82 lines
2.7 KiB
Python
82 lines
2.7 KiB
Python
|
#####################################################
|
||
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
||
|
#####################################################
|
||
|
import math
|
||
|
import abc
|
||
|
import numpy as np
|
||
|
from typing import List, Optional
|
||
|
import torch
|
||
|
import torch.utils.data as data
|
||
|
|
||
|
from .synthetic_utils import UnifiedSplit
|
||
|
|
||
|
|
||
|
class SyntheticDEnv(UnifiedSplit, data.Dataset):
|
||
|
"""The synethtic dynamic environment."""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
mean_generators: List[data.Dataset],
|
||
|
cov_generators: List[List[data.Dataset]],
|
||
|
num_per_task: int = 5000,
|
||
|
mode: Optional[str] = None,
|
||
|
):
|
||
|
self._ndim = len(mean_generators)
|
||
|
assert self._ndim == len(
|
||
|
cov_generators
|
||
|
), "length does not match {:} vs. {:}".format(self._ndim, len(cov_generators))
|
||
|
for cov_generator in cov_generators:
|
||
|
assert self._ndim == len(
|
||
|
cov_generator
|
||
|
), "length does not match {:} vs. {:}".format(
|
||
|
self._ndim, len(cov_generator)
|
||
|
)
|
||
|
self._num_per_task = num_per_task
|
||
|
self._total_num = len(mean_generators[0])
|
||
|
for mean_generator in mean_generators:
|
||
|
assert self._total_num == len(mean_generator)
|
||
|
for cov_generator in cov_generators:
|
||
|
for cov_g in cov_generator:
|
||
|
assert self._total_num == len(cov_g)
|
||
|
|
||
|
self._mean_generators = mean_generators
|
||
|
self._cov_generators = cov_generators
|
||
|
|
||
|
UnifiedSplit.__init__(self, self._total_num, mode)
|
||
|
|
||
|
def __iter__(self):
|
||
|
self._iter_num = 0
|
||
|
return self
|
||
|
|
||
|
def __next__(self):
|
||
|
if self._iter_num >= len(self):
|
||
|
raise StopIteration
|
||
|
self._iter_num += 1
|
||
|
return self.__getitem__(self._iter_num - 1)
|
||
|
|
||
|
def __getitem__(self, index):
|
||
|
assert 0 <= index < len(self), "{:} is not in [0, {:})".format(index, len(self))
|
||
|
index = self._indexes[index]
|
||
|
mean_list = [generator[index][-1] for generator in self._mean_generators]
|
||
|
cov_matrix = [
|
||
|
[cov_gen[index][-1] for cov_gen in cov_generator]
|
||
|
for cov_generator in self._cov_generators
|
||
|
]
|
||
|
|
||
|
dataset = np.random.multivariate_normal(
|
||
|
mean_list, cov_matrix, size=self._num_per_task
|
||
|
)
|
||
|
return index, torch.Tensor(dataset)
|
||
|
|
||
|
def __len__(self):
|
||
|
return len(self._indexes)
|
||
|
|
||
|
def __repr__(self):
|
||
|
return "{name}({cur_num:}/{total} elements, ndim={ndim}, num_per_task={num_per_task})".format(
|
||
|
name=self.__class__.__name__,
|
||
|
cur_num=len(self),
|
||
|
total=self._total_num,
|
||
|
ndim=self._ndim,
|
||
|
num_per_task=self._num_per_task,
|
||
|
)
|