added upsampling module

This commit is contained in:
Zach Teed
2020-07-25 17:36:17 -06:00
parent dc1220825d
commit a2408eab78
32 changed files with 23559 additions and 619 deletions

View File

@@ -4,21 +4,21 @@ import numpy as np
from scipy import interpolate
def bilinear_sampler(img, coords, mode='bilinear', mask=False):
""" Wrapper for grid_sample, uses pixel coordinates """
H, W = img.shape[-2:]
xgrid, ygrid = coords.split([1,1], dim=-1)
xgrid = 2*xgrid/(W-1) - 1
ygrid = 2*ygrid/(H-1) - 1
class InputPadder:
""" Pads images such that dimensions are divisible by 8 """
def __init__(self, dims):
self.ht, self.wd = dims[-2:]
pad_ht = (((self.ht // 8) + 1) * 8 - self.ht) % 8
pad_wd = (((self.wd // 8) + 1) * 8 - self.wd) % 8
self._pad = [pad_wd//2, pad_wd - pad_wd//2, 0, pad_ht]
grid = torch.cat([xgrid, ygrid], dim=-1)
img = F.grid_sample(img, grid, align_corners=True)
def pad(self, *inputs):
return [F.pad(x, self._pad, mode='replicate') for x in inputs]
if mask:
mask = (xgrid > -1) & (ygrid > -1) & (xgrid < 1) & (ygrid < 1)
return img, mask.float()
return img
def unpad(self,x):
ht, wd = x.shape[-2:]
c = [self._pad[2], ht-self._pad[3], self._pad[0], wd-self._pad[1]]
return x[..., c[0]:c[1], c[2]:c[3]]
def forward_interpolate(flow):
flow = flow.detach().cpu().numpy()
@@ -42,15 +42,33 @@ def forward_interpolate(flow):
dy = dy[valid]
flow_x = interpolate.griddata(
(x1, y1), dx, (x0, y0), method='nearest')
(x1, y1), dx, (x0, y0), method='cubic', fill_value=0)
flow_y = interpolate.griddata(
(x1, y1), dy, (x0, y0), method='nearest')
(x1, y1), dy, (x0, y0), method='cubic', fill_value=0)
flow = np.stack([flow_x, flow_y], axis=0)
return torch.from_numpy(flow).float()
def bilinear_sampler(img, coords, mode='bilinear', mask=False):
""" Wrapper for grid_sample, uses pixel coordinates """
H, W = img.shape[-2:]
xgrid, ygrid = coords.split([1,1], dim=-1)
xgrid = 2*xgrid/(W-1) - 1
ygrid = 2*ygrid/(H-1) - 1
grid = torch.cat([xgrid, ygrid], dim=-1)
img = F.grid_sample(img, grid, align_corners=True)
if mask:
mask = (xgrid > -1) & (ygrid > -1) & (xgrid < 1) & (ygrid < 1)
return img, mask.float()
return img
def coords_grid(batch, ht, wd):
coords = torch.meshgrid(torch.arange(ht), torch.arange(wd))
coords = torch.stack(coords[::-1], dim=0).float()