make_layer(64,  stride=1) | ||||
|         self.layer2 = self._make_layer(96, stride=2) | ||||
|         self.layer3 = self._make_layer(128, stride=2) | ||||
|  | ||||
|         # output convolution | ||||
|         self.conv2 = nn.Conv2d(128, output_dim, kernel_size=1) | ||||
|  | ||||
|         if dropout > 0: | ||||
|             self.dropout = nn.Dropout2d(p=dropout) | ||||
|         else: | ||||
|             self.dropout = None | ||||
|  | ||||
|         for m in self.modules(): | ||||
|             if isinstance(m, nn.Conv2d): | ||||
|                 nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') | ||||
|             elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)): | ||||
|                 if m.weight is not None: | ||||
|                     nn.init.constant_(m.weight, 1) | ||||
|                 if m.bias is not None: | ||||
|                     nn.init.constant_(m.bias, 0) | ||||
|  | ||||
|     def _make_layer(self, dim, stride=1): | ||||
|         layer1 = ResidualBlock(self.in_planes, dim, self.norm_fn, stride=stride) | ||||
|         layer2 = ResidualBlock(dim, dim, self.norm_fn, stride=1) | ||||
|         layers = (layer1, layer2) | ||||
|          | ||||
|         self.in_planes = dim | ||||
|         return nn.Sequential(*layers) | ||||
|  | ||||
|  | ||||
|     def forward(self, x): | ||||
|  | ||||
|         # if input is list, combine batch dimension | ||||
|         is_list = isinstance(x, tuple) or isinstance(x, list) | ||||
|         if is_list: | ||||
|             batch_dim = x[0].shape[0] | ||||
|             x = torch.cat(x, dim=0) | ||||
|  | ||||
|         x = self.conv1(x) | ||||
|         x = self.norm1(x) | ||||
|         x = self.relu1(x) | ||||
|  | ||||
|         x = self.layer1(x) | ||||
|         x = self.layer2(x) | ||||
|         x = self.layer3(x) | ||||
|  | ||||
|         x = self.conv2(x) | ||||
|  | ||||
|         if self.dropout is not None: | ||||
|             x = self.dropout(x) | ||||
|  | ||||
|         if is_list: | ||||
|             x = torch.split(x, [batch_dim, batch_dim], dim=0) | ||||
|  | ||||
|         return x | ||||
|  | ||||
|  | ||||
| class SmallEncoder(nn.Module): | ||||
|     def __init__(self, output_dim=128, norm_fn='batch', dropout=0.0): | ||||
|         super(SmallEncoder, self).__init__() | ||||
|         self.norm_fn = norm_fn | ||||
|  | ||||
|         if self.norm_fn == 'group': | ||||
|             self.norm1 = nn.GroupNorm(num_groups=8, num_channels=32) | ||||
|              | ||||
|         elif self.norm_fn == 'batch': | ||||
|             self.norm1 = nn.BatchNorm2d(32) | ||||
|  | ||||
|         elif self.norm_fn == 'instance': | ||||
|             self.norm1 = nn.InstanceNorm2d(32) | ||||
|  | ||||
|         elif self.norm_fn == 'none': | ||||
|             self.norm1 = nn.Sequential() | ||||
|  | ||||
|         self.conv1 = nn.Conv2d(3, 32, kernel_size=7, stride=2, padding=3) | ||||
|         self.relu1 = nn.ReLU(inplace=True) | ||||
|  | ||||
|         self.in_planes = 32 | ||||
|         self.layer1 = self._make_layer(32,  stride=1) | ||||
|         self.layer2 = self._make_layer(64, stride=2) | ||||
|         self.layer3 = self._make_layer(96, stride=2) | ||||
|  | ||||
|         if dropout > 0: | ||||
|             self.dropout = nn.Dropout2d(p=dropout) | ||||
|         else: | ||||
|             self.dropout = None | ||||
|          | ||||
|         self.conv2 = nn.Conv2d(96, output_dim, kernel_size=1) | ||||
|  | ||||
|         for m in self.modules(): | ||||
|             if isinstance(m, nn.Conv2d): | ||||
|                 nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') | ||||
|             elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)): | ||||
|                 if m.weight is not None: | ||||
|                     nn.init.constant_(m.weight, 1) | ||||
|                 if m.bias is not None: | ||||
|                     nn.init.constant_(m.bias, 0) | ||||
|  | ||||
|     def _make_layer(self, dim, stride=1): | ||||
|         layer1 = BottleneckBlock(self.in_planes, dim, self.norm_fn, stride=stride) | ||||
|         layer2 = BottleneckBlock(dim, dim, self.norm_fn, stride=1) | ||||
|         layers = (layer1, layer2) | ||||
|      | ||||
|         self.in_planes = dim | ||||
|         return nn.Sequential(*layers) | ||||
|  | ||||
|  | ||||
|     def forward(self, x): | ||||
|  | ||||
|         # if input is list, combine batch dimension | ||||
|         is_list = isinstance(x, tuple) or isinstance(x, list) | ||||
|         if is_list: | ||||
|             batch_dim = x[0].shape[0] | ||||
|             x = torch.cat(x, dim=0) | ||||
|  | ||||
|         x = self.conv1(x) | ||||
|         x = self.norm1(x) | ||||
|         x = self.relu1(x) | ||||
|  | ||||
|         x = self.layer1(x) | ||||
|         x = self.layer2(x) | ||||
|         x = self.layer3(x) | ||||
|         x = self.conv2(x) | ||||
|  | ||||
|         # if self.dropout is not None: | ||||
|         #     x = self.dropout(x) | ||||
|  | ||||
|         if is_list: | ||||
|             x = torch.split(x, [batch_dim, batch_dim], dim=0) | ||||
|  | ||||
|         return x | ||||
							
								
								
