autodl-projects/exps/LFNA/basic-maml.py

260 lines
9.1 KiB
Python
Raw Normal View History

2021-05-09 19:02:38 +02:00
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
#####################################################
2021-05-15 10:01:40 +02:00
# python exps/LFNA/basic-maml.py --env_version v1 --inner_step 5
2021-05-10 03:42:42 +02:00
# python exps/LFNA/basic-maml.py --env_version v2
2021-05-09 19:02:38 +02:00
#####################################################
import sys, time, copy, torch, random, argparse
from tqdm import tqdm
from copy import deepcopy
from pathlib import Path
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint
from log_utils import time_string
from log_utils import AverageMeter, convert_secs2time
from utils import split_str2indexes
from procedures.advanced_main import basic_train_fn, basic_eval_fn
from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric
2021-05-15 10:01:40 +02:00
from datasets.synthetic_core import get_synthetic_env, EnvSampler
2021-05-09 19:02:38 +02:00
from models.xcore import get_model
from xlayers import super_core
from lfna_utils import lfna_setup, TimeData
class MAML:
"""A LFNA meta-model that uses the MLP as delta-net."""
2021-05-10 03:42:42 +02:00
def __init__(
self, network, criterion, epochs, meta_lr, inner_lr=0.01, inner_step=1
):
2021-05-09 19:02:38 +02:00
self.criterion = criterion
2021-05-10 03:42:42 +02:00
# self.container = container
self.network = network
2021-05-09 19:02:38 +02:00
self.meta_optimizer = torch.optim.Adam(
2021-05-10 03:42:42 +02:00
self.network.parameters(), lr=meta_lr, amsgrad=True
)
self.meta_lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
self.meta_optimizer,
2021-05-16 13:56:09 +02:00
milestones=[int(epochs * 0.8), int(epochs * 0.9),],
2021-05-15 10:01:40 +02:00
gamma=0.1,
2021-05-09 19:02:38 +02:00
)
self.inner_lr = inner_lr
self.inner_step = inner_step
self._best_info = dict(state_dict=None, iepoch=None, score=None)
print("There are {:} weights.".format(self.network.get_w_container().numel()))
2021-05-09 19:02:38 +02:00
2021-05-10 03:42:42 +02:00
def adapt(self, dataset):
2021-05-09 19:02:38 +02:00
# create a container for the future timestamp
2021-05-10 03:42:42 +02:00
container = self.network.get_w_container()
2021-05-09 19:02:38 +02:00
2021-05-10 03:42:42 +02:00
for k in range(0, self.inner_step):
y_hat = self.network.forward_with_container(dataset.x, container)
loss = self.criterion(y_hat, dataset.y)
grads = torch.autograd.grad(loss, container.parameters())
container = container.additive([-self.inner_lr * grad for grad in grads])
return container
def predict(self, x, container=None):
if container is not None:
y_hat = self.network.forward_with_container(x, container)
else:
y_hat = self.network(x)
return y_hat
2021-05-09 19:02:38 +02:00
def step(self):
torch.nn.utils.clip_grad_norm_(self.network.parameters(), 1.0)
2021-05-09 19:02:38 +02:00
self.meta_optimizer.step()
2021-05-10 03:42:42 +02:00
self.meta_lr_scheduler.step()
2021-05-09 19:02:38 +02:00
def zero_grad(self):
self.meta_optimizer.zero_grad()
def load_state_dict(self, state_dict):
self.criterion.load_state_dict(state_dict["criterion"])
self.network.load_state_dict(state_dict["network"])
self.meta_optimizer.load_state_dict(state_dict["meta_optimizer"])
self.meta_lr_scheduler.load_state_dict(state_dict["meta_lr_scheduler"])
2021-05-15 10:01:40 +02:00
def state_dict(self):
state_dict = dict()
state_dict["criterion"] = self.criterion.state_dict()
state_dict["network"] = self.network.state_dict()
state_dict["meta_optimizer"] = self.meta_optimizer.state_dict()
state_dict["meta_lr_scheduler"] = self.meta_lr_scheduler.state_dict()
return state_dict
def save_best(self, score):
success, best_score = self.network.save_best(score)
return success, best_score
def load_best(self):
self.network.load_best()
2021-05-10 03:42:42 +02:00
2021-05-09 19:02:38 +02:00
def main(args):
2021-05-10 03:42:42 +02:00
logger, env_info, model_kwargs = lfna_setup(args)
2021-05-15 10:01:40 +02:00
model = get_model(**model_kwargs)
2021-05-09 19:02:38 +02:00
2021-05-15 10:01:40 +02:00
dynamic_env = get_synthetic_env(mode="train", version=args.env_version)
2021-05-09 19:02:38 +02:00
criterion = torch.nn.MSELoss()
2021-05-10 03:42:42 +02:00
maml = MAML(
model, criterion, args.epochs, args.meta_lr, args.inner_lr, args.inner_step
)
2021-05-09 19:02:38 +02:00
# meta-training
2021-05-15 10:01:40 +02:00
last_success_epoch = 0
2021-05-09 19:02:38 +02:00
per_epoch_time, start_time = AverageMeter(), time.time()
2021-05-15 10:01:40 +02:00
for iepoch in range(args.epochs):
2021-05-09 19:02:38 +02:00
need_time = "Time Left: {:}".format(
convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True)
)
2021-05-15 10:01:40 +02:00
head_str = (
2021-05-09 19:02:38 +02:00
"[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs)
+ need_time
)
maml.zero_grad()
2021-05-15 10:01:40 +02:00
meta_losses = []
