2021-03-20 08:56:37 +01:00
|
|
|
#####################################################
|
|
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #
|
|
|
|
#####################################################
|
2021-03-15 04:36:36 +01:00
|
|
|
from __future__ import division
|
|
|
|
from __future__ import print_function
|
|
|
|
|
|
|
|
import math
|
|
|
|
from functools import partial
|
|
|
|
from typing import Optional, Text
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
import torch.nn.functional as F
|
|
|
|
|
2021-03-18 13:15:50 +01:00
|
|
|
import xlayers
|
2021-03-15 04:36:36 +01:00
|
|
|
|
|
|
|
|
|
|
|
DEFAULT_NET_CONFIG = dict(
|
|
|
|
d_feat=6,
|
2021-03-17 04:51:48 +01:00
|
|
|
embed_dim=64,
|
2021-03-15 04:36:36 +01:00
|
|
|
depth=5,
|
|
|
|
num_heads=4,
|
|
|
|
mlp_ratio=4.0,
|
|
|
|
qkv_bias=True,
|
2021-03-17 04:51:48 +01:00
|
|
|
pos_drop=0.0,
|
|
|
|
mlp_drop_rate=0.0,
|
|
|
|
attn_drop_rate=0.0,
|
|
|
|
drop_path_rate=0.0,
|
2021-03-15 04:36:36 +01:00
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# Real Model
|
|
|
|
|
|
|
|
|
|
|
|
class Attention(nn.Module):
|
2021-03-18 08:04:14 +01:00
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
dim,
|
|
|
|
num_heads=8,
|
|
|
|
qkv_bias=False,
|
|
|
|
qk_scale=None,
|
|
|
|
attn_drop=0.0,
|
|
|
|
proj_drop=0.0,
|
|
|
|
):
|
2021-03-15 04:36:36 +01:00
|
|
|
super(Attention, self).__init__()
|
|
|
|
self.num_heads = num_heads
|
|
|
|
head_dim = dim // num_heads
|
|
|
|
self.scale = qk_scale or math.sqrt(head_dim)
|
|
|
|
|
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
|
|
|
self.attn_drop = nn.Dropout(attn_drop)
|
|
|
|
self.proj = nn.Linear(dim, dim)
|
|
|
|
self.proj_drop = nn.Dropout(proj_drop)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
B, N, C = x.shape
|
2021-03-18 08:04:14 +01:00
|
|
|
qkv = (
|
|
|
|
self.qkv(x)
|
|
|
|
.reshape(B, N, 3, self.num_heads, C // self.num_heads)
|
|
|
|
.permute(2, 0, 3, 1, 4)
|
|
|
|
)
|
|
|
|
q, k, v = (
|
|
|
|
qkv[0],
|
|
|
|
qkv[1],
|
|
|
|
qkv[2],
|
|
|
|
) # make torchscript happy (cannot use tensor as tuple)
|
2021-03-15 04:36:36 +01:00
|
|
|
|
|
|
|
attn = (q @ k.transpose(-2, -1)) * self.scale
|
|
|
|
attn = attn.softmax(dim=-1)
|
|
|
|
attn = self.attn_drop(attn)
|
|
|
|
|
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
|
|
|
x = self.proj(x)
|
|
|
|
x = self.proj_drop(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class Block(nn.Module):
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
dim,
|
|
|
|
num_heads,
|
|
|
|
mlp_ratio=4.0,
|
|
|
|
qkv_bias=False,
|
|
|
|
qk_scale=None,
|
|
|
|
attn_drop=0.0,
|
|
|
|
mlp_drop=0.0,
|
|
|
|
drop_path=0.0,
|
|
|
|
act_layer=nn.GELU,
|
|
|
|
norm_layer=nn.LayerNorm,
|
|
|
|
):
|
|
|
|
super(Block, self).__init__()
|
|
|
|
self.norm1 = norm_layer(dim)
|
|
|
|
self.attn = Attention(
|
2021-03-18 08:04:14 +01:00
|
|
|
dim,
|
|
|
|
num_heads=num_heads,
|
|
|
|
qkv_bias=qkv_bias,
|
|
|
|
qk_scale=qk_scale,
|
