2021-04-23 07:15:39 +02:00
|
|
|
#####################################################
|
|
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.02 #
|
2021-04-23 11:12:11 +02:00
|
|
|
############################################################################
|
2021-05-13 11:43:38 +02:00
|
|
|
# python exps/LFNA/vis-synthetic.py --env_version v1 #
|
|
|
|
# python exps/LFNA/vis-synthetic.py --env_version v2 #
|
2021-04-23 11:12:11 +02:00
|
|
|
############################################################################
|
|
|
|
import os, sys, copy, random
|
2021-04-23 07:15:39 +02:00
|
|
|
import torch
|
|
|
|
import numpy as np
|
|
|
|
import argparse
|
2021-04-29 17:37:50 +02:00
|
|
|
from collections import OrderedDict, defaultdict
|
2021-04-23 07:15:39 +02:00
|
|
|
from pathlib import Path
|
|
|
|
from tqdm import tqdm
|
|
|
|
from pprint import pprint
|
|
|
|
|
|
|
|
import matplotlib
|
|
|
|
from matplotlib import cm
|
|
|
|
|
|
|
|
matplotlib.use("agg")
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
import matplotlib.ticker as ticker
|
|
|
|
|
|
|
|
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
|
|
|
|
if str(lib_dir) not in sys.path:
|
|
|
|
sys.path.insert(0, str(lib_dir))
|
|
|
|
|
2021-05-07 08:27:15 +02:00
|
|
|
from models.xcore import get_model
|
2021-04-28 17:56:25 +02:00
|
|
|
from datasets.synthetic_core import get_synthetic_env
|
2021-04-23 11:12:11 +02:00
|
|
|
from utils.temp_sync import optimize_fn, evaluate_fn
|
2021-04-29 17:37:50 +02:00
|
|
|
from procedures.metric_utils import MSEMetric
|
|
|
|
|
|
|
|
|
|
|
|
def plot_scatter(cur_ax, xs, ys, color, alpha, linewidths, label=None):
|
|
|
|
cur_ax.scatter([-100], [-100], color=color, linewidths=linewidths, label=label)
|
|
|
|
cur_ax.scatter(xs, ys, color=color, alpha=alpha, linewidths=1.5, label=None)
|
2021-04-23 11:12:11 +02:00
|
|
|
|
2021-04-23 07:15:39 +02:00
|
|
|
|
2021-04-26 14:16:38 +02:00
|
|
|
def draw_multi_fig(save_dir, timestamp, scatter_list, wh, fig_title=None):
|
2021-04-23 07:15:39 +02:00
|
|
|
save_path = save_dir / "{:04d}".format(timestamp)
|
|
|
|
# print('Plot the figure at timestamp-{:} into {:}'.format(timestamp, save_path))
|
2021-04-26 14:16:38 +02:00
|
|
|
dpi, width, height = 40, wh[0], wh[1]
|
2021-04-23 07:15:39 +02:00
|
|
|
figsize = width / float(dpi), height / float(dpi)
|
|
|
|
LabelSize, LegendFontsize, font_gap = 80, 80, 5
|
|
|
|
|
|
|
|
fig = plt.figure(figsize=figsize)
|
2021-04-26 08:06:51 +02:00
|
|
|
if fig_title is not None:
|
2021-04-26 18:10:39 +02:00
|
|
|
fig.suptitle(
|
|
|
|
fig_title, fontsize=LegendFontsize, fontweight="bold", x=0.5, y=0.92
|
|
|
|
)
|
2021-04-23 07:15:39 +02:00
|
|
|
|
2021-04-26 08:06:51 +02:00
|
|
|
for idx, scatter_dict in enumerate(scatter_list):
