autodl-projects/exps/LFNA/basic-maml.py

279 lines
9.7 KiB
Python
Raw Normal View History

2021-05-09 19:02:38 +02:00
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
#####################################################
2021-05-10 03:42:42 +02:00
# python exps/LFNA/basic-maml.py --env_version v1 --hidden_dim 16 --inner_step 5
# python exps/LFNA/basic-maml.py --env_version v2
2021-05-09 19:02:38 +02:00
#####################################################
import sys, time, copy, torch, random, argparse
from tqdm import tqdm
from copy import deepcopy
from pathlib import Path
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint
from log_utils import time_string
from log_utils import AverageMeter, convert_secs2time
from utils import split_str2indexes
from procedures.advanced_main import basic_train_fn, basic_eval_fn
from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric
from datasets.synthetic_core import get_synthetic_env
from models.xcore import get_model
from xlayers import super_core
from lfna_utils import lfna_setup, TimeData
class MAML:
"""A LFNA meta-model that uses the MLP as delta-net."""
2021-05-10 03:42:42 +02:00
def __init__(
self, network, criterion, epochs, meta_lr, inner_lr=0.01, inner_step=1
):
2021-05-09 19:02:38 +02:00
self.criterion = criterion
2021-05-10 03:42:42 +02:00
# self.container = container
self.network = network
2021-05-09 19:02:38 +02:00
self.meta_optimizer = torch.optim.Adam(
2021-05-10 03:42:42 +02:00
self.network.parameters(), lr=meta_lr, amsgrad=True
)
self.meta_lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
self.meta_optimizer,
2021-05-10 03:42:42 +02:00
milestones=[
int(epochs * 0.25),
int(epochs * 0.5),
int(epochs * 0.75),
],
gamma=0.3,
2021-05-09 19:02:38 +02:00
)
self.inner_lr = inner_lr
self.inner_step = inner_step
self._best_info = dict(state_dict=None, iepoch=None, score=None)
print("There are {:} weights.".format(self.network.get_w_container().numel()))
2021-05-09 19:02:38 +02:00
2021-05-10 03:42:42 +02:00
def adapt(self, dataset):
2021-05-09 19:02:38 +02:00
# create a container for the future timestamp
2021-05-10 03:42:42 +02:00
container = self.network.get_w_container()
2021-05-09 19:02:38 +02:00
2021-05-10 03:42:42 +02:00
for k in range(0, self.inner_step):
y_hat = self.network.forward_with_container(dataset.x, container)
loss = self.criterion(y_hat, dataset.y)
grads = torch.autograd.grad(loss, container.parameters())
container = container.additive([-self.inner_lr * grad for grad in grads])
return container
def predict(self, x, container=None):
if container is not None:
y_hat = self.network.forward_with_container(x, container)
else:
y_hat = self.network(x)
return y_hat
2021-05-09 19:02:38 +02:00
def step(self):
torch.nn.utils.clip_grad_norm_(self.network.parameters(), 1.0)
2021-05-09 19:02:38 +02:00
self.meta_optimizer.step()
2021-05-10 03:42:42 +02:00
self.meta_lr_scheduler.step()
2021-05-09 19:02:38 +02:00
def zero_grad(self):
self.meta_optimizer.zero_grad()
def load_state_dict(self, state_dict):
self.criterion.load_state_dict(state_dict["criterion"])
self.network.load_state_dict(state_dict["network"])
self.meta_optimizer.load_state_dict(state_dict["meta_optimizer"])
self.meta_lr_scheduler.load_state_dict(state_dict["meta_lr_scheduler"])
def save_best(self, iepoch, score):
2021-05-10 03:42:42 +02:00
if self._best_info["score"] is None or self._best_info["score"] < score:
state_dict = dict(
criterion=self.criterion.state_dict(),
network=self.network.state_dict(),
2021-05-10 03:42:42 +02:00
meta_optimizer=self.meta_optimizer.state_dict(),
meta_lr_scheduler=self.meta_lr_scheduler.state_dict(),
)
self._best_info["state_dict"] = state_dict
self._best_info["score"] = score
self._best_info["iepoch"] = iepoch
is_best = True
else:
is_best = False
return self._best_info, is_best
2021-05-10 03:42:42 +02:00
2021-05-09 19:02:38 +02:00
def main(args):
2021-05-10 03:42:42 +02:00
logger, env_info, model_kwargs = lfna_setup(args)
model = get_model(dict(model_type="simple_mlp"), **model_kwargs)
2021-05-09 19:02:38 +02:00
total_time = env_info["total"]
for i in range(total_time):
for xkey in ("timestamp", "x", "y"):
nkey = "{:}-{:}".format(i, xkey)
assert nkey in env_info, "{:} no in {:}".format(nkey, list(env_info.keys()))
train_time_bar = total_time // 2
criterion = torch.nn.MSELoss()
2021-05-10 03:42:42 +02:00
maml = MAML(
model, criterion, args.epochs, args.meta_lr, args.inner_lr, args.inner_step
)
2021-05-09 19:02:38 +02:00
# meta-training
per_epoch_time, start_time = AverageMeter(), time.time()
# for iepoch in range(args.epochs):
iepoch = 0
