2021-04-22 17:08:43 +02:00
|
|
|
#####################################################
|
|
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #
|
|
|
|
#####################################################
|
|
|
|
import math
|
|
|
|
import abc
|
|
|
|
import numpy as np
|
|
|
|
from typing import Optional
|
|
|
|
import torch
|
|
|
|
import torch.utils.data as data
|
|
|
|
|
|
|
|
from .math_base_funcs import QuadraticFunc, QuarticFunc
|
|
|
|
|
|
|
|
|
|
|
|
class UnifiedSplit:
|
|
|
|
"""A class to unify the split strategy."""
|
|
|
|
|
|
|
|
def __init__(self, total_num, mode):
|
|
|
|
# Training Set 60%
|
|
|
|
num_of_train = int(total_num * 0.6)
|
|
|
|
# Validation Set 20%
|
|
|
|
num_of_valid = int(total_num * 0.2)
|
|
|
|
# Test Set 20%
|
|
|
|
num_of_set = total_num - num_of_train - num_of_valid
|
|
|
|
all_indexes = list(range(total_num))
|
|
|
|
if mode is None:
|
|
|
|
self._indexes = all_indexes
|
|
|
|
elif mode.lower() in ("train", "training"):
|
|
|
|
self._indexes = all_indexes[:num_of_train]
|
|
|
|
elif mode.lower() in ("valid", "validation"):
|
|
|
|
self._indexes = all_indexes[num_of_train : num_of_train + num_of_valid]
|
|
|
|
elif mode.lower() in ("test", "testing"):
|
|
|
|
self._indexes = all_indexes[num_of_train + num_of_valid :]
|
|
|
|
else:
|
|
|
|
raise ValueError("Unkonwn mode of {:}".format(mode))
|
|
|
|
self._mode = mode
|
|
|
|
|
|
|
|
@property
|
|
|
|
def mode(self):
|
|
|
|
return self._mode
|
|
|
|
|
|
|
|
|
|
|
|
class SinGenerator(UnifiedSplit, data.Dataset):
|
|
|
|
"""The synethtic generator for the dynamically changing environment.
|
|
|
|
|
|
|
|
- x in [0, 1]
|
|
|
|
- y = amplitude-scale-of(x) * sin( period-phase-shift-of(x) )
|
|
|
|
- where
|
|
|
|
- the amplitude scale is a quadratic function of x
|
|
|
|
- the period-phase-shift is another quadratic function of x
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
num: int = 100,
|
|
|
|
num_sin_phase: int = 7,
|
|
|
|
min_amplitude: float = 1,
|
|
|
|
max_amplitude: float = 4,
|
|
|
|
phase_shift: float = 0,
|
|
|
|
mode: Optional[str] = None,
|
|
|
|
):
|
|
|
|
self._amplitude_scale = QuadraticFunc(
|
|
|
|
[(0, min_amplitude), (0.5, max_amplitude), (1, min_amplitude)]
|
|
|
|
)
|
|
|
|
|
|
|
|
self._num_sin_phase = num_sin_phase
|
|
|
|
self._interval = 1.0 / (float(num) - 1)
|
|
|
|
self._total_num = num
|
|
|
|
|
|
|
|
fitting_data = []
|
|
|
|
temp_max_scalar = 2 ** (num_sin_phase - 1)
|
|
|
|
for i in range(num_sin_phase):
|
|
|
|
value = (2 ** i) / temp_max_scalar
|
|
|
|
next_value = (2 ** (i + 1)) / temp_max_scalar
|
|
|
|
for _phase in (0, 0.25, 0.5, 0.75):
|
|
|
|
inter_value = value + (next_value - value) * _phase
|
|
|
|
fitting_data.append((inter_value, math.pi * (2 * i + _phase)))
|
|
|
|
self._period_phase_shift = QuarticFunc(fitting_data)
|
|
|
|
UnifiedSplit.__init__(self, self._total_num, mode)
|
2021-04-22 17:32:26 +02:00
|
|
|
self._transform = None
|
2021-04-22 17:08:43 +02:00
|
|
|
|
|
|
|
def __iter__(self):
|
|
|
|
self._iter_num = 0
|
|
|
|
return self
|
|
|
|
|
|
|
|
def __next__(self):
|
|
|
|
if self._iter_num >= len(self):
|
|
|
|
raise StopIteration
|
|
|
|
self._iter_num += 1
|
|
|
|
return self.__getitem__(self._iter_num - 1)
|
|
|
|
|
|
|
|
def set_transform(self, transform):
|
|
|
|
self._transform = transform
|
|
|
|
|
2021-04-22 17:32:26 +02:00
|
|
|
def transform(self, x):
|
|
|
|
if self._transform is None:
|
|
|
|
return x
|
|
|
|
else:
|
|
|
|
return self._transform(x)
|
|
|
|
|
2021-04-22 17:08:43 +02:00
|
|
|
def __getitem__(self, index):
|
|
|
|
assert 0 <= index < len(self), "{:} is not in [0, {:})".format(index, len(self))
|
|
|
|
index = self._indexes[index]
|
|
|
|
position = self._interval * index
|
2021-04-22 17:32:26 +02:00
|
|
|
value = self._amplitude_scale(position) * math.sin(
|
|
|
|
self._period_phase_shift(position)
|
2021-04-22 17:08:43 +02:00
|
|
|
)
|
2021-04-22 17:32:26 +02:00
|
|
|
return index, position, self.transform(value)
|
2021-04-22 17:08:43 +02:00
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return len(self._indexes)
|
|
|
|
|
|
|
|
def __repr__(self):
|
|
|
|
return (
|
|
|
|
"{name}({cur_num:}/{total} elements,\n"
|
|
|
|
"amplitude={amplitude},\n"
|
|
|
|
"period_phase_shift={period_phase_shift})".format(
|
|
|
|
name=self.__class__.__name__,
|
|
|
|
cur_num=len(self),
|
|
|
|
total=self._total_num,
|
|
|
|
amplitude=self._amplitude_scale,
|
|
|
|
period_phase_shift=self._period_phase_shift,
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
class ConstantGenerator(UnifiedSplit, data.Dataset):
|
|
|
|
"""The constant generator."""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
num: int = 100,
|
|
|
|
constant: float = 0.1,
|
|
|
|
mode: Optional[str] = None,
|
|
|
|
):
|
|
|
|
self._total_num = num
|
|
|
|
self._constant = constant
|
|
|
|
UnifiedSplit.__init__(self, self._total_num, mode)
|
|
|
|
|
|
|
|
def __iter__(self):
|
|
|
|
self._iter_num = 0
|
|
|
|
return self
|
|
|
|
|
|
|
|
def __next__(self):
|
|
|
|
if self._iter_num >= len(self):
|
|
|
|
raise StopIteration
|
|
|
|
self._iter_num += 1
|
|
|
|
return self.__getitem__(self._iter_num - 1)
|
|
|
|
|
|
|
|
def __getitem__(self, index):
|
|
|
|
assert 0 <= index < len(self), "{:} is not in [0, {:})".format(index, len(self))
|
|
|
|
index = self._indexes[index]
|
|
|
|
return index, index, self._constant
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return len(self._indexes)
|
|
|
|
|
|
|
|
def __repr__(self):
|
|
|
|
return "{name}({cur_num:}/{total} elements)".format(
|
|
|
|
name=self.__class__.__name__,
|
|
|
|
cur_num=len(self),
|
|
|
|
total=self._total_num,
|
|
|
|
)
|