added upsampling module
This commit is contained in:
@@ -1,46 +1,55 @@
|
||||
import numpy as np
|
||||
import random
|
||||
import math
|
||||
import cv2
|
||||
from PIL import Image
|
||||
|
||||
import cv2
|
||||
import torch
|
||||
import torchvision
|
||||
|
||||
from torchvision.transforms import ColorJitter
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class FlowAugmentor:
|
||||
def __init__(self, crop_size, min_scale=-0.2, max_scale=0.5):
|
||||
def __init__(self, crop_size, min_scale=-0.2, max_scale=0.5, do_flip=True):
|
||||
|
||||
# spatial augmentation params
|
||||
self.crop_size = crop_size
|
||||
self.augcolor = torchvision.transforms.ColorJitter(
|
||||
brightness=0.4,
|
||||
contrast=0.4,
|
||||
saturation=0.4,
|
||||
hue=0.5/3.14)
|
||||
|
||||
self.asymmetric_color_aug_prob = 0.2
|
||||
self.spatial_aug_prob = 0.8
|
||||
self.eraser_aug_prob = 0.5
|
||||
|
||||
self.min_scale = min_scale
|
||||
self.max_scale = max_scale
|
||||
self.max_stretch = 0.2
|
||||
self.spatial_aug_prob = 0.8
|
||||
self.stretch_prob = 0.8
|
||||
self.margin = 20
|
||||
self.max_stretch = 0.2
|
||||
|
||||
# flip augmentation params
|
||||
self.do_flip = do_flip
|
||||
self.h_flip_prob = 0.5
|
||||
self.v_flip_prob = 0.1
|
||||
|
||||
# photometric augmentation params
|
||||
self.photo_aug = ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.5/3.14)
|
||||
self.asymmetric_color_aug_prob = 0.2
|
||||
self.eraser_aug_prob = 0.5
|
||||
|
||||
def color_transform(self, img1, img2):
|
||||
""" Photometric augmentation """
|
||||
|
||||
# asymmetric
|
||||
if np.random.rand() < self.asymmetric_color_aug_prob:
|
||||
img1 = np.array(self.augcolor(Image.fromarray(img1)), dtype=np.uint8)
|
||||
img2 = np.array(self.augcolor(Image.fromarray(img2)), dtype=np.uint8)
|
||||
img1 = np.array(self.photo_aug(Image.fromarray(img1)), dtype=np.uint8)
|
||||
img2 = np.array(self.photo_aug(Image.fromarray(img2)), dtype=np.uint8)
|
||||
|
||||
# symmetric
|
||||
else:
|
||||
image_stack = np.concatenate([img1, img2], axis=0)
|
||||
image_stack = np.array(self.augcolor(Image.fromarray(image_stack)), dtype=np.uint8)
|
||||
image_stack = np.array(self.photo_aug(Image.fromarray(image_stack)), dtype=np.uint8)
|
||||
img1, img2 = np.split(image_stack, 2, axis=0)
|
||||
|
||||
return img1, img2
|
||||
|
||||
def eraser_transform(self, img1, img2, bounds=[50, 100]):
|
||||
""" Occlusion augmentation """
|
||||
|
||||
ht, wd = img1.shape[:2]
|
||||
if np.random.rand() < self.eraser_aug_prob:
|
||||
mean_color = np.mean(img2.reshape(-1, 3), axis=0)
|
||||
@@ -55,22 +64,18 @@ class FlowAugmentor:
|
||||
|
||||
def spatial_transform(self, img1, img2, flow):
|
||||
# randomly sample scale
|
||||
|
||||
ht, wd = img1.shape[:2]
|
||||
min_scale = np.maximum(
|
||||
(self.crop_size[0] + 1) / float(ht),
|
||||
(self.crop_size[1] + 1) / float(wd))
|
||||
(self.crop_size[0] + 8) / float(ht),
|
||||
(self.crop_size[1] + 8) / float(wd))
|
||||
|
||||
max_scale = self.max_scale
|
||||
min_scale = max(min_scale, self.min_scale)
|
||||
|
||||
scale = 2 ** np.random.uniform(self.min_scale, self.max_scale)
|
||||
scale_x = scale
|
||||
scale_y = scale
|
||||
if np.random.rand() < self.stretch_prob:
|
||||
scale_x *= 2 ** np.random.uniform(-self.max_stretch, self.max_stretch)
|
||||
scale_y *= 2 ** np.random.uniform(-self.max_stretch, self.max_stretch)
|
||||
|
||||
|
||||
scale_x = np.clip(scale_x, min_scale, None)
|
||||
scale_y = np.clip(scale_y, min_scale, None)
|
||||
|
||||
@@ -81,22 +86,20 @@ class FlowAugmentor:
|
||||