while iepoch < args.epochs:
2021-05-09 19:02:38 +02:00
need_time = "Time Left: {:}".format(
convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True)
)
logger.log(
"[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs)
+ need_time
)
maml.zero_grad()
batch_indexes, meta_losses = [], []
2021-05-09 19:02:38 +02:00
for ibatch in range(args.meta_batch):
sampled_timestamp = random.randint(0, train_time_bar)
batch_indexes.append("{:5d}".format(sampled_timestamp))
2021-05-09 19:02:38 +02:00
past_dataset = TimeData(
sampled_timestamp,
env_info["{:}-x".format(sampled_timestamp)],
env_info["{:}-y".format(sampled_timestamp)],
)
future_dataset = TimeData(
sampled_timestamp + 1,
env_info["{:}-x".format(sampled_timestamp + 1)],
env_info["{:}-y".format(sampled_timestamp + 1)],
)
future_container = maml.adapt(past_dataset)
2021-05-10 03:42:42 +02:00
future_y_hat = maml.predict(future_dataset.x, future_container)
future_loss = maml.criterion(future_y_hat, future_dataset.y)
meta_losses.append(future_loss)
meta_loss = torch.stack(meta_losses).mean()
2021-05-09 19:02:38 +02:00
meta_loss.backward()
2021-05-10 03:42:42 +02:00
maml.step()
2021-05-09 19:02:38 +02:00
logger.log(
"meta-loss: {:.4f} batch: {:}".format(
meta_loss.item(), ",".join(batch_indexes)
)
)
best_info, is_best = maml.save_best(iepoch, -meta_loss.item())
if is_best:
save_checkpoint(best_info, logger.path("best"), logger)
logger.log("Save the best into {:}".format(logger.path("best")))
if iepoch >= 10 and (
torch.isnan(meta_loss).item() or meta_loss.item() >= args.fail_thresh
):
xdata = torch.load(logger.path("best"))
maml.load_state_dict(xdata["state_dict"])
iepoch = xdata["iepoch"]
logger.log(
"The training failed, re-use the previous best epoch [{:}]".format(
iepoch
)
)
else:
iepoch = iepoch + 1
2021-05-09 19:02:38 +02:00
per_epoch_time.update(time.time() - start_time)
start_time = time.time()
w_container_per_epoch = dict()
for idx in range(1, env_info["total"]):
past_dataset = TimeData(
idx - 1,
env_info["{:}-x".format(idx - 1)],
env_info["{:}-y".format(idx - 1)],
)
current_container = maml.adapt(past_dataset)
w_container_per_epoch[idx] = current_container.no_grad_clone()
with torch.no_grad():
current_x = env_info["{:}-x".format(idx)]
current_y = env_info["{:}-y".format(idx)]
current_y_hat = maml.predict(current_x, w_container_per_epoch[idx])
current_loss = maml.criterion(current_y_hat, current_y)
logger.log(
"meta-test: [{:03d}] -> loss={:.4f}".format(idx, current_loss.item())
)
save_checkpoint(
{"w_container_per_epoch": w_container_per_epoch},
logger.path(None) / "final-ckp.pth",
logger,
)
2021-05-10 03:42:42 +02:00
2021-05-09 19:02:38 +02:00
logger.log("-" * 200 + "\n")
logger.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser("Use the data in the past.")
parser.add_argument(
"--save_dir",
type=str,
2021-05-09 19:05:00 +02:00
default="./outputs/lfna-synthetic/use-maml",
2021-05-09 19:02:38 +02:00
help="The checkpoint directory.",
)
parser.add_argument(
"--env_version",
type=str,
required=True,
help="The synthetic enviornment version.",
)
2021-05-09 19:05:00 +02:00
parser.add_argument(
"--hidden_dim",
type=int,
required=True,
help="The hidden dimension.",
)
2021-05-09 19:02:38 +02:00
parser.add_argument(
"--meta_lr",
type=float,
default=0.05,
2021-05-09 19:02:38 +02:00
help="The learning rate for the MAML optimizer (default is Adam)",
)
parser.add_argument(
"--fail_thresh",
type=float,
default=1000,
help="The threshold for the failure, which we reuse the previous best model",
)
2021-05-09 19:02:38 +02:00
parser.add_argument(
"--inner_lr",
type=float,
default=0.01,
help="The learning rate for the inner optimization",
)
parser.add_argument(
"--inner_step", type=int, default=1, help="The inner loop steps for MAML."
)
parser.add_argument(
"--meta_batch",
type=int,
2021-05-10 03:42:42 +02:00
default=10,
2021-05-09 19:02:38 +02:00
help="The batch size for the meta-model",
)
parser.add_argument(
"--epochs",
type=int,
default=1000,
help="The total number of epochs.",
)
parser.add_argument(
"--workers",
type=int,
default=4,
help="The number of data loading workers (default: 4)",
)
# Random Seed
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
args = parser.parse_args()
if args.rand_seed is None or args.rand_seed < 0:
args.rand_seed = random.randint(1, 100000)
assert args.save_dir is not None, "The save dir argument can not be None"
2021-05-10 03:42:42 +02:00
args.save_dir = "{:}-s{:}-{:}-d{:}".format(
args.save_dir, args.inner_step, args.env_version, args.hidden_dim
2021-05-09 19:05:00 +02:00
)
2021-05-09 19:02:38 +02:00
main(args)