2021-05-09 19:02:38 +02:00
for ibatch in range(args.meta_batch):
2021-05-15 10:01:40 +02:00
future_timestamp = dynamic_env.random_timestamp()
_, (future_x, future_y) = dynamic_env(future_timestamp)
past_timestamp = (
future_timestamp - args.prev_time * dynamic_env.timestamp_interval
2021-05-09 19:02:38 +02:00
)
2021-05-15 10:01:40 +02:00
_, (past_x, past_y) = dynamic_env(past_timestamp)
future_container = maml.adapt(TimeData(past_timestamp, past_x, past_y))
future_y_hat = maml.predict(future_x, future_container)
future_loss = maml.criterion(future_y_hat, future_y)
2021-05-10 03:42:42 +02:00
meta_losses.append(future_loss)
meta_loss = torch.stack(meta_losses).mean()
2021-05-09 19:02:38 +02:00
meta_loss.backward()
2021-05-10 03:42:42 +02:00
maml.step()
2021-05-09 19:02:38 +02:00
2021-05-15 10:01:40 +02:00
logger.log(head_str + " meta-loss: {:.4f}".format(meta_loss.item()))
success, best_score = maml.save_best(-meta_loss.item())
if success:
logger.log("Achieve the best with best_score = {:.3f}".format(best_score))
save_checkpoint(maml.state_dict(), logger.path("model"), logger)
last_success_epoch = iepoch
if iepoch - last_success_epoch >= args.early_stop_thresh:
logger.log("Early stop at {:}".format(iepoch))
break
2021-05-09 19:02:38 +02:00
per_epoch_time.update(time.time() - start_time)
start_time = time.time()
2021-05-15 10:01:40 +02:00
# meta-test
maml.load_best()
eval_env = env_info["dynamic_env"]
assert eval_env.timestamp_interval == dynamic_env.timestamp_interval
w_container_per_epoch = dict()
2021-05-15 10:01:40 +02:00
for idx in range(args.prev_time, len(eval_env)):
future_timestamp, (future_x, future_y) = eval_env[idx]
past_timestamp = (
future_timestamp.item() - args.prev_time * eval_env.timestamp_interval
)
2021-05-15 10:01:40 +02:00
_, (past_x, past_y) = eval_env(past_timestamp)
future_container = maml.adapt(TimeData(past_timestamp, past_x, past_y))
w_container_per_epoch[idx] = future_container.no_grad_clone()
with torch.no_grad():
2021-05-15 10:01:40 +02:00
future_y_hat = maml.predict(future_x, w_container_per_epoch[idx])
future_loss = maml.criterion(future_y_hat, future_y)
logger.log("meta-test: [{:03d}] -> loss={:.4f}".format(idx, future_loss.item()))
save_checkpoint(
{"w_container_per_epoch": w_container_per_epoch},
logger.path(None) / "final-ckp.pth",
logger,
)
2021-05-10 03:42:42 +02:00
2021-05-09 19:02:38 +02:00
logger.log("-" * 200 + "\n")
logger.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser("Use the data in the past.")
parser.add_argument(
"--save_dir",
type=str,
2021-05-09 19:05:00 +02:00
default="./outputs/lfna-synthetic/use-maml",
2021-05-09 19:02:38 +02:00
help="The checkpoint directory.",
)
parser.add_argument(
"--env_version",
type=str,
required=True,
help="The synthetic enviornment version.",
)
2021-05-09 19:05:00 +02:00
parser.add_argument(
2021-05-16 13:56:09 +02:00
"--hidden_dim", type=int, default=16, help="The hidden dimension.",
2021-05-09 19:05:00 +02:00
)
2021-05-09 19:02:38 +02:00
parser.add_argument(
"--meta_lr",
type=float,
2021-05-15 10:01:40 +02:00
default=0.01,
2021-05-09 19:02:38 +02:00
help="The learning rate for the MAML optimizer (default is Adam)",
)
parser.add_argument(
"--fail_thresh",
type=float,
default=1000,
help="The threshold for the failure, which we reuse the previous best model",
)
2021-05-09 19:02:38 +02:00
parser.add_argument(
"--inner_lr",
type=float,
2021-05-15 10:01:40 +02:00
default=0.005,
2021-05-09 19:02:38 +02:00
help="The learning rate for the inner optimization",
)
parser.add_argument(
"--inner_step", type=int, default=1, help="The inner loop steps for MAML."
)
2021-05-15 10:01:40 +02:00
parser.add_argument(
"--prev_time",
type=int,
default=5,
help="The gap between prev_time and current_timestamp",
)
2021-05-09 19:02:38 +02:00
parser.add_argument(
2021-05-16 13:56:09 +02:00
"--meta_batch", type=int, default=64, help="The batch size for the meta-model",
2021-05-09 19:02:38 +02:00
)
parser.add_argument(
2021-05-16 13:56:09 +02:00
"--epochs", type=int, default=2000, help="The total number of epochs.",
2021-05-09 19:02:38 +02:00
)
2021-05-15 10:01:40 +02:00
parser.add_argument(
"--early_stop_thresh",
type=int,
default=50,
help="The maximum epochs for early stop.",
)
2021-05-09 19:02:38 +02:00
parser.add_argument(
"--workers",
type=int,
default=4,
help="The number of data loading workers (default: 4)",
)
# Random Seed
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
args = parser.parse_args()
if args.rand_seed is None or args.rand_seed < 0:
args.rand_seed = random.randint(1, 100000)
assert args.save_dir is not None, "The save dir argument can not be None"
2021-05-15 10:01:40 +02:00
args.save_dir = "{:}-s{:}-mlr{:}-d{:}-prev{:}-e{:}-env{:}".format(
args.save_dir,
args.inner_step,
args.meta_lr,
args.hidden_dim,
args.prev_time,
args.epochs,
args.env_version,
2021-05-09 19:05:00 +02:00
)
2021-05-09 19:02:38 +02:00
main(args)