									
										169
									
								
								core/modules/update.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										169
									
								
								core/modules/update.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,169 @@ | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
|  | ||||
| # VariationalHidDropout from https://github.com/locuslab/trellisnet/tree/master/TrellisNet | ||||
| class VariationalHidDropout(nn.Module): | ||||
|     def __init__(self, dropout=0.0): | ||||
|         """ | ||||
|         Hidden-to-hidden (VD-based) dropout that applies the same mask at every time step and every layer of TrellisNet | ||||
|         :param dropout: The dropout rate (0 means no dropout is applied) | ||||
|         """ | ||||
|         super(VariationalHidDropout, self).__init__() | ||||
|         self.dropout = dropout | ||||
|         self.mask = None | ||||
|  | ||||
|     def reset_mask(self, x): | ||||
|         dropout = self.dropout | ||||
|  | ||||
|         # Dimension (N, C, L) | ||||
|         n, c, h, w = x.shape | ||||
|         m = x.data.new(n, c, 1, 1).bernoulli_(1 - dropout) | ||||
|         with torch.no_grad(): | ||||
|             mask = m / (1 - dropout) | ||||
|             self.mask = mask | ||||
|         return mask | ||||
|  | ||||
|     def forward(self, x): | ||||
|         if not self.training or self.dropout == 0: | ||||
|             return x | ||||
|         assert self.mask is not None, "You need to reset mask before using VariationalHidDropout" | ||||
|         return self.mask * x | ||||
|  | ||||
|  | ||||
| class FlowHead(nn.Module): | ||||
|     def __init__(self, input_dim=128, hidden_dim=256): | ||||
|         super(FlowHead, self).__init__() | ||||
|         self.conv1 = nn.Conv2d(input_dim, hidden_dim, 3, padding=1) | ||||
|         self.conv2 = nn.Conv2d(hidden_dim, 2, 3, padding=1) | ||||
|         self.relu = nn.ReLU(inplace=True) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         return self.conv2(self.relu(self.conv1(x))) | ||||
|  | ||||
|  | ||||
| class ConvGRU(nn.Module): | ||||
|     def __init__(self, hidden_dim=128, input_dim=192+128): | ||||
|         super(ConvGRU, self).__init__() | ||||
|         self.convz = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1) | ||||
|         self.convr = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1) | ||||
|         self.convq = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1) | ||||
|  | ||||
|     def forward(self, h, x): | ||||
|         hx = torch.cat([h, x], dim=1) | ||||
|  | ||||
|         z = torch.sigmoid(self.convz(hx)) | ||||
|         r = torch.sigmoid(self.convr(hx)) | ||||
|         q = torch.tanh(self.convq(torch.cat([r*h, x], dim=1))) | ||||
|  | ||||
|         h = (1-z) * h + z * q | ||||
|         return h | ||||
|  | ||||
|  | ||||
| class SepConvGRU(nn.Module): | ||||
|     def __init__(self, hidden_dim=128, input_dim=192+128): | ||||
|         super(SepConvGRU, self).__init__() | ||||
|         self.convz1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2)) | ||||
|         self.convr1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2)) | ||||
|         self.convq1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2)) | ||||
|  | ||||
|         self.convz2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0)) | ||||
|         self.convr2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0)) | ||||
|         self.convq2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0)) | ||||
|  | ||||
|  | ||||
|     def forward(self, h, x): | ||||
|         # horizontal | ||||
|         hx = torch.cat([h, x], dim=1) | ||||
|         z = torch.sigmoid(self.convz1(hx)) | ||||
|         r = torch.sigmoid(self.convr1(hx)) | ||||
|         q = torch.tanh(self.convq1(torch.cat([r*h, x], dim=1)))         | ||||
|         h = (1-z) * h + z * q | ||||
|  | ||||
|         # vertical | ||||
|         hx = torch.cat([h, x], dim=1) | ||||
|         z = torch.sigmoid(self.convz2(hx)) | ||||
|         r = torch.sigmoid(self.convr2(hx)) | ||||
|         q = torch.tanh(self.convq2(torch.cat([r*h, x], dim=1)))        | ||||
|         h = (1-z) * h + z * q | ||||
|  | ||||
|         return h | ||||
|  | ||||
| class SmallMotionEncoder(nn.Module): | ||||
|     def __init__(self, args): | ||||
|         super(SmallMotionEncoder, self).__init__() | ||||
|         cor_planes = args.corr_levels * (2*args.corr_radius + 1)**2 | ||||
|         self.convc1 = nn.Conv2d(cor_planes, 96, 1, padding=0) | ||||
|         self.convf1 = nn.Conv2d(2, 64, 7, padding=3) | ||||
|         self.convf2 = nn.Conv2d(64, 32, 3, padding=1) | ||||
|         self.conv = nn.Conv2d(128, 80, 3, padding=1) | ||||
|  | ||||
|     def forward(self, flow, corr): | ||||
|         cor = F.relu(self.convc1(corr)) | ||||
|         flo = F.relu(self.convf1(flow)) | ||||
|         flo = F.relu(self.convf2(flo)) | ||||
|         cor_flo = torch.cat([cor, flo], dim=1) | ||||
|         out = F.relu(self.conv(cor_flo)) | ||||
|         return torch.cat([out, flow], dim=1) | ||||
|  | ||||
| class BasicMotionEncoder(nn.Module): | ||||
|     def __init__(self, args): | ||||
|         super(BasicMotionEncoder, self).__init__() | ||||
|         cor_planes = args.corr_levels * (2*args.corr_radius + 1)**2 | ||||
|         self.convc1 = nn.Conv2d(cor_planes, 256, 1, padding=0) | ||||
|         self.convc2 = nn.Conv2d(256, 192, 3, padding=1) | ||||
|         self.convf1 = nn.Conv2d(2, 128, 7, padding=3) | ||||
|         self.convf2 = nn.Conv2d(128, 64, 3, padding=1) | ||||
|         self.conv = nn.Conv2d(64+192, 128-2, 3, padding=1) | ||||
|  | ||||
|     def forward(self, flow, corr): | ||||
|         cor = F.relu(self.convc1(corr)) | ||||
|         cor = F.relu(self.convc2(cor)) | ||||
|         flo = F.relu(self.convf1(flow)) | ||||
|         flo = F.relu(self.convf2(flo)) | ||||
|  | ||||
|         cor_flo = torch.cat([cor, flo], dim=1) | ||||
|         out = F.relu(self.conv(cor_flo)) | ||||
|         return torch.cat([out, flow], dim=1) | ||||
|  | ||||
| class SmallUpdateBlock(nn.Module): | ||||
|     def __init__(self, args, hidden_dim=96): | ||||
|         super(SmallUpdateBlock, self).__init__() | ||||
|         self.encoder = SmallMotionEncoder(args) | ||||
|         self.gru = ConvGRU(hidden_dim=hidden_dim, input_dim=82+64) | ||||
|         self.flow_head = FlowHead(hidden_dim, hidden_dim=128) | ||||
|  | ||||
|     def forward(self, net, inp, corr, flow): | ||||
|         motion_features = self.encoder(flow, corr) | ||||
|         inp = torch.cat([inp, motion_features], dim=1) | ||||
|         net = self.gru(net, inp) | ||||
|         delta_flow = self.flow_head(net) | ||||
|  | ||||
|         return net, delta_flow | ||||
|  | ||||
| class BasicUpdateBlock(nn.Module): | ||||
|     def __init__(self, args, hidden_dim=128, input_dim=128): | ||||
|         super(BasicUpdateBlock, self).__init__() | ||||
|         self.encoder = BasicMotionEncoder(args) | ||||
|         self.gru = SepConvGRU(hidden_dim=hidden_dim, input_dim=128+hidden_dim) | ||||
|         self.flow_head = FlowHead(hidden_dim, hidden_dim=256) | ||||
|  | ||||
|         self.drop_inp = VariationalHidDropout(dropout=args.dropout) | ||||
|         self.drop_net = VariationalHidDropout(dropout=args.dropout) | ||||
|  | ||||
|     def reset_mask(self, net, inp): | ||||
|         self.drop_inp.reset_mask(inp) | ||||
|         self.drop_net.reset_mask(net) | ||||
|  | ||||
|     def forward(self, net, inp, corr, flow): | ||||
|         motion_features = self.encoder(flow, corr) | ||||
|         inp = torch.cat([inp, motion_features], dim=1) | ||||
|  | ||||
|         if self.training: | ||||
|             net = self.drop_net(net) | ||||
|             inp = self.drop_inp(inp) | ||||
|  | ||||
|         net = self.gru(net, inp) | ||||
|         delta_flow = self.flow_head(net) | ||||
|  | ||||
|         return net, delta_flow | ||||
							