|
|
|
|
cur_ax = fig.add_subplot(len(scatter_list), 1, idx + 1)
|
2021-04-29 17:37:50 +02:00
|
|
|
plot_scatter(
|
|
|
|
cur_ax,
|
2021-04-23 07:15:39 +02:00
|
|
|
scatter_dict["xaxis"],
|
|
|
|
scatter_dict["yaxis"],
|
2021-04-29 17:37:50 +02:00
|
|
|
scatter_dict["color"],
|
|
|
|
scatter_dict["alpha"],
|
|
|
|
scatter_dict["linewidths"],
|
|
|
|
scatter_dict["label"],
|
2021-04-23 07:15:39 +02:00
|
|
|
)
|
2021-04-26 08:06:51 +02:00
|
|
|
cur_ax.set_xlabel("X", fontsize=LabelSize)
|
2021-04-29 17:37:50 +02:00
|
|
|
cur_ax.set_ylabel("Y", rotation=0, fontsize=LabelSize)
|
2021-04-26 08:06:51 +02:00
|
|
|
cur_ax.set_xlim(scatter_dict["xlim"][0], scatter_dict["xlim"][1])
|
|
|
|
cur_ax.set_ylim(scatter_dict["ylim"][0], scatter_dict["ylim"][1])
|
|
|
|
for tick in cur_ax.xaxis.get_major_ticks():
|
|
|
|
tick.label.set_fontsize(LabelSize - font_gap)
|
|
|
|
tick.label.set_rotation(10)
|
|
|
|
for tick in cur_ax.yaxis.get_major_ticks():
|
|
|
|
tick.label.set_fontsize(LabelSize - font_gap)
|
2021-04-26 15:16:08 +02:00
|
|
|
cur_ax.legend(loc=1, fontsize=LegendFontsize)
|
2021-04-23 07:15:39 +02:00
|
|
|
fig.savefig(str(save_path) + ".pdf", dpi=dpi, bbox_inches="tight", format="pdf")
|
|
|
|
fig.savefig(str(save_path) + ".png", dpi=dpi, bbox_inches="tight", format="png")
|
|
|
|
plt.close("all")
|
|
|
|
|
|
|
|
|
2021-04-26 15:16:08 +02:00
|
|
|
def find_min(cur, others):
|
|
|
|
if cur is None:
|
2021-04-26 15:44:03 +02:00
|
|
|
return float(others)
|
2021-04-26 15:16:08 +02:00
|
|
|
else:
|
2021-04-26 15:44:03 +02:00
|
|
|
return float(min(cur, others))
|
2021-04-26 15:16:08 +02:00
|
|
|
|
|
|
|
|
|
|
|
def find_max(cur, others):
|
|
|
|
if cur is None:
|
|
|
|
return float(others.max())
|
|
|
|
else:
|
2021-04-26 15:44:03 +02:00
|
|
|
return float(max(cur, others))
|
2021-04-26 15:16:08 +02:00
|
|
|
|
|
|
|
|
2021-04-26 08:06:51 +02:00
|
|
|
def compare_cl(save_dir):
|
2021-04-23 07:15:39 +02:00
|
|
|
save_dir = Path(str(save_dir))
|
|
|
|
save_dir.mkdir(parents=True, exist_ok=True)
|
2021-04-27 14:09:37 +02:00
|
|
|
dynamic_env, cl_function = create_example_v1(
|
2021-04-26 15:44:03 +02:00
|
|
|
# timestamp_config=dict(num=200, min_timestamp=-1, max_timestamp=1.0),
|
2021-04-26 18:10:39 +02:00
|
|
|
timestamp_config=dict(num=200),
|
2021-04-26 15:16:08 +02:00
|
|
|
num_per_task=1000,
|
|
|
|
)
|
2021-04-23 11:12:11 +02:00
|
|
|
|
|
|
|
models = dict()
|
2021-04-23 11:14:49 +02:00
|
|
|
|
2021-04-26 08:06:51 +02:00
|
|
|
cl_function.set_timestamp(0)
|
2021-04-26 15:16:08 +02:00
|
|
|
cl_xaxis_min = None
|
|
|
|
cl_xaxis_max = None
|
|
|
|
|
|
|
|
all_data = OrderedDict()
|
2021-04-26 08:06:51 +02:00
|
|
|
|
2021-04-23 11:12:11 +02:00
|
|
|
for idx, (timestamp, dataset) in enumerate(tqdm(dynamic_env, ncols=50)):