flow = cv2.resize(flow, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR)
|
||||
flow = flow * [scale_x, scale_y]
|
||||
|
||||
if np.random.rand() < 0.5: # h-flip
|
||||
img1 = img1[:, ::-1]
|
||||
img2 = img2[:, ::-1]
|
||||
flow = flow[:, ::-1] * [-1.0, 1.0]
|
||||
if self.do_flip:
|
||||
if np.random.rand() < self.h_flip_prob: # h-flip
|
||||
img1 = img1[:, ::-1]
|
||||
img2 = img2[:, ::-1]
|
||||
flow = flow[:, ::-1] * [-1.0, 1.0]
|
||||
|
||||
if np.random.rand() < 0.1: # v-flip
|
||||
img1 = img1[::-1, :]
|
||||
img2 = img2[::-1, :]
|
||||
flow = flow[::-1, :] * [1.0, -1.0]
|
||||
if np.random.rand() < self.v_flip_prob: # v-flip
|
||||
img1 = img1[::-1, :]
|
||||
img2 = img2[::-1, :]
|
||||
flow = flow[::-1, :] * [1.0, -1.0]
|
||||
|
||||
y0 = np.random.randint(-self.margin, img1.shape[0] - self.crop_size[0] + self.margin)
|
||||
x0 = np.random.randint(-self.margin, img1.shape[1] - self.crop_size[1] + self.margin)
|
||||
y0 = np.random.randint(0, img1.shape[0] - self.crop_size[0])
|
||||
x0 = np.random.randint(0, img1.shape[1] - self.crop_size[1])
|
||||
|
||||
y0 = np.clip(y0, 0, img1.shape[0] - self.crop_size[0])
|
||||
x0 = np.clip(x0, 0, img1.shape[1] - self.crop_size[1])
|
||||
|
||||
img1 = img1[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]]
|
||||
img2 = img2[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]]
|
||||
flow = flow[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]]
|
||||
@@ -114,22 +117,29 @@ class FlowAugmentor:
|
||||
|
||||
return img1, img2, flow
|
||||
|
||||
|
||||
class FlowAugmentorKITTI:
|
||||
def __init__(self, crop_size, min_scale=-0.2, max_scale=0.5):
|
||||
class SparseFlowAugmentor:
|
||||
def __init__(self, crop_size, min_scale=-0.2, max_scale=0.5, do_flip=False):
|
||||
# spatial augmentation params
|
||||
self.crop_size = crop_size
|
||||
self.augcolor = torchvision.transforms.ColorJitter(
|
||||
brightness=0.3, contrast=0.3, saturation=0.3, hue=0.3/3.14)
|
||||
|
||||
self.max_scale = max_scale
|
||||
self.min_scale = min_scale
|
||||
|
||||
self.max_scale = max_scale
|
||||
self.spatial_aug_prob = 0.8
|
||||
self.stretch_prob = 0.8
|
||||
self.max_stretch = 0.2
|
||||
|
||||
# flip augmentation params
|
||||
self.do_flip = do_flip
|
||||
self.h_flip_prob = 0.5
|
||||
self.v_flip_prob = 0.1
|
||||
|
||||
# photometric augmentation params
|
||||
self.photo_aug = ColorJitter(brightness=0.3, contrast=0.3, saturation=0.3, hue=0.3/3.14)
|
||||
self.asymmetric_color_aug_prob = 0.2
|
||||
self.eraser_aug_prob = 0.5
|
||||
|
||||
def color_transform(self, img1, img2):
|
||||
image_stack = np.concatenate([img1, img2], axis=0)
|
||||
image_stack = np.array(self.augcolor(Image.fromarray(image_stack)), dtype=np.uint8)
|
||||
image_stack = np.array(self.photo_aug(Image.fromarray(image_stack)), dtype=np.uint8)
|
||||
img1, img2 = np.split(image_stack, 2, axis=0)
|
||||
return img1, img2
|
||||
|
||||
@@ -198,11 +208,12 @@ class FlowAugmentorKITTI:
|
||||
img2 = cv2.resize(img2, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR)
|
||||
flow, valid = self.resize_sparse_flow_map(flow, valid, fx=scale_x, fy=scale_y)
|
||||
|
||||
if np.random.rand() < 0.5: # h-flip
|
||||
img1 = img1[:, ::-1]
|
||||
img2 = img2[:, ::-1]
|
||||
flow = flow[:, ::-1] * [-1.0, 1.0]
|
||||
valid = valid[:, ::-1]
|
||||
if self.do_flip:
|
||||
if np.random.rand() < 0.5: # h-flip
|
||||
img1 = img1[:, ::-1]
|
||||
img2 = img2[:, ::-1]
|
||||
flow = flow[:, ::-1] * [-1.0, 1.0]
|
||||
valid = valid[:, ::-1]
|
||||
|
||||
margin_y = 20
|
||||
margin_x = 50
|
||||
|
Reference in New Issue
Block a user