								
								
									
										99
									
								
								core/raft.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										99
									
								
								core/raft.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,99 @@ | ||||
| import numpy as np | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
|  | ||||
| from modules.update import BasicUpdateBlock, SmallUpdateBlock | ||||
| from modules.extractor import BasicEncoder, SmallEncoder | ||||
| from modules.corr import CorrBlock | ||||
| from utils.utils import bilinear_sampler, coords_grid, upflow8 | ||||
|  | ||||
|  | ||||
| class RAFT(nn.Module): | ||||
|     def __init__(self, args): | ||||
|         super(RAFT, self).__init__() | ||||
|         self.args = args | ||||
|  | ||||
|         if args.small: | ||||
|             self.hidden_dim = hdim = 96 | ||||
|             self.context_dim = cdim = 64 | ||||
|             args.corr_levels = 4 | ||||
|             args.corr_radius = 3 | ||||
|          | ||||
|         else: | ||||
|             self.hidden_dim = hdim = 128 | ||||
|             self.context_dim = cdim = 128 | ||||
|             args.corr_levels = 4 | ||||
|             args.corr_radius = 4 | ||||
|  | ||||
|         if 'dropout' not in args._get_kwargs(): | ||||
|             args.dropout = 0 | ||||
|  | ||||
|         # feature network, context network, and update block | ||||
|         if args.small: | ||||
|             self.fnet = SmallEncoder(output_dim=128, norm_fn='instance', dropout=args.dropout)         | ||||
|             self.cnet = SmallEncoder(output_dim=hdim+cdim, norm_fn='none', dropout=args.dropout) | ||||
|             self.update_block = SmallUpdateBlock(self.args, hidden_dim=hdim) | ||||
|  | ||||
|         else: | ||||
|             self.fnet = BasicEncoder(output_dim=256, norm_fn='instance', dropout=args.dropout)         | ||||
|             self.cnet = BasicEncoder(output_dim=hdim+cdim, norm_fn='batch', dropout=args.dropout) | ||||
|             self.update_block = BasicUpdateBlock(self.args, hidden_dim=hdim) | ||||
|  | ||||
|     def freeze_bn(self): | ||||
|         for m in self.modules(): | ||||
|             if isinstance(m, nn.BatchNorm2d): | ||||
|                 m.eval() | ||||
|  | ||||
|     def initialize_flow(self, img): | ||||
|         """ Flow is represented as difference between two coordinate grids flow = coords1 - coords0""" | ||||
|         N, C, H, W = img.shape | ||||
|         coords0 = coords_grid(N, H//8, W//8).to(img.device) | ||||
|         coords1 = coords_grid(N, H//8, W//8).to(img.device) | ||||
|  | ||||
|         # optical flow computed as difference: flow = coords1 - coords0 | ||||
|         return coords0, coords1 | ||||
|  | ||||
|     def forward(self, image1, image2, iters=12, flow_init=None, upsample=True): | ||||
|         """ Estimate optical flow between pair of frames """ | ||||
|  | ||||
|         image1 = 2 * (image1 / 255.0) - 1.0 | ||||
|         image2 = 2 * (image2 / 255.0) - 1.0 | ||||
|  | ||||
|         hdim = self.hidden_dim | ||||
|         cdim = self.context_dim | ||||
|  | ||||
|         # run the feature network | ||||
|         fmap1, fmap2 = self.fnet([image1, image2]) | ||||
|         corr_fn = CorrBlock(fmap1, fmap2, radius=self.args.corr_radius) | ||||
|  | ||||
|         # run the context network | ||||
|         cnet = self.cnet(image1) | ||||
|         net, inp = torch.split(cnet, [hdim, cdim], dim=1) | ||||
|         net, inp = torch.tanh(net), torch.relu(inp) | ||||
|  | ||||
|         # if dropout is being used reset mask | ||||
|         self.update_block.reset_mask(net, inp) | ||||
|         coords0, coords1 = self.initialize_flow(image1) | ||||
|  | ||||
|         flow_predictions = [] | ||||
|         for itr in range(iters): | ||||
|             coords1 = coords1.detach() | ||||
|             corr = corr_fn(coords1) # index correlation volume | ||||
|  | ||||
|             flow = coords1 - coords0 | ||||
|             net, delta_flow = self.update_block(net, inp, corr, flow) | ||||
|  | ||||
|             # F(t+1) = F(t) + \Delta(t) | ||||
|             coords1 = coords1 + delta_flow | ||||
|              | ||||
|             if upsample: | ||||
|                 flow_up = upflow8(coords1 - coords0) | ||||
|                 flow_predictions.append(flow_up) | ||||
|              | ||||
|             else: | ||||
|                 flow_predictions.append(coords1 - coords0) | ||||
|  | ||||
|         return flow_predictions | ||||
|  | ||||
|  | ||||
							
								
								
									
										0
									
								
								core/utils/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										0
									
								
								core/utils/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
								
								
									