|
2021-04-27 14:09:37 +02:00
|
|
|
xaxis_all = dataset[0][:, 0].numpy()
|
|
|
|
yaxis_all = dataset[1][:, 0].numpy()
|
2021-04-26 15:16:08 +02:00
|
|
|
current_data = dict()
|
|
|
|
current_data["lfna_xaxis_all"] = xaxis_all
|
|
|
|
current_data["lfna_yaxis_all"] = yaxis_all
|
|
|
|
|
|
|
|
# compute cl-min
|
2021-04-26 15:44:03 +02:00
|
|
|
cl_xaxis_min = find_min(cl_xaxis_min, xaxis_all.mean() - xaxis_all.std())
|
2021-04-26 18:10:39 +02:00
|
|
|
cl_xaxis_max = find_max(cl_xaxis_max, xaxis_all.mean() + xaxis_all.std())
|
2021-04-26 15:16:08 +02:00
|
|
|
all_data[timestamp] = current_data
|
|
|
|
|
2021-04-26 18:10:39 +02:00
|
|
|
global_cl_xaxis_all = np.arange(cl_xaxis_min, cl_xaxis_max, step=0.1)
|
|
|
|
global_cl_yaxis_all = cl_function.noise_call(global_cl_xaxis_all)
|
|
|
|
|
2021-04-26 15:16:08 +02:00
|
|
|
for idx, (timestamp, xdata) in enumerate(tqdm(all_data.items(), ncols=50)):
|
2021-04-23 07:15:39 +02:00
|
|
|
scatter_list = []
|
|
|
|
scatter_list.append(
|
|
|
|
{
|
2021-04-26 15:16:08 +02:00
|
|
|
"xaxis": xdata["lfna_xaxis_all"],
|
|
|
|
"yaxis": xdata["lfna_yaxis_all"],
|
2021-04-23 07:15:39 +02:00
|
|
|
"color": "k",
|
2021-04-29 17:37:50 +02:00
|
|
|
"linewidths": 15,
|
2021-04-23 07:15:39 +02:00
|
|
|
"alpha": 0.99,
|
2021-04-26 08:06:51 +02:00
|
|
|
"xlim": (-6, 6),
|
|
|
|
"ylim": (-40, 40),
|
|
|
|
"label": "LFNA",
|
2021-04-23 07:15:39 +02:00
|
|
|
}
|
|
|
|
)
|
2021-04-23 11:12:11 +02:00
|
|
|
|
2021-04-26 18:10:39 +02:00
|
|
|
cur_cl_xaxis_min = cl_xaxis_min
|
|
|
|
cur_cl_xaxis_max = cl_xaxis_min + (cl_xaxis_max - cl_xaxis_min) * (
|
|
|
|
idx + 1
|
|
|
|
) / len(all_data)
|
|
|
|
cl_xaxis_all = np.arange(cur_cl_xaxis_min, cur_cl_xaxis_max, step=0.01)
|
|
|
|
cl_yaxis_all = cl_function.noise_call(cl_xaxis_all, std=0.2)
|
2021-04-26 15:16:08 +02:00
|
|
|
|
2021-04-23 11:12:11 +02:00
|
|
|
scatter_list.append(
|
|
|
|
{
|
2021-04-26 08:06:51 +02:00
|
|
|
"xaxis": cl_xaxis_all,
|
|
|
|
"yaxis": cl_yaxis_all,
|
2021-04-26 18:10:39 +02:00
|
|
|
"color": "k",
|
2021-04-29 17:37:50 +02:00
|
|
|
"linewidths": 15,
|
2021-04-26 18:10:39 +02:00
|
|
|
"xlim": (round(cl_xaxis_min, 1), round(cl_xaxis_max, 1)),
|
2021-04-26 18:20:59 +02:00
|
|
|
"ylim": (-20, 6),
|
2021-04-26 08:06:51 +02:00
|
|
|
"alpha": 0.99,
|
|
|
|
"label": "Continual Learning",
|
2021-04-23 11:12:11 +02:00
|
|
|
}
|
|
|
|
)
|
2021-04-23 11:14:49 +02:00
|
|
|
|
2021-04-26 08:06:51 +02:00
|
|
|
draw_multi_fig(
|
2021-04-26 15:16:08 +02:00
|
|
|
save_dir,
|
2021-04-26 15:44:03 +02:00
|
|
|
idx,
|
2021-04-26 15:16:08 +02:00
|
|
|
scatter_list,
|
2021-04-26 18:10:39 +02:00
|
|
|
wh=(2200, 1800),
|
2021-04-26 15:44:03 +02:00
|
|
|
fig_title="Timestamp={:03d}".format(idx),
|
2021-04-26 08:06:51 +02:00
