autodl-projects/exps/LFNA/lfna_models.py

108 lines
3.8 KiB
Python
Raw Normal View History

2021-05-12 09:45:45 +02:00
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
#####################################################
import copy
import torch
from xlayers import super_core
from xlayers import trunc_normal_
from models.xcore import get_model
class HyperNet(super_core.SuperModule):
"""The hyper-network."""
def __init__(
self, shape_container, layer_embeding, task_embedding, return_container=True
):
super(HyperNet, self).__init__()
self._shape_container = shape_container
self._num_layers = len(shape_container)
self._numel_per_layer = []
for ilayer in range(self._num_layers):
self._numel_per_layer.append(shape_container[ilayer].numel())
self.register_parameter(
"_super_layer_embed",
torch.nn.Parameter(torch.Tensor(self._num_layers, layer_embeding)),
)
trunc_normal_(self._super_layer_embed, std=0.02)
2021-05-12 10:28:05 +02:00
model_kwargs = dict(
input_dim=layer_embeding + task_embedding,
output_dim=max(self._numel_per_layer),
hidden_dims=[layer_embeding * 4] * 4,
act_cls="gelu",
norm_cls="layer_norm_1d",
)
self._generator = get_model(dict(model_type="norm_mlp"), **model_kwargs)
"""
2021-05-12 09:45:45 +02:00
model_kwargs = dict(
input_dim=layer_embeding + task_embedding,
output_dim=max(self._numel_per_layer),
hidden_dim=layer_embeding * 4,
act_cls="sigmoid",
norm_cls="identity",
)
self._generator = get_model(dict(model_type="simple_mlp"), **model_kwargs)
2021-05-12 10:28:05 +02:00
"""
2021-05-12 09:45:45 +02:00
self._return_container = return_container
print("generator: {:}".format(self._generator))
def forward_raw(self, task_embed):
task_embed = task_embed.view(1, -1).expand(self._num_layers, -1)
joint_embed = torch.cat((task_embed, self._super_layer_embed), dim=-1)
weights = self._generator(joint_embed)
if self._return_container:
weights = torch.split(weights, 1)
return self._shape_container.translate(weights)
else:
return weights
def forward_candidate(self, input):
raise NotImplementedError
def extra_repr(self) -> str:
return "(_super_layer_embed): {:}".format(list(self._super_layer_embed.shape))
class HyperNet_VX(super_core.SuperModule):
def __init__(self, shape_container, input_embeding, return_container=True):
super(HyperNet_VX, self).__init__()
self._shape_container = shape_container
self._num_layers = len(shape_container)
self._numel_per_layer = []
for ilayer in range(self._num_layers):
self._numel_per_layer.append(shape_container[ilayer].numel())
self.register_parameter(
"_super_layer_embed",
torch.nn.Parameter(torch.Tensor(self._num_layers, input_embeding)),
)
trunc_normal_(self._super_layer_embed, std=0.02)
model_kwargs = dict(
input_dim=input_embeding,
output_dim=max(self._numel_per_layer),
hidden_dim=input_embeding * 4,
act_cls="sigmoid",
norm_cls="identity",
)
self._generator = get_model(dict(model_type="simple_mlp"), **model_kwargs)
self._return_container = return_container
print("generator: {:}".format(self._generator))
def forward_raw(self, input):
weights = self._generator(self._super_layer_embed)
if self._return_container:
weights = torch.split(weights, 1)
return self._shape_container.translate(weights)
else:
return weights
def forward_candidate(self, input):
raise NotImplementedError
def extra_repr(self) -> str:
return "(_super_layer_embed): {:}".format(list(self._super_layer_embed.shape))