										233
									
								
								core/utils/augmentor.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										233
									
								
								core/utils/augmentor.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,233 @@ | ||||
| import numpy as np | ||||
| import random | ||||
| import math | ||||
| import cv2 | ||||
| from PIL import Image | ||||
|  | ||||
| import torch | ||||
| import torchvision | ||||
| import torch.nn.functional as F | ||||
|  | ||||
| class FlowAugmentor: | ||||
|     def __init__(self, crop_size, min_scale=-0.2, max_scale=0.5): | ||||
|         self.crop_size = crop_size | ||||
|         self.augcolor = torchvision.transforms.ColorJitter( | ||||
|             brightness=0.4,  | ||||
|             contrast=0.4,  | ||||
|             saturation=0.4,  | ||||
|             hue=0.5/3.14) | ||||
|  | ||||
|         self.asymmetric_color_aug_prob = 0.2 | ||||
|         self.spatial_aug_prob = 0.8 | ||||
|         self.eraser_aug_prob = 0.5 | ||||
|  | ||||
|         self.min_scale = min_scale | ||||
|         self.max_scale = max_scale | ||||
|         self.max_stretch = 0.2 | ||||
|         self.stretch_prob = 0.8 | ||||
|         self.margin = 20 | ||||
|  | ||||
|     def color_transform(self, img1, img2): | ||||
|  | ||||
|         if np.random.rand() < self.asymmetric_color_aug_prob: | ||||
|             img1 = np.array(self.augcolor(Image.fromarray(img1)), dtype=np.uint8) | ||||
|             img2 = np.array(self.augcolor(Image.fromarray(img2)), dtype=np.uint8) | ||||
|  | ||||
|         else: | ||||
|             image_stack = np.concatenate([img1, img2], axis=0) | ||||
|             image_stack = np.array(self.augcolor(Image.fromarray(image_stack)), dtype=np.uint8) | ||||
|             img1, img2 = np.split(image_stack, 2, axis=0) | ||||
|  | ||||
|         return img1, img2 | ||||
|  | ||||
|     def eraser_transform(self, img1, img2, bounds=[50, 100]): | ||||
|         ht, wd = img1.shape[:2] | ||||
|         if np.random.rand() < self.eraser_aug_prob: | ||||
|             mean_color = np.mean(img2.reshape(-1, 3), axis=0) | ||||
|             for _ in range(np.random.randint(1, 3)): | ||||
|                 x0 = np.random.randint(0, wd) | ||||
|                 y0 = np.random.randint(0, ht) | ||||
|                 dx = np.random.randint(bounds[0], bounds[1]) | ||||
|                 dy = np.random.randint(bounds[0], bounds[1]) | ||||
|                 img2[y0:y0+dy, x0:x0+dx, :] = mean_color | ||||
|  | ||||
|         return img1, img2 | ||||
|  | ||||
|     def spatial_transform(self, img1, img2, flow): | ||||
|         # randomly sample scale | ||||
|  | ||||
|         ht, wd = img1.shape[:2] | ||||
|         min_scale = np.maximum( | ||||
|             (self.crop_size[0] + 1) / float(ht),  | ||||
|             (self.crop_size[1] + 1) / float(wd)) | ||||
|  | ||||
|         max_scale = self.max_scale | ||||
|         min_scale = max(min_scale, self.min_scale) | ||||
|          | ||||
|         scale = 2 ** np.random.uniform(self.min_scale, self.max_scale) | ||||
|         scale_x = scale | ||||
|         scale_y = scale | ||||
|         if np.random.rand() < self.stretch_prob: | ||||
|             scale_x *= 2 ** np.random.uniform(-self.max_stretch, self.max_stretch) | ||||
|             scale_y *= 2 ** np.random.uniform(-self.max_stretch, self.max_stretch) | ||||
|              | ||||
|         scale_x = np.clip(scale_x, min_scale, None) | ||||
|         scale_y = np.clip(scale_y, min_scale, None) | ||||
|  | ||||
|         if np.random.rand() < self.spatial_aug_prob: | ||||
|             # rescale the images | ||||
|             img1 = cv2.resize(img1, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) | ||||
|             img2 = cv2.resize(img2, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) | ||||
|             flow = cv2.resize(flow, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) | ||||
|             flow = flow * [scale_x, scale_y] | ||||
|  | ||||
|         if np.random.rand() < 0.5: # h-flip | ||||
|             img1 = img1[:, ::-1] | ||||
|             img2 = img2[:, ::-1] | ||||
|             flow = flow[:, ::-1] * [-1.0, 1.0] | ||||
|  | ||||
|         if np.random.rand() < 0.1: # v-flip | ||||
|             img1 = img1[::-1, :] | ||||
|             img2 = img2[::-1, :] | ||||
|             flow = flow[::-1, :] * [1.0, -1.0] | ||||
|  | ||||
|         y0 = np.random.randint(-self.margin, img1.shape[0] - self.crop_size[0] + self.margin) | ||||
|         x0 = np.random.randint(-self.margin, img1.shape[1] - self.crop_size[1] + self.margin) | ||||
|          | ||||
|         y0 = np.clip(y0, 0, img1.shape[0] - self.crop_size[0]) | ||||
|         x0 = np.clip(x0, 0, img1.shape[1] - self.crop_size[1]) | ||||
|  | ||||
|         img1 = img1[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] | ||||
|         img2 = img2[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] | ||||
|         flow = flow[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] | ||||
|  | ||||
|         return img1, img2, flow | ||||
|  | ||||
|     def __call__(self, img1, img2, flow): | ||||
|         img1, img2 = self.color_transform(img1, img2) | ||||
|         img1, img2 = self.eraser_transform(img1, img2) | ||||
|         img1, img2, flow = self.spatial_transform(img1, img2, flow) | ||||
|  | ||||
|         img1 = np.ascontiguousarray(img1) | ||||
|         img2 = np.ascontiguousarray(img2) | ||||
|         flow = np.ascontiguousarray(flow) | ||||