|
|
|
)
|
2021-04-23 07:15:39 +02:00
|
|
|
print("Save all figures into {:}".format(save_dir))
|
|
|
|
save_dir = save_dir.resolve()
|
2021-05-17 04:31:26 +02:00
|
|
|
base_cmd = (
|
|
|
|
"ffmpeg -y -i {xdir}/%04d.png -vf fps=1 -vf scale=2200:1800 -vb 5000k".format(
|
|
|
|
xdir=save_dir
|
|
|
|
)
|
2021-04-23 07:15:39 +02:00
|
|
|
)
|
2021-04-27 14:09:37 +02:00
|
|
|
video_cmd = "{:} -pix_fmt yuv420p {xdir}/compare-cl.mp4".format(
|
|
|
|
base_cmd, xdir=save_dir
|
|
|
|
)
|
2021-04-26 18:10:39 +02:00
|
|
|
print(video_cmd + "\n")
|
|
|
|
os.system(video_cmd)
|
2021-04-29 17:39:51 +02:00
|
|
|
os.system(
|
|
|
|
"{:} -pix_fmt yuv420p {xdir}/compare-cl.webm".format(base_cmd, xdir=save_dir)
|
|
|
|
)
|
2021-04-23 07:15:39 +02:00
|
|
|
|
|
|
|
|
2021-05-09 13:05:07 +02:00
|
|
|
def visualize_env(save_dir, version):
|
2021-04-28 17:56:25 +02:00
|
|
|
save_dir = Path(str(save_dir))
|
|
|
|
save_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
|
2021-05-09 13:05:07 +02:00
|
|
|
dynamic_env = get_synthetic_env(version=version)
|
2021-04-28 17:56:25 +02:00
|
|
|
min_t, max_t = dynamic_env.min_timestamp, dynamic_env.max_timestamp
|
|
|
|
for idx, (timestamp, (allx, ally)) in enumerate(tqdm(dynamic_env, ncols=50)):
|
|
|
|
dpi, width, height = 30, 1800, 1400
|
|
|
|
figsize = width / float(dpi), height / float(dpi)
|
|
|
|
LabelSize, LegendFontsize, font_gap = 80, 80, 5
|
|
|
|
fig = plt.figure(figsize=figsize)
|
|
|
|
|
|
|
|
cur_ax = fig.add_subplot(1, 1, 1)
|
|
|
|
allx, ally = allx[:, 0].numpy(), ally[:, 0].numpy()
|
2021-04-29 17:37:50 +02:00
|
|
|
plot_scatter(cur_ax, allx, ally, "k", 0.99, 15, "timestamp={:05d}".format(idx))
|
2021-04-28 17:56:25 +02:00
|
|
|
cur_ax.set_xlabel("X", fontsize=LabelSize)
|
|
|
|
cur_ax.set_ylabel("Y", rotation=0, fontsize=LabelSize)
|
|
|
|
for tick in cur_ax.xaxis.get_major_ticks():
|
|
|
|
tick.label.set_fontsize(LabelSize - font_gap)
|
|
|
|
tick.label.set_rotation(10)
|
|
|
|
for tick in cur_ax.yaxis.get_major_ticks():
|
|
|
|
tick.label.set_fontsize(LabelSize - font_gap)
|
2021-05-09 13:05:07 +02:00
|
|
|
if version == "v1":
|
|
|
|
cur_ax.set_xlim(-2, 2)
|
2021-05-09 13:23:18 +02:00
|
|
|
cur_ax.set_ylim(-8, 8)
|
2021-05-09 13:05:07 +02:00
|
|
|
elif version == "v2":
|
|
|
|
cur_ax.set_xlim(-10, 10)
|
|
|
|
cur_ax.set_ylim(-60, 60)
|
2021-04-28 17:56:25 +02:00
|
|
|
cur_ax.legend(loc=1, fontsize=LegendFontsize)
|
|
|
|
|
2021-05-09 13:05:07 +02:00
|
|
|
save_path = save_dir / "v{:}-{:05d}".format(version, idx)
|
2021-04-28 17:56:25 +02:00
|
|
|
fig.savefig(str(save_path) + ".pdf", dpi=dpi, bbox_inches="tight", format="pdf")
|
|
|
|
fig.savefig(str(save_path) + ".png", dpi=dpi, bbox_inches="tight", format="png")
|
|
|
|
plt.close("all")
|
|
|
|
