autodl-projects/xautodl/xlayers/super_rearrange.py

188 lines
7.4 KiB
Python
Raw Permalink Normal View History

2021-06-03 10:08:17 +02:00
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #
#############################################################
# Borrow the idea of https://github.com/arogozhnikov/einops #
#############################################################
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
2021-06-09 08:47:52 +02:00
import numpy as np
import itertools
import functools
from collections import OrderedDict
2021-06-03 10:08:17 +02:00
from typing import Optional, Callable
from xautodl import spaces
2021-06-09 08:47:52 +02:00
from .misc_utils import ParsedExpression, AnonymousAxis
2021-06-03 10:08:17 +02:00
from .super_module import SuperModule
from .super_module import IntSpaceType
from .super_module import BoolSpaceType
2021-06-03 10:24:09 +02:00
class SuperReArrange(SuperModule):
2021-06-03 10:08:17 +02:00
"""Applies the rearrange operation."""
def __init__(self, pattern, **axes_lengths):
2021-06-03 10:24:09 +02:00
super(SuperReArrange, self).__init__()
2021-06-03 10:08:17 +02:00
self._pattern = pattern
self._axes_lengths = axes_lengths
2021-06-08 14:42:16 +02:00
axes_lengths = tuple(sorted(self._axes_lengths.items()))
# Perform initial parsing of pattern and provided supplementary info
# axes_lengths is a tuple of tuples (axis_name, axis_length)
left, right = pattern.split("->")
left = ParsedExpression(left)
right = ParsedExpression(right)
2021-06-09 08:47:52 +02:00
difference = set.symmetric_difference(left.identifiers, right.identifiers)
if difference:
raise ValueError(
"Identifiers only on one side of expression (should be on both): {}".format(
difference
)
)
2021-06-08 14:42:16 +02:00
2021-06-09 08:47:52 +02:00
# parsing all dimensions to find out lengths
axis_name2known_length = OrderedDict()
for composite_axis in left.composition:
for axis_name in composite_axis:
if isinstance(axis_name, AnonymousAxis):
axis_name2known_length[axis_name] = axis_name.value
else:
axis_name2known_length[axis_name] = None
for axis_name in right.identifiers:
if axis_name not in axis_name2known_length:
if isinstance(axis_name, AnonymousAxis):
axis_name2known_length[axis_name] = axis_name.value
else:
axis_name2known_length[axis_name] = None
2021-06-08 14:42:16 +02:00
2021-06-09 08:47:52 +02:00
axis_name2position = {
name: position for position, name in enumerate(axis_name2known_length)
}
for elementary_axis, axis_length in axes_lengths:
if not ParsedExpression.check_axis_name(elementary_axis):
raise ValueError("Invalid name for an axis", elementary_axis)
if elementary_axis not in axis_name2known_length:
raise ValueError(
"Axis {} is not used in transform".format(elementary_axis)
)
axis_name2known_length[elementary_axis] = axis_length
input_composite_axes = []
# some of shapes will be inferred later - all information is prepared for faster inference
for composite_axis in left.composition:
known = {
axis
for axis in composite_axis
if axis_name2known_length[axis] is not None
}
unknown = {
axis for axis in composite_axis if axis_name2known_length[axis] is None
}
if len(unknown) > 1:
raise ValueError("Could not infer sizes for {}".format(unknown))
assert len(unknown) + len(known) == len(composite_axis)
input_composite_axes.append(
(
[axis_name2position[axis] for axis in known],
[axis_name2position[axis] for axis in unknown],
)
)
axis_position_after_reduction = {}
for axis_name in itertools.chain(*left.composition):
if axis_name in right.identifiers:
axis_position_after_reduction[axis_name] = len(
axis_position_after_reduction
)
result_axes_grouping = []
for composite_axis in right.composition:
result_axes_grouping.append(
[axis_name2position[axis] for axis in composite_axis]
)
ordered_axis_right = list(itertools.chain(*right.composition))
axes_permutation = tuple(
axis_position_after_reduction[axis]
for axis in ordered_axis_right
if axis in left.identifiers
)
#
self.input_composite_axes = input_composite_axes
self.output_composite_axes = result_axes_grouping
self.elementary_axes_lengths = list(axis_name2known_length.values())
self.axes_permutation = axes_permutation
@functools.lru_cache(maxsize=1024)
def reconstruct_from_shape(self, shape):
if len(shape) != len(self.input_composite_axes):
raise ValueError(
"Expected {} dimensions, got {}".format(
len(self.input_composite_axes), len(shape)
)
)
axes_lengths = list(self.elementary_axes_lengths)
for input_axis, (known_axes, unknown_axes) in enumerate(
self.input_composite_axes
):
length = shape[input_axis]
known_product = 1
for axis in known_axes:
known_product *= axes_lengths[axis]
if len(unknown_axes) == 0:
if (
isinstance(length, int)
and isinstance(known_product, int)
and length != known_product
):
raise ValueError(
"Shape mismatch, {} != {}".format(length, known_product)
)
else:
if (
isinstance(length, int)
and isinstance(known_product, int)
and length % known_product != 0
):
raise ValueError(
"Shape mismatch, can't divide axis of length {} in chunks of {}".format(
length, known_product
)
)
(unknown_axis,) = unknown_axes
axes_lengths[unknown_axis] = length // known_product
# at this point all axes_lengths are computed (either have values or variables, but not Nones)
final_shape = []
for output_axis, grouping in enumerate(self.output_composite_axes):
lengths = [axes_lengths[elementary_axis] for elementary_axis in grouping]
final_shape.append(int(np.prod(lengths)))
axes_reordering = self.axes_permutation
return axes_lengths, axes_reordering, final_shape
2021-06-03 10:08:17 +02:00
@property
def abstract_search_space(self):
root_node = spaces.VirtualNode(id(self))
return root_node
def forward_candidate(self, input: torch.Tensor) -> torch.Tensor:
2021-06-08 14:42:16 +02:00
self.forward_raw(input)
2021-06-03 10:08:17 +02:00
def forward_raw(self, input: torch.Tensor) -> torch.Tensor:
2021-06-09 08:47:52 +02:00
init_shape, axes_reordering, final_shape = self.reconstruct_from_shape(
tuple(input.shape)
)
tensor = torch.reshape(input, init_shape)
tensor = tensor.permute(axes_reordering)
tensor = torch.reshape(tensor, final_shape)
return tensor
2021-06-03 10:08:17 +02:00
def extra_repr(self) -> str:
params = repr(self._pattern)
for axis, length in self._axes_lengths.items():
params += ", {}={}".format(axis, length)
2021-06-08 14:42:16 +02:00
return "{:}".format(params)