|  | ||||
|         return img1, img2, flow | ||||
|  | ||||
|  | ||||
| class FlowAugmentorKITTI: | ||||
|     def __init__(self, crop_size, min_scale=-0.2, max_scale=0.5): | ||||
|         self.crop_size = crop_size | ||||
|         self.augcolor = torchvision.transforms.ColorJitter( | ||||
|             brightness=0.3, contrast=0.3, saturation=0.3, hue=0.3/3.14) | ||||
|  | ||||
|         self.max_scale = max_scale | ||||
|         self.min_scale = min_scale | ||||
|  | ||||
|         self.spatial_aug_prob = 0.8 | ||||
|         self.eraser_aug_prob = 0.5 | ||||
|          | ||||
|     def color_transform(self, img1, img2): | ||||
|         image_stack = np.concatenate([img1, img2], axis=0) | ||||
|         image_stack = np.array(self.augcolor(Image.fromarray(image_stack)), dtype=np.uint8) | ||||
|         img1, img2 = np.split(image_stack, 2, axis=0) | ||||
|         return img1, img2 | ||||
|  | ||||
|     def eraser_transform(self, img1, img2): | ||||
|         ht, wd = img1.shape[:2] | ||||
|         if np.random.rand() < self.eraser_aug_prob: | ||||
|             mean_color = np.mean(img2.reshape(-1, 3), axis=0) | ||||
|             for _ in range(np.random.randint(1, 3)): | ||||
|                 x0 = np.random.randint(0, wd) | ||||
|                 y0 = np.random.randint(0, ht) | ||||
|                 dx = np.random.randint(50, 100) | ||||
|                 dy = np.random.randint(50, 100) | ||||
|                 img2[y0:y0+dy, x0:x0+dx, :] = mean_color | ||||
|  | ||||
|         return img1, img2 | ||||
|  | ||||
|     def resize_sparse_flow_map(self, flow, valid, fx=1.0, fy=1.0): | ||||
|         ht, wd = flow.shape[:2] | ||||
|         coords = np.meshgrid(np.arange(wd), np.arange(ht)) | ||||
|         coords = np.stack(coords, axis=-1) | ||||
|  | ||||
|         coords = coords.reshape(-1, 2).astype(np.float32) | ||||
|         flow = flow.reshape(-1, 2).astype(np.float32) | ||||
|         valid = valid.reshape(-1).astype(np.float32) | ||||
|  | ||||
|         coords0 = coords[valid>=1] | ||||
|         flow0 = flow[valid>=1] | ||||
|  | ||||
|         ht1 = int(round(ht * fy)) | ||||
|         wd1 = int(round(wd * fx)) | ||||
|  | ||||
|         coords1 = coords0 * [fx, fy] | ||||
|         flow1 = flow0 * [fx, fy] | ||||
|  | ||||
|         xx = np.round(coords1[:,0]).astype(np.int32) | ||||
|         yy = np.round(coords1[:,1]).astype(np.int32) | ||||
|  | ||||
|         v = (xx > 0) & (xx < wd1) & (yy > 0) & (yy < ht1) | ||||
|         xx = xx[v] | ||||
|         yy = yy[v] | ||||
|         flow1 = flow1[v] | ||||
|  | ||||
|         flow_img = np.zeros([ht1, wd1, 2], dtype=np.float32) | ||||
|         valid_img = np.zeros([ht1, wd1], dtype=np.int32) | ||||
|  | ||||
|         flow_img[yy, xx] = flow1 | ||||
|         valid_img[yy, xx] = 1 | ||||
|  | ||||
|         return flow_img, valid_img | ||||
|  | ||||
|     def spatial_transform(self, img1, img2, flow, valid): | ||||
|         # randomly sample scale | ||||
|  | ||||
|         ht, wd = img1.shape[:2] | ||||
|         min_scale = np.maximum( | ||||
|             (self.crop_size[0] + 1) / float(ht),  | ||||
|             (self.crop_size[1] + 1) / float(wd)) | ||||
|  | ||||
|         scale = 2 ** np.random.uniform(self.min_scale, self.max_scale) | ||||
|         scale_x = np.clip(scale, min_scale, None) | ||||
|         scale_y = np.clip(scale, min_scale, None) | ||||
|  | ||||
|         if np.random.rand() < self.spatial_aug_prob: | ||||
|             # rescale the images | ||||
|             img1 = cv2.resize(img1, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) | ||||
|             img2 = cv2.resize(img2, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) | ||||
|             flow, valid = self.resize_sparse_flow_map(flow, valid, fx=scale_x, fy=scale_y) | ||||
|  | ||||
|         if np.random.rand() < 0.5: # h-flip | ||||
|             img1 = img1[:, ::-1] | ||||
|             img2 = img2[:, ::-1] | ||||
|             flow = flow[:, ::-1] * [-1.0, 1.0] | ||||
|             valid = valid[:, ::-1] | ||||
|  | ||||
|         margin_y = 20 | ||||
|         margin_x = 50 | ||||
|  | ||||
|         y0 = np.random.randint(0, img1.shape[0] - self.crop_size[0] + margin_y) | ||||
|         x0 = np.random.randint(-margin_x, img1.shape[1] - self.crop_size[1] + margin_x) | ||||
|  | ||||
|         y0 = np.clip(y0, 0, img1.shape[0] - self.crop_size[0]) | ||||
|         x0 = np.clip(x0, 0, img1.shape[1] - self.crop_size[1]) | ||||
|  | ||||
|         img1 = img1[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] | ||||
|         img2 = img2[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] | ||||
|         flow = flow[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] | ||||
|         valid = valid[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] | ||||
|         return img1, img2, flow, valid | ||||
|  | ||||
|  | ||||
|     def __call__(self, img1, img2, flow, valid): | ||||
|         img1, img2 = self.color_transform(img1, img2) | ||||
|         img1, img2 = self.eraser_transform(img1, img2) | ||||
|         img1, img2, flow, valid = self.spatial_transform(img1, img2, flow, valid) | ||||
|  | ||||
|         img1 = np.ascontiguousarray(img1) | ||||
|         img2 = np.ascontiguousarray(img2) | ||||
|         flow = np.ascontiguousarray(flow) | ||||
|         valid = np.ascontiguousarray(valid) | ||||
|  | ||||
|         return img1, img2, flow, valid | ||||
							