save_dir = save_dir.resolve()
|
2021-05-09 17:36:55 +02:00
|
|
|
base_cmd = "ffmpeg -y -i {xdir}/v{version}-%05d.png -vf scale=1800:1400 -pix_fmt yuv420p -vb 5000k".format(
|
|
|
|
xdir=save_dir, version=version
|
2021-04-28 17:56:25 +02:00
|
|
|
)
|
2021-05-09 17:36:55 +02:00
|
|
|
print(base_cmd)
|
2021-05-09 13:05:07 +02:00
|
|
|
os.system("{:} {xdir}/env-{ver}.mp4".format(base_cmd, xdir=save_dir, ver=version))
|
|
|
|
os.system("{:} {xdir}/env-{ver}.webm".format(base_cmd, xdir=save_dir, ver=version))
|
2021-04-29 13:48:21 +02:00
|
|
|
|
|
|
|
|
2021-05-10 05:19:18 +02:00
|
|
|
def compare_algs(save_dir, version, alg_dir="./outputs/lfna-synthetic"):
|
2021-04-29 17:37:50 +02:00
|
|
|
save_dir = Path(str(save_dir))
|
2021-05-13 11:43:38 +02:00
|
|
|
for substr in ("pdf", "png"):
|
2021-05-13 15:33:34 +02:00
|
|
|
sub_save_dir = save_dir / substr
|
|
|
|
sub_save_dir.mkdir(parents=True, exist_ok=True)
|
2021-04-29 17:37:50 +02:00
|
|
|
|
|
|
|
dpi, width, height = 30, 3200, 2000
|
|
|
|
figsize = width / float(dpi), height / float(dpi)
|
|
|
|
LabelSize, LegendFontsize, font_gap = 80, 80, 5
|
|
|
|
|
2021-05-10 05:19:18 +02:00
|
|
|
cache_path = Path(alg_dir) / "env-{:}-info.pth".format(version)
|
2021-04-29 17:37:50 +02:00
|
|
|
assert cache_path.exists(), "{:} does not exist".format(cache_path)
|
|
|
|
env_info = torch.load(cache_path)
|
|
|
|
|
|
|
|
alg_name2dir = OrderedDict()
|
2021-05-13 11:43:38 +02:00
|
|
|
# alg_name2dir["Supervised Learning (History Data)"] = "use-all-past-data"
|
|
|
|
# alg_name2dir["MAML"] = "use-maml-s1"
|
|
|
|
# alg_name2dir["LFNA (fix init)"] = "lfna-fix-init"
|
2021-05-10 05:19:18 +02:00
|
|
|
if version == "v1":
|
2021-05-15 10:01:40 +02:00
|
|
|
# alg_name2dir["Optimal"] = "use-same-timestamp"
|
|
|
|
alg_name2dir["LFNA"] = "lfna-battle-v1-d16_16_16-e200"
|
|
|
|
alg_name2dir[
|
|
|
|
"Previous Timestamp"
|
|
|
|
] = "use-prev-timestamp-d16_e500_lr0.1-prev5-envv1"
|
2021-05-10 05:19:18 +02:00
|
|
|
else:
|
|
|
|
raise ValueError("Invalid version: {:}".format(version))
|
2021-05-15 10:01:40 +02:00
|
|
|
alg_name2all_containers = OrderedDict()
|
2021-05-07 08:27:15 +02:00
|
|
|
for idx_alg, (alg, xdir) in enumerate(alg_name2dir.items()):
|
2021-05-15 10:01:40 +02:00
|
|
|
ckp_path = Path(alg_dir) / str(xdir) / "final-ckp.pth"
|
2021-05-13 11:43:38 +02:00
|
|
|
xdata = torch.load(ckp_path, map_location="cpu")
|
2021-05-07 08:27:15 +02:00
|
|
|
alg_name2all_containers[alg] = xdata["w_container_per_epoch"]
|
|
|
|
# load the basic model
|
|
|
|
model = get_model(
|
2021-05-13 11:43:38 +02:00
|
|
|
dict(model_type="norm_mlp"),
|
2021-05-07 08:27:15 +02:00
|
|
|
input_dim=1,
|
|
|
|
output_dim=1,
|
2021-05-13 11:43:38 +02:00
|
|
|
hidden_dims=[16] * 2,
|
|
|
|
