added training code
This commit is contained in:
		| @@ -8,11 +8,11 @@ Zachary Teed and Jia Deng<br/> | ||||
| <img src="RAFT.png"> | ||||
|  | ||||
| ## Requirements | ||||
| The code has been tested with PyTorch 1.5.1 and PyTorch Nightly. If you want to train with mixed precision, you will have to install the nightly build. | ||||
| The code has been tested with PyTorch 1.6 and Cuda 10.1. | ||||
| ```Shell | ||||
| conda create --name raft | ||||
| conda activate raft | ||||
| conda install pytorch torchvision cudatoolkit=10.1 -c pytorch-nightly | ||||
| conda install pytorch=1.6.0 torchvision=0.7.0 cudatoolkit=10.1 -c pytorch | ||||
| conda install matplotlib | ||||
| conda install tensorboard | ||||
| conda install scipy | ||||
| @@ -67,8 +67,7 @@ python evaluate.py --model=models/raft-things.pth --dataset=sintel | ||||
| ``` | ||||
|  | ||||
| ## Training | ||||
| Training code will be made available in the next few days | ||||
| <!-- We used the following training schedule in our paper (note: we use 2 GPUs for training). Training logs will be written to the `runs` which can be visualized using tensorboard | ||||
| We used the following training schedule in our paper (2 GPUs). Training logs will be written to the `runs` which can be visualized using tensorboard | ||||
| ```Shell | ||||
| ./train_standard.sh | ||||
| ``` | ||||
| @@ -76,4 +75,4 @@ Training code will be made available in the next few days | ||||
| If you have a RTX GPU, training can be accelerated using mixed precision. You can expect similiar results in this setting (1 GPU) | ||||
| ```Shell | ||||
| ./train_mixed.sh | ||||
| ``` --> | ||||
| ``` | ||||
|   | ||||
| @@ -200,7 +200,7 @@ def fetch_dataloader(args, TRAIN_DS='C+T+K+S+H'): | ||||
|     """ Create the data loader for the corresponding trainign set """ | ||||
|  | ||||
|     if args.stage == 'chairs': | ||||
|         aug_params = {'crop_size': args.image_size, 'min_scale': -0.2, 'max_scale': 1.0, 'do_flip': True} | ||||
|         aug_params = {'crop_size': args.image_size, 'min_scale': -0.1, 'max_scale': 1.0, 'do_flip': True} | ||||
|         train_dataset = FlyingChairs(aug_params, split='training') | ||||
|      | ||||
|     elif args.stage == 'things': | ||||
| @@ -210,14 +210,14 @@ def fetch_dataloader(args, TRAIN_DS='C+T+K+S+H'): | ||||
|         train_dataset = clean_dataset + final_dataset | ||||
|  | ||||
|     elif args.stage == 'sintel': | ||||
|         aug_params = {'crop_size': args.image_size, 'min_scale': -0.3, 'max_scale': 0.7, 'do_flip': True} | ||||
|         aug_params = {'crop_size': args.image_size, 'min_scale': -0.2, 'max_scale': 0.6, 'do_flip': True} | ||||
|         things = FlyingThings3D(aug_params, dstype='frames_cleanpass') | ||||
|         sintel_clean = MpiSintel(aug_params, split='training', dstype='clean') | ||||
|         sintel_final = MpiSintel(aug_params, split='training', dstype='final')         | ||||
|  | ||||
|         if TRAIN_DS == 'C+T+K+S+H': | ||||
|             kitti = KITTI({'crop_size': args.image_size, 'min_scale': -0.3, 'max_scale': 0.7, 'do_flip': True}) | ||||
|             hd1k = HD1K({'crop_size': args.image_size, 'min_scale': -0.5, 'max_scale': 0.5, 'do_flip': True}) | ||||
|             kitti = KITTI({'crop_size': args.image_size, 'min_scale': -0.3, 'max_scale': 0.5, 'do_flip': True}) | ||||
|             hd1k = HD1K({'crop_size': args.image_size, 'min_scale': -0.5, 'max_scale': 0.2, 'do_flip': True}) | ||||
|             train_dataset = 100*sintel_clean + 100*sintel_final + 200*kitti + 5*hd1k + things | ||||
|  | ||||
|         elif TRAIN_DS == 'C+T+K/S': | ||||
| @@ -225,7 +225,7 @@ def fetch_dataloader(args, TRAIN_DS='C+T+K+S+H'): | ||||
|  | ||||
|     elif args.stage == 'kitti': | ||||
|         aug_params = {'crop_size': args.image_size, 'min_scale': -0.2, 'max_scale': 0.4, 'do_flip': False} | ||||
|         train_dataset = KITTI(args, image_size=args.image_size, is_val=False) | ||||
|         train_dataset = KITTI(aug_params, split='training') | ||||
|  | ||||
|     train_loader = data.DataLoader(train_dataset, batch_size=args.batch_size,  | ||||
|         pin_memory=False, shuffle=True, num_workers=4, drop_last=True) | ||||
|   | ||||
							