								
								
									
										275
									
								
								core/utils/flow_viz.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										275
									
								
								core/utils/flow_viz.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,275 @@ | ||||
| # MIT License | ||||
| # | ||||
| # Copyright (c) 2018 Tom Runia | ||||
| # | ||||
| # Permission is hereby granted, free of charge, to any person obtaining a copy | ||||
| # of this software and associated documentation files (the "Software"), to deal | ||||
| # in the Software without restriction, including without limitation the rights | ||||
| # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||||
| # copies of the Software, and to permit persons to whom the Software is | ||||
| # furnished to do so, subject to conditions. | ||||
| # | ||||
| # Author: Tom Runia | ||||
| # Date Created: 2018-08-03 | ||||
|  | ||||
| from __future__ import absolute_import | ||||
| from __future__ import division | ||||
| from __future__ import print_function | ||||
|  | ||||
| import numpy as np | ||||
|  | ||||
|  | ||||
| def make_colorwheel(): | ||||
|     ''' | ||||
|     Generates a color wheel for optical flow visualization as presented in: | ||||
|         Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007) | ||||
|         URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf | ||||
|     According to the C++ source code of Daniel Scharstein | ||||
|     According to the Matlab source code of Deqing Sun | ||||
|     ''' | ||||
|  | ||||
|     RY = 15 | ||||
|     YG = 6 | ||||
|     GC = 4 | ||||
|     CB = 11 | ||||
|     BM = 13 | ||||
|     MR = 6 | ||||
|  | ||||
|     ncols = RY + YG + GC + CB + BM + MR | ||||
|     colorwheel = np.zeros((ncols, 3)) | ||||
|     col = 0 | ||||
|  | ||||
|     # RY | ||||
|     colorwheel[0:RY, 0] = 255 | ||||
|     colorwheel[0:RY, 1] = np.floor(255*np.arange(0,RY)/RY) | ||||
|     col = col+RY | ||||
|     # YG | ||||
|     colorwheel[col:col+YG, 0] = 255 - np.floor(255*np.arange(0,YG)/YG) | ||||
|     colorwheel[col:col+YG, 1] = 255 | ||||
|     col = col+YG | ||||
|     # GC | ||||
|     colorwheel[col:col+GC, 1] = 255 | ||||
|     colorwheel[col:col+GC, 2] = np.floor(255*np.arange(0,GC)/GC) | ||||
|     col = col+GC | ||||
|     # CB | ||||
|     colorwheel[col:col+CB, 1] = 255 - np.floor(255*np.arange(CB)/CB) | ||||
|     colorwheel[col:col+CB, 2] = 255 | ||||
|     col = col+CB | ||||
|     # BM | ||||
|     colorwheel[col:col+BM, 2] = 255 | ||||
|     colorwheel[col:col+BM, 0] = np.floor(255*np.arange(0,BM)/BM) | ||||
|     col = col+BM | ||||
|     # MR | ||||
|     colorwheel[col:col+MR, 2] = 255 - np.floor(255*np.arange(MR)/MR) | ||||
|     colorwheel[col:col+MR, 0] = 255 | ||||
|     return colorwheel | ||||
|  | ||||
|  | ||||
| def flow_compute_color(u, v, convert_to_bgr=False): | ||||
|     ''' | ||||
|     Applies the flow color wheel to (possibly clipped) flow components u and v. | ||||
|     According to the C++ source code of Daniel Scharstein | ||||
|     According to the Matlab source code of Deqing Sun | ||||
|     :param u: np.ndarray, input horizontal flow | ||||
|     :param v: np.ndarray, input vertical flow | ||||
|     :param convert_to_bgr: bool, whether to change ordering and output BGR instead of RGB | ||||
|     :return: | ||||
|     ''' | ||||
|  | ||||
|     flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8) | ||||
|  | ||||
|     colorwheel = make_colorwheel()  # shape [55x3] | ||||
|     ncols = colorwheel.shape[0] | ||||
|  | ||||
|     rad = np.sqrt(np.square(u) + np.square(v)) | ||||
|     a = np.arctan2(-v, -u)/np.pi | ||||
|  | ||||
|     fk = (a+1) / 2*(ncols-1) + 1 | ||||
|     k0 = np.floor(fk).astype(np.int32) | ||||
|     k1 = k0 + 1 | ||||
|     k1[k1 == ncols] = 1 | ||||
|     f = fk - k0 | ||||
|  | ||||
|     for i in range(colorwheel.shape[1]): | ||||
|  | ||||
|         tmp = colorwheel[:,i] | ||||
|         col0 = tmp[k0] / 255.0 | ||||
|         col1 = tmp[k1] / 255.0 | ||||
|         col = (1-f)*col0 + f*col1 | ||||
|  | ||||
|         idx = (rad <= 1) | ||||
|         col[idx]  = 1 - rad[idx] * (1-col[idx]) | ||||
|         col[~idx] = col[~idx] * 0.75   # out of range? | ||||
|  | ||||
|         # Note the 2-i => BGR instead of RGB | ||||
|         ch_idx = 2-i if convert_to_bgr else i | ||||
|         flow_image[:,:,ch_idx] = np.floor(255 * col) | ||||
|  | ||||
|     return flow_image | ||||
|  | ||||
|  | ||||
| def flow_to_color(flow_uv, clip_flow=None, convert_to_bgr=False): | ||||
|     ''' | ||||
|     Expects a two dimensional flow image of shape [H,W,2] | ||||
|     According to the C++ source code of Daniel Scharstein | ||||
|     According to the Matlab source code of Deqing Sun | ||||
|     :param flow_uv: np.ndarray of shape [H,W,2] | ||||
|     :param clip_flow: float, maximum clipping value for flow | ||||
|     :return: | ||||
|     ''' | ||||
|  | ||||