act_cls="gelu",
|
|
|
|
norm_cls="layer_norm_1d",
|
2021-05-07 08:27:15 +02:00
|
|
|
)
|
2021-04-29 17:37:50 +02:00
|
|
|
|
|
|
|
alg2xs, alg2ys = defaultdict(list), defaultdict(list)
|
2021-05-10 08:14:06 +02:00
|
|
|
colors = ["r", "g", "b", "m", "y"]
|
2021-04-29 17:37:50 +02:00
|
|
|
|
|
|
|
dynamic_env = env_info["dynamic_env"]
|
|
|
|
min_t, max_t = dynamic_env.min_timestamp, dynamic_env.max_timestamp
|
|
|
|
|
2021-05-15 10:01:40 +02:00
|
|
|
linewidths, skip = 10, 5
|
2021-04-29 17:37:50 +02:00
|
|
|
for idx, (timestamp, (ori_allx, ori_ally)) in enumerate(
|
|
|
|
tqdm(dynamic_env, ncols=50)
|
|
|
|
):
|
2021-05-15 10:01:40 +02:00
|
|
|
if idx <= skip:
|
2021-04-29 17:37:50 +02:00
|
|
|
continue
|
|
|
|
fig = plt.figure(figsize=figsize)
|
|
|
|
cur_ax = fig.add_subplot(2, 1, 1)
|
|
|
|
|
|
|
|
# the data
|
|
|
|
allx, ally = ori_allx[:, 0].numpy(), ori_ally[:, 0].numpy()
|
|
|
|
plot_scatter(cur_ax, allx, ally, "k", 0.99, linewidths, "Raw Data")
|
|
|
|
|
|
|
|
for idx_alg, (alg, xdir) in enumerate(alg_name2dir.items()):
|
|
|
|
with torch.no_grad():
|
2021-05-07 08:27:15 +02:00
|
|
|
# predicts = ckp_data["model"](ori_allx)
|
|
|
|
predicts = model.forward_with_container(
|
|
|
|
ori_allx, alg_name2all_containers[alg][idx]
|
|
|
|
)
|
2021-04-29 17:37:50 +02:00
|
|
|
predicts = predicts.cpu()
|
|
|
|
# keep data
|
|
|
|
metric = MSEMetric()
|
|
|
|
metric(predicts, ori_ally)
|
|
|
|
predicts = predicts.view(-1).numpy()
|
|
|
|
alg2xs[alg].append(idx)
|
2021-04-29 17:39:51 +02:00
|
|
|
alg2ys[alg].append(metric.get_info()["mse"])
|
2021-04-29 17:37:50 +02:00
|
|
|
plot_scatter(cur_ax, allx, predicts, colors[idx_alg], 0.99, linewidths, alg)
|
2021-04-29 13:48:21 +02:00
|
|
|
|
|
|
|
cur_ax.set_xlabel("X", fontsize=LabelSize)
|
|
|
|
cur_ax.set_ylabel("Y", rotation=0, fontsize=LabelSize)
|
|
|
|
for tick in cur_ax.xaxis.get_major_ticks():
|
|
|
|
tick.label.set_fontsize(LabelSize - font_gap)
|
|
|
|
tick.label.set_rotation(10)
|
|
|
|
for tick in cur_ax.yaxis.get_major_ticks():
|
|
|
|
tick.label.set_fontsize(LabelSize - font_gap)
|
2021-05-10 05:19:18 +02:00
|
|
|
if version == "v1":
|
|
|
|
cur_ax.set_xlim(-2, 2)
|
|
|
|
cur_ax.set_ylim(-8, 8)
|
|
|
|
elif version == "v2":
|
|
|
|
cur_ax.set_xlim(-10, 10)
|
|
|
|
cur_ax.set_ylim(-60, 60)
|
2021-04-29 13:48:21 +02:00
|
|
|
cur_ax.legend(loc=1, fontsize=LegendFontsize)
|
|
|
|
|
2021-04-29 17:37:50 +02:00
|
|
|
# the trajectory data
|
|
|
|
cur_ax = fig.add_subplot(2, 1, 2)
|
|
|
|
for idx_alg, (alg, xdir) in enumerate(alg_name2dir.items()):
|
|
|
|
# plot_scatter(cur_ax, alg2xs[alg], alg2ys[alg], olors[idx_alg], 0.99, linewidths, alg)
|
2021-04-29 17:39:51 +02:00
|
|
|
cur_ax.plot(
|
|
|
|
alg2xs[alg],
|
|
|
|
alg2ys[alg],
|
|
|
|
color=colors[idx_alg],