|
|
|
attn_drop=attn_drop,
|
|
|
|
proj_drop=mlp_drop,
|
2021-03-15 04:36:36 +01:00
|
|
|
)
|
|
|
|
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
2021-03-18 08:04:14 +01:00
|
|
|
self.drop_path = (
|
|
|
|
xlayers.DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
|
|
|
)
|
2021-03-15 04:36:36 +01:00
|
|
|
self.norm2 = norm_layer(dim)
|
|
|
|
mlp_hidden_dim = int(dim * mlp_ratio)
|
2021-03-18 08:04:14 +01:00
|
|
|
self.mlp = xlayers.MLP(
|
|
|
|
in_features=dim,
|
|
|
|
hidden_features=mlp_hidden_dim,
|
|
|
|
act_layer=act_layer,
|
|
|
|
drop=mlp_drop,
|
|
|
|
)
|
2021-03-15 04:36:36 +01:00
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = x + self.drop_path(self.attn(self.norm1(x)))
|
|
|
|
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class SimpleEmbed(nn.Module):
|
|
|
|
def __init__(self, d_feat, embed_dim):
|
|
|
|
super(SimpleEmbed, self).__init__()
|
|
|
|
self.d_feat = d_feat
|
|
|
|
self.embed_dim = embed_dim
|
|
|
|
self.proj = nn.Linear(d_feat, embed_dim)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = x.reshape(len(x), self.d_feat, -1) # [N, F*T] -> [N, F, T]
|
|
|
|
x = x.permute(0, 2, 1) # [N, F, T] -> [N, T, F]
|
|
|
|
out = self.proj(x) * math.sqrt(self.embed_dim)
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
class TransformerModel(nn.Module):
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
d_feat: int = 6,
|
|
|
|
embed_dim: int = 64,
|
|
|
|
depth: int = 4,
|
|
|
|
num_heads: int = 4,
|
|
|
|
mlp_ratio: float = 4.0,
|
|
|
|
qkv_bias: bool = True,
|
|
|
|
qk_scale: Optional[float] = None,
|
|
|
|
pos_drop: float = 0.0,
|
|
|
|
mlp_drop_rate: float = 0.0,
|
|
|
|
attn_drop_rate: float = 0.0,
|
|
|
|
drop_path_rate: float = 0.0,
|
|
|
|
norm_layer: Optional[nn.Module] = None,
|
|
|
|
max_seq_len: int = 65,
|
|
|
|
):
|
|
|
|
"""
|
|
|
|
Args:
|
|
|
|
d_feat (int, tuple): input image size
|
|
|
|
embed_dim (int): embedding dimension
|
|
|
|
depth (int): depth of transformer
|
|
|
|
num_heads (int): number of attention heads
|
|
|
|
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
|
|
|
|
qkv_bias (bool): enable bias for qkv if True
|
|
|
|
qk_scale (float): override default qk scale of head_dim ** -0.5 if set
|
|
|
|
pos_drop (float): dropout rate for the positional embedding
|
|
|
|
mlp_drop_rate (float): the dropout rate for MLP layers in a block
|
|
|
|
attn_drop_rate (float): attention dropout rate
|
|
|
|
drop_path_rate (float): stochastic depth rate
|
|
|
|
norm_layer: (nn.Module): normalization layer
|
|
|
|
"""
|
|
|
|
super(TransformerModel, self).__init__()
|
|
|
|
self.embed_dim = embed_dim
|
|
|
|
self.num_features = embed_dim
|
|
|
|
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
|
|
|
|
|
|
|
|
self.input_embed = SimpleEmbed(d_feat, embed_dim=embed_dim)
|
|
|
|
|
|
|
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
2021-03-18 08:04:14 +01:00
|
|
|
self.pos_embed = xlayers.PositionalEncoder(
|
|
|
|