								
								
									
										5
									
								
								train.py
									
									
									
									
									
								
							
							
						
						
									
										5
									
								
								train.py
									
									
									
									
									
								
							| @@ -39,7 +39,7 @@ except: | ||||
|  | ||||
|  | ||||
| # exclude extremly large displacements | ||||
| MAX_FLOW = 500 | ||||
| MAX_FLOW = 400 | ||||
| SUM_FREQ = 100 | ||||
| VAL_FREQ = 5000 | ||||
|  | ||||
| @@ -181,13 +181,14 @@ def train(args): | ||||
|  | ||||
|             loss, metrics = sequence_loss(flow_predictions, flow, valid) | ||||
|             scaler.scale(loss).backward() | ||||
|  | ||||
|             scaler.unscale_(optimizer)                 | ||||
|             torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip) | ||||
|              | ||||
|             scaler.step(optimizer) | ||||
|             scheduler.step() | ||||
|             scaler.update() | ||||
|  | ||||
|  | ||||
|             logger.push(metrics) | ||||
|  | ||||
|             if total_steps % VAL_FREQ == VAL_FREQ - 1: | ||||
|   | ||||
							
								
								
									
										6
									
								
								train_mixed.sh
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										6
									
								
								train_mixed.sh
									
									
									
									
									
										Executable file
									
								
							| @@ -0,0 +1,6 @@ | ||||
| #!/bin/bash | ||||
| mkdir -p checkpoints | ||||
| python -u train.py --name raft-chairs --stage chairs --validation chairs --gpus 0 --num_steps 120000 --batch_size 8 --lr 0.00025 --image_size 368 496 --wdecay 0.0001 --mixed_precision  | ||||
| python -u train.py --name raft-things --stage things --validation sintel --restore_ckpt checkpoints/raft-chairs.pth --gpus 0 --num_steps 120000 --batch_size 5 --lr 0.0001 --image_size 400 720 --wdecay 0.0001 --mixed_precision | ||||
| python -u train.py --name raft-sintel --stage sintel --validation sintel --restore_ckpt checkpoints/raft-things.pth --gpus 0 --num_steps 120000 --batch_size 5 --lr 0.0001 --image_size 368 768 --wdecay 0.00001 --mixed_precision | ||||
| python -u train.py --name raft-kitti  --stage kitti --validation kitti --restore_ckpt checkpoints/raft-sintel.pth --gpus 0 --num_steps 50000 --batch_size 5 --lr 0.0001 --image_size 288 960 --wdecay 0.00001 --mixed_precision | ||||
							
								
								
									
										6
									
								
								train_standard.sh
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										6
									
								
								train_standard.sh
									
									
									
									
									
										Executable file
									
								
							| @@ -0,0 +1,6 @@ | ||||
| #!/bin/bash | ||||
| mkdir -p checkpoints | ||||
| python -u train.py --name raft-chairs --stage chairs --validation chairs --gpus 0 1 --num_steps 100000 --batch_size 12 --lr 0.0004 --image_size 368 496 --wdecay 0.0001 | ||||
| python -u train.py --name raft-things --stage things --validation sintel --restore_ckpt checkpoints/raft-chairs.pth --gpus 0 1 --num_steps 100000 --batch_size 6 --lr 0.000125 --image_size 400 720 --wdecay 0.0001 | ||||
| python -u train.py --name raft-sintel --stage sintel --validation sintel --restore_ckpt checkpoints/raft-things.pth --gpus 0 1 --num_steps 100000 --batch_size 6 --lr 0.000125 --image_size 368 768 --wdecay 0.00001 | ||||
| python -u train.py --name raft-kitti  --stage kitti --validation kitti --restore_ckpt checkpoints/raft-sintel.pth --gpus 0 1 --num_steps 50000 --batch_size 6 --lr 0.0001 --image_size 288 960 --wdecay 0.00001 | ||||
		Reference in New Issue
	
	Block a user