|
|
|
|
linestyle="-",
|
|
|
|
linewidth=5,
|
|
|
|
label=alg,
|
|
|
|
)
|
2021-04-29 17:37:50 +02:00
|
|
|
cur_ax.legend(loc=1, fontsize=LegendFontsize)
|
|
|
|
|
|
|
|
cur_ax.set_xlabel("Timestamp", fontsize=LabelSize)
|
|
|
|
cur_ax.set_ylabel("MSE", fontsize=LabelSize)
|
|
|
|
for tick in cur_ax.xaxis.get_major_ticks():
|
|
|
|
tick.label.set_fontsize(LabelSize - font_gap)
|
|
|
|
tick.label.set_rotation(10)
|
|
|
|
for tick in cur_ax.yaxis.get_major_ticks():
|
|
|
|
tick.label.set_fontsize(LabelSize - font_gap)
|
|
|
|
cur_ax.set_xlim(1, len(dynamic_env))
|
|
|
|
cur_ax.set_ylim(0, 10)
|
|
|
|
cur_ax.legend(loc=1, fontsize=LegendFontsize)
|
|
|
|
|
2021-05-15 10:01:40 +02:00
|
|
|
pdf_save_path = save_dir / "pdf" / "v{:}-{:05d}.pdf".format(version, idx - skip)
|
2021-05-13 11:43:38 +02:00
|
|
|
fig.savefig(str(pdf_save_path), dpi=dpi, bbox_inches="tight", format="pdf")
|
2021-05-15 10:01:40 +02:00
|
|
|
png_save_path = save_dir / "png" / "v{:}-{:05d}.png".format(version, idx - skip)
|
2021-05-13 11:43:38 +02:00
|
|
|
fig.savefig(str(png_save_path), dpi=dpi, bbox_inches="tight", format="png")
|
2021-04-29 13:48:21 +02:00
|
|
|
plt.close("all")
|
|
|
|
save_dir = save_dir.resolve()
|
2021-05-10 05:19:18 +02:00
|
|
|
base_cmd = "ffmpeg -y -i {xdir}/v{ver}-%05d.png -vf scale={w}:{h} -pix_fmt yuv420p -vb 5000k".format(
|
2021-05-13 11:43:38 +02:00
|
|
|
xdir=save_dir / "png", w=width, h=height, ver=version
|
2021-05-10 05:19:18 +02:00
|
|
|
)
|
|
|
|
os.system(
|
|
|
|
"{:} {xdir}/com-alg-{ver}.mp4".format(base_cmd, xdir=save_dir, ver=version)
|
|
|
|
)
|
|
|
|
os.system(
|
|
|
|
"{:} {xdir}/com-alg-{ver}.webm".format(base_cmd, xdir=save_dir, ver=version)
|
2021-04-29 13:48:21 +02:00
|
|
|
)
|
2021-04-28 17:56:25 +02:00
|
|
|
|
|
|
|
|
2021-04-23 07:15:39 +02:00
|
|
|
if __name__ == "__main__":
|
|
|
|
|
2021-04-26 08:06:51 +02:00
|
|
|
parser = argparse.ArgumentParser("Visualize synthetic data.")
|
2021-04-23 07:15:39 +02:00
|
|
|
parser.add_argument(
|
|
|
|
"--save_dir",
|
|
|
|
type=str,
|
|
|
|
default="./outputs/vis-synthetic",
|
|
|
|
help="The save directory.",
|
|
|
|
)
|
2021-05-13 11:43:38 +02:00
|
|
|
parser.add_argument(
|
|
|
|
"--env_version",
|
|
|
|
type=str,
|
|
|
|
required=True,
|
|
|
|
help="The synthetic enviornment version.",
|
|
|
|
)
|
2021-04-23 07:15:39 +02:00
|
|
|
args = parser.parse_args()
|
|
|
|
|
2021-05-10 05:19:18 +02:00
|
|
|
# visualize_env(os.path.join(args.save_dir, "vis-env"), "v1")
|
|
|
|
# visualize_env(os.path.join(args.save_dir, "vis-env"), "v2")
|
2021-05-13 11:43:38 +02:00
|
|
|
compare_algs(os.path.join(args.save_dir, "compare-alg"), args.env_version)
|
2021-04-29 13:48:21 +02:00
|
|
|
# compare_cl(os.path.join(args.save_dir, "compare-cl"))
|