|     assert flow_uv.ndim == 3, 'input flow must have three dimensions' | ||||
|     assert flow_uv.shape[2] == 2, 'input flow must have shape [H,W,2]' | ||||
|  | ||||
|     if clip_flow is not None: | ||||
|         flow_uv = np.clip(flow_uv, 0, clip_flow) | ||||
|  | ||||
|     u = flow_uv[:,:,0] | ||||
|     v = flow_uv[:,:,1] | ||||
|  | ||||
|     rad = np.sqrt(np.square(u) + np.square(v)) | ||||
|     rad_max = np.max(rad) | ||||
|  | ||||
|     epsilon = 1e-5 | ||||
|     u = u / (rad_max + epsilon) | ||||
|     v = v / (rad_max + epsilon) | ||||
|  | ||||
|     return flow_compute_color(u, v, convert_to_bgr) | ||||
|  | ||||
|  | ||||
|  | ||||
| UNKNOWN_FLOW_THRESH = 1e7 | ||||
| SMALLFLOW = 0.0 | ||||
| LARGEFLOW = 1e8 | ||||
|  | ||||
| def make_color_wheel(): | ||||
|     """ | ||||
|     Generate color wheel according Middlebury color code | ||||
|     :return: Color wheel | ||||
|     """ | ||||
|     RY = 15 | ||||
|     YG = 6 | ||||
|     GC = 4 | ||||
|     CB = 11 | ||||
|     BM = 13 | ||||
|     MR = 6 | ||||
|  | ||||
|     ncols = RY + YG + GC + CB + BM + MR | ||||
|  | ||||
|     colorwheel = np.zeros([ncols, 3]) | ||||
|  | ||||
|     col = 0 | ||||
|  | ||||
|     # RY | ||||
|     colorwheel[0:RY, 0] = 255 | ||||
|     colorwheel[0:RY, 1] = np.transpose(np.floor(255*np.arange(0, RY) / RY)) | ||||
|     col += RY | ||||
|  | ||||
|     # YG | ||||
|     colorwheel[col:col+YG, 0] = 255 - np.transpose(np.floor(255*np.arange(0, YG) / YG)) | ||||
|     colorwheel[col:col+YG, 1] = 255 | ||||
|     col += YG | ||||
|  | ||||
|     # GC | ||||
|     colorwheel[col:col+GC, 1] = 255 | ||||
|     colorwheel[col:col+GC, 2] = np.transpose(np.floor(255*np.arange(0, GC) / GC)) | ||||
|     col += GC | ||||
|  | ||||
|     # CB | ||||
|     colorwheel[col:col+CB, 1] = 255 - np.transpose(np.floor(255*np.arange(0, CB) / CB)) | ||||
|     colorwheel[col:col+CB, 2] = 255 | ||||
|     col += CB | ||||
|  | ||||
|     # BM | ||||
|     colorwheel[col:col+BM, 2] = 255 | ||||
|     colorwheel[col:col+BM, 0] = np.transpose(np.floor(255*np.arange(0, BM) / BM)) | ||||
|     col += + BM | ||||
|  | ||||
|     # MR | ||||
|     colorwheel[col:col+MR, 2] = 255 - np.transpose(np.floor(255 * np.arange(0, MR) / MR)) | ||||
|     colorwheel[col:col+MR, 0] = 255 | ||||
|  | ||||
|     return colorwheel | ||||
|  | ||||
|  | ||||
|  | ||||
| def compute_color(u, v): | ||||
|     """ | ||||
|     compute optical flow color map | ||||
|     :param u: optical flow horizontal map | ||||
|     :param v: optical flow vertical map | ||||
|     :return: optical flow in color code | ||||
|     """ | ||||
|     [h, w] = u.shape | ||||
|     img = np.zeros([h, w, 3]) | ||||
|     nanIdx = np.isnan(u) | np.isnan(v) | ||||
|     u[nanIdx] = 0 | ||||
|     v[nanIdx] = 0 | ||||
|  | ||||
|     colorwheel = make_color_wheel() | ||||
|     ncols = np.size(colorwheel, 0) | ||||
|  | ||||
|     rad = np.sqrt(u**2+v**2) | ||||
|  | ||||
|     a = np.arctan2(-v, -u) / np.pi | ||||
|  | ||||
|     fk = (a+1) / 2 * (ncols - 1) + 1 | ||||
|  | ||||
|     k0 = np.floor(fk).astype(int) | ||||
|  | ||||
|     k1 = k0 + 1 | ||||
|     k1[k1 == ncols+1] = 1 | ||||
|     f = fk - k0 | ||||
|  | ||||
|     for i in range(0, np.size(colorwheel,1)): | ||||
|         tmp = colorwheel[:, i] | ||||
|         col0 = tmp[k0-1] / 255 | ||||
|         col1 = tmp[k1-1] / 255 | ||||
|         col = (1-f) * col0 + f * col1 | ||||
|  | ||||
|         idx = rad <= 1 | ||||
|         col[idx] = 1-rad[idx]*(1-col[idx]) | ||||
|         notidx = np.logical_not(idx) | ||||
|  | ||||
|         col[notidx] *= 0.75 | ||||
|         img[:, :, i] = np.uint8(np.floor(255 * col*(1-nanIdx))) | ||||
|  | ||||
|     return img | ||||
|  | ||||
| # from https://github.com/gengshan-y/VCN | ||||
| def flow_to_image(flow): | ||||
|     """ | ||||
|     Convert flow into middlebury color code image | ||||
|     :param flow: optical flow map | ||||
|     :return: optical flow image in middlebury color | ||||
|     """ | ||||
|     u = flow[:, :, 0] | ||||
|     v = flow[:, :, 1] | ||||
|  | ||||
|     maxu = -999. | ||||
|     maxv = -999. | ||||
|     minu = 999. | ||||
|     minv = 999. | ||||
|  | ||||
|     idxUnknow = (abs(u) > UNKNOWN_FLOW_THRESH) | (abs(v) > UNKNOWN_FLOW_THRESH) | ||||
|     u[idxUnknow] = 0 | ||||
|     v[idxUnknow] = 0 | ||||
|  | ||||
|     maxu = max(maxu, np.max(u)) | ||||
|     minu = min(minu, np.min(u)) | ||||
|  | ||||
|     maxv = max(maxv, np.max(v)) | ||||
|     minv = min(minv, np.min(v)) | ||||
|  | ||||
|     rad = np.sqrt(u ** 2 + v ** 2) | ||||
|     maxrad = max(-1, np.max(rad)) | ||||
|  | ||||
|     u = u/(maxrad + np.finfo(float).eps) | ||||
|     v = v/(maxrad + np.finfo(float).eps) | ||||
|  | ||||
|     img = compute_color(u, v) | ||||
|  | ||||
|     idx = np.repeat(idxUnknow[:, :, np.newaxis], 3, axis=2) | ||||
|     img[idx] = 0 | ||||
|  | ||||
|     return np.uint8(img) | ||||
							