d_model=embed_dim, max_seq_len=max_seq_len, dropout=pos_drop
|
|
|
|
)
|
2021-03-15 04:36:36 +01:00
|
|
|
|
2021-03-18 08:04:14 +01:00
|
|
|
dpr = [
|
|
|
|
x.item() for x in torch.linspace(0, drop_path_rate, depth)
|
|
|
|
] # stochastic depth decay rule
|
2021-03-15 04:36:36 +01:00
|
|
|
self.blocks = nn.ModuleList(
|
|
|
|
[
|
|
|
|
Block(
|
|
|
|
dim=embed_dim,
|
|
|
|
num_heads=num_heads,
|
|
|
|
mlp_ratio=mlp_ratio,
|
|
|
|
qkv_bias=qkv_bias,
|
|
|
|
qk_scale=qk_scale,
|
|
|
|
attn_drop=attn_drop_rate,
|
|
|
|
mlp_drop=mlp_drop_rate,
|
|
|
|
drop_path=dpr[i],
|
|
|
|
norm_layer=norm_layer,
|
|
|
|
)
|
|
|
|
for i in range(depth)
|
|
|
|
]
|
|
|
|
)
|
|
|
|
self.norm = norm_layer(embed_dim)
|
|
|
|
|
|
|
|
# regression head
|
|
|
|
self.head = nn.Linear(self.num_features, 1)
|
|
|
|
|
|
|
|
xlayers.trunc_normal_(self.cls_token, std=0.02)
|
|
|
|
self.apply(self._init_weights)
|
|
|
|
|
|
|
|
def _init_weights(self, m):
|
|
|
|
if isinstance(m, nn.Linear):
|
|
|
|
xlayers.trunc_normal_(m.weight, std=0.02)
|
|
|
|
if isinstance(m, nn.Linear) and m.bias is not None:
|
|
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
elif isinstance(m, nn.LayerNorm):
|
|
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
nn.init.constant_(m.weight, 1.0)
|
|
|
|
|
|
|
|
def forward_features(self, x):
|
|
|
|
batch, flatten_size = x.shape
|
|
|
|
feats = self.input_embed(x) # batch * 60 * 64
|
|
|
|
|
2021-03-18 08:04:14 +01:00
|
|
|
cls_tokens = self.cls_token.expand(
|
|
|
|
batch, -1, -1
|
|
|
|
) # stole cls_tokens impl from Phil Wang, thanks
|
2021-03-15 04:36:36 +01:00
|
|
|
feats_w_ct = torch.cat((cls_tokens, feats), dim=1)
|
|
|
|
feats_w_tp = self.pos_embed(feats_w_ct)
|
|
|
|
|
|
|
|
xfeats = feats_w_tp
|
|
|
|
for block in self.blocks:
|
|
|
|
xfeats = block(xfeats)
|
|
|
|
|
|
|
|
xfeats = self.norm(xfeats)[:, 0]
|
|
|
|
return xfeats
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
feats = self.forward_features(x)
|
|
|
|
predicts = self.head(feats).squeeze(-1)
|
|
|
|
return predicts
|
|
|
|
|
|
|
|
|
|
|
|
def get_transformer(config):
|
|
|
|
if not isinstance(config, dict):
|
|
|
|
raise ValueError("Invalid Configuration: {:}".format(config))
|
|
|
|
name = config.get("name", "basic")
|
|
|
|
if name == "basic":
|
|
|
|
model = TransformerModel(
|
|
|
|
d_feat=config.get("d_feat"),
|
|
|
|
embed_dim=config.get("embed_dim"),
|
|
|
|
depth=config.get("depth"),
|
|
|
|
num_heads=config.get("num_heads"),
|
|
|
|
mlp_ratio=config.get("mlp_ratio"),
|
|
|
|
qkv_bias=config.get("qkv_bias"),
|
|
|
|
qk_scale=config.get("qkv_scale"),
|
|
|
|
pos_drop=config.get("pos_drop"),
|
|
|
|
mlp_drop_rate=config.get("mlp_drop_rate"),
|
|
|
|
attn_drop_rate=config.get("attn_drop_rate"),
|
|
|
|
drop_path_rate=config.get("drop_path_rate"),
|
|
|
|
norm_layer=config.get("norm_layer", None),
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
raise ValueError("Unknown model name: {:}".format(name))
|
|
|
|
return model
|