								
								
									
										124
									
								
								core/utils/frame_utils.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										124
									
								
								core/utils/frame_utils.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,124 @@ | ||||
| import numpy as np | ||||
| from PIL import Image | ||||
| from os.path import * | ||||
| import re | ||||
| import cv2 | ||||
|  | ||||
| TAG_CHAR = np.array([202021.25], np.float32) | ||||
|  | ||||
| def readFlow(fn): | ||||
|     """ Read .flo file in Middlebury format""" | ||||
|     # Code adapted from: | ||||
|     # http://stackoverflow.com/questions/28013200/reading-middlebury-flow-files-with-python-bytes-array-numpy | ||||
|  | ||||
|     # WARNING: this will work on little-endian architectures (eg Intel x86) only! | ||||
|     # print 'fn = %s'%(fn) | ||||
|     with open(fn, 'rb') as f: | ||||
|         magic = np.fromfile(f, np.float32, count=1) | ||||
|         if 202021.25 != magic: | ||||
|             print('Magic number incorrect. Invalid .flo file') | ||||
|             return None | ||||
|         else: | ||||
|             w = np.fromfile(f, np.int32, count=1) | ||||
|             h = np.fromfile(f, np.int32, count=1) | ||||
|             # print 'Reading %d x %d flo file\n' % (w, h) | ||||
|             data = np.fromfile(f, np.float32, count=2*int(w)*int(h)) | ||||
|             # Reshape data into 3D array (columns, rows, bands) | ||||
|             # The reshape here is for visualization, the original code is (w,h,2) | ||||
|             return np.resize(data, (int(h), int(w), 2)) | ||||
|  | ||||
| def readPFM(file): | ||||
|     file = open(file, 'rb') | ||||
|  | ||||
|     color = None | ||||
|     width = None | ||||
|     height = None | ||||
|     scale = None | ||||
|     endian = None | ||||
|  | ||||
|     header = file.readline().rstrip() | ||||
|     if header == b'PF': | ||||
|         color = True | ||||
|     elif header == b'Pf': | ||||
|         color = False | ||||
|     else: | ||||
|         raise Exception('Not a PFM file.') | ||||
|  | ||||
|     dim_match = re.match(rb'^(\d+)\s(\d+)\s$', file.readline()) | ||||
|     if dim_match: | ||||
|         width, height = map(int, dim_match.groups()) | ||||
|     else: | ||||
|         raise Exception('Malformed PFM header.') | ||||
|  | ||||
|     scale = float(file.readline().rstrip()) | ||||
|     if scale < 0: # little-endian | ||||
|         endian = '<' | ||||
|         scale = -scale | ||||
|     else: | ||||
|         endian = '>' # big-endian | ||||
|  | ||||
|     data = np.fromfile(file, endian + 'f') | ||||
|     shape = (height, width, 3) if color else (height, width) | ||||
|  | ||||
|     data = np.reshape(data, shape) | ||||
|     data = np.flipud(data) | ||||
|     return data | ||||
|  | ||||
| def writeFlow(filename,uv,v=None): | ||||
|     """ Write optical flow to file. | ||||
|      | ||||
|     If v is None, uv is assumed to contain both u and v channels, | ||||
|     stacked in depth. | ||||
|     Original code by Deqing Sun, adapted from Daniel Scharstein. | ||||
|     """ | ||||
|     nBands = 2 | ||||
|  | ||||
|     if v is None: | ||||
|         assert(uv.ndim == 3) | ||||
|         assert(uv.shape[2] == 2) | ||||
|         u = uv[:,:,0] | ||||
|         v = uv[:,:,1] | ||||
|     else: | ||||
|         u = uv | ||||
|  | ||||
|     assert(u.shape == v.shape) | ||||
|     height,width = u.shape | ||||
|     f = open(filename,'wb') | ||||
|     # write the header | ||||
|     f.write(TAG_CHAR) | ||||
|     np.array(width).astype(np.int32).tofile(f) | ||||
|     np.array(height).astype(np.int32).tofile(f) | ||||
|     # arrange into matrix form | ||||
|     tmp = np.zeros((height, width*nBands)) | ||||
|     tmp[:,np.arange(width)*2] = u | ||||
|     tmp[:,np.arange(width)*2 + 1] = v | ||||
|     tmp.astype(np.float32).tofile(f) | ||||
|     f.close() | ||||
|  | ||||
|  | ||||
| def readFlowKITTI(filename): | ||||
|     flow = cv2.imread(filename, cv2.IMREAD_ANYDEPTH|cv2.IMREAD_COLOR) | ||||
|     flow = flow[:,:,::-1].astype(np.float32) | ||||
|     flow, valid = flow[:, :, :2], flow[:, :, 2] | ||||
|     flow = (flow - 2**15) / 64.0 | ||||
|     return flow, valid | ||||
|  | ||||
| def writeFlowKITTI(filename, uv): | ||||
|     uv = 64.0 * uv + 2**15 | ||||
|     valid = np.ones([uv.shape[0], uv.shape[1], 1]) | ||||
|     uv = np.concatenate([uv, valid], axis=-1).astype(np.uint16) | ||||
|     cv2.imwrite(filename, uv[..., ::-1]) | ||||
|      | ||||
|  | ||||
| def read_gen(file_name, pil=False): | ||||
|     ext = splitext(file_name)[-1] | ||||
|     if ext == '.png' or ext == '.jpeg' or ext == '.ppm' or ext == '.jpg': | ||||
|         return Image.open(file_name) | ||||
|     elif ext == '.bin' or ext == '.raw': | ||||
|         return np.load(file_name) | ||||
|     elif ext == '.flo': | ||||
|         return readFlow(file_name).astype(np.float32) | ||||
|     elif ext == '.pfm': | ||||
|         flow = readPFM(file_name).astype(np.float32) | ||||
|         return flow[:, :, :-1] | ||||
|     return [] | ||||
							
								
								
									
										62
									
								
								core/utils/utils.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										62
									
								
								core/utils/utils.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,62 @@ | ||||
| import torch | ||||
| import torch.nn.functional as F | ||||
| import numpy as np | ||||
| from scipy import interpolate | ||||
|  | ||||
|  | ||||
| def bilinear_sampler(img, coords, mode='bilinear', mask=False): | ||||
|     """ Wrapper for grid_sample, uses pixel coordinates """ | ||||
|     H, W = img.shape[-2:] | ||||
|     xgrid, ygrid = coords.split([1,1], dim=-1) | ||||
|     xgrid = 2*xgrid/(W-1) - 1 | ||||
|     ygrid = 2*ygrid/(H-1) - 1 | ||||
|  | ||||
|     grid = torch.cat([xgrid, ygrid], dim=-1) | ||||
|     img = F.grid_sample(img, grid, align_corners=True) | ||||
|  | ||||
|     if mask: | ||||
|         mask = (xgrid > -1) & (ygrid > -1) & (xgrid < 1) & (ygrid < 1) | ||||
|         return img, mask.float() | ||||
|  | ||||
|     return img | ||||
|  | ||||
| def forward_interpolate(flow): | ||||
|     flow = flow.detach().cpu().numpy() | ||||
|     dx, dy = flow[0], flow[1] | ||||
|  | ||||
|     ht, wd = dx.shape | ||||
|     x0, y0 = np.meshgrid(np.arange(wd), np.arange(ht)) | ||||
|  | ||||
|     x1 = x0 + dx | ||||
|     y1 = y0 + dy | ||||
|      | ||||
|     x1 = x1.reshape(-1) | ||||
|     y1 = y1.reshape(-1) | ||||
|     dx = dx.reshape(-1) | ||||
|     dy = dy.reshape(-1) | ||||
|  | ||||
|     valid = (x1 > 0) & (x1 < wd) & (y1 > 0) & (y1 < ht) | ||||
|     x1 = x1[valid] | ||||
|     y1 = y1[valid] | ||||
|     dx = dx[valid] | ||||
|     dy = dy[valid] | ||||
|  | ||||
|     flow_x = interpolate.griddata( | ||||
|         (x1, y1), dx, (x0, y0), method='nearest') | ||||
|  | ||||
|     flow_y = interpolate.griddata( | ||||
|         (x1, y1), dy, (x0, y0), method='nearest') | ||||
|  | ||||
|     flow = np.stack([flow_x, flow_y], axis=0) | ||||
|     return torch.from_numpy(flow).float() | ||||
|  | ||||
|  | ||||
| def coords_grid(batch, ht, wd): | ||||
|     coords = torch.meshgrid(torch.arange(ht), torch.arange(wd)) | ||||
|     coords = torch.stack(coords[::-1], dim=0).float() | ||||
|     return coords[None].repeat(batch, 1, 1, 1) | ||||
|  | ||||
|  | ||||
| def upflow8(flow, mode='bilinear'): | ||||
|     new_size = (8 * flow.shape[2], 8 * flow.shape[3]) | ||||
|     return  8 * F.interpolate(flow, size=new_size, mode=mode, align_corners=True) | ||||
		Reference in New Issue
	
	Block a user