autodl-projects/lib/tf_models/cell_searchs/search_model_gdas.py

100 lines
4.2 KiB
Python
Raw Normal View History

2020-01-05 12:19:38 +01:00
###########################################################################
# Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019 #
###########################################################################
import tensorflow as tf
import numpy as np
from copy import deepcopy
from ..cell_operations import ResNetBasicblock
2020-01-18 11:54:17 +01:00
from .search_cells import NAS201SearchCell as SearchCell
2020-01-05 12:19:38 +01:00
def sample_gumbel(shape, eps=1e-20):
U = tf.random.uniform(shape, minval=0, maxval=1)
return -tf.math.log(-tf.math.log(U + eps) + eps)
def gumbel_softmax(logits, temperature):
gumbel_softmax_sample = logits + sample_gumbel(tf.shape(logits))
y = tf.nn.softmax(gumbel_softmax_sample / temperature)
return y
class TinyNetworkGDAS(tf.keras.Model):
def __init__(self, C, N, max_nodes, num_classes, search_space, affine):
super(TinyNetworkGDAS, self).__init__()
self._C = C
self._layerN = N
self.max_nodes = max_nodes
self.stem = tf.keras.Sequential([
tf.keras.layers.Conv2D(16, 3, 1, padding='same', use_bias=False),
tf.keras.layers.BatchNormalization()], name='stem')
layer_channels = [C ] * N + [C*2 ] + [C*2 ] * N + [C*4 ] + [C*4 ] * N
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
C_prev, num_edge, edge2index = C, None, None
for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
cell_prefix = 'cell-{:03d}'.format(index)
#with tf.name_scope(cell_prefix) as scope:
if reduction:
cell = ResNetBasicblock(C_prev, C_curr, 2)
else:
cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space, affine)
if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index
else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges)
C_prev = cell.out_dim
setattr(self, cell_prefix, cell)
self.num_layers = len(layer_reductions)
self.op_names = deepcopy( search_space )
self.edge2index = edge2index
self.num_edge = num_edge
self.lastact = tf.keras.Sequential([
tf.keras.layers.BatchNormalization(),
tf.keras.layers.ReLU(),
tf.keras.layers.GlobalAvgPool2D(),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(num_classes, activation='softmax')], name='lastact')
#self.arch_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) )
arch_init = tf.random_normal_initializer(mean=0, stddev=0.001)
self.arch_parameters = tf.Variable(initial_value=arch_init(shape=(num_edge, len(search_space)), dtype='float32'), trainable=True, name='arch-encoding')
def get_alphas(self):
xlist = self.trainable_variables
return [x for x in xlist if 'arch-encoding' in x.name]
def get_weights(self):
xlist = self.trainable_variables
return [x for x in xlist if 'arch-encoding' not in x.name]
def get_np_alphas(self):
arch_nps = self.arch_parameters.numpy()
arch_ops = np.exp(arch_nps) / np.sum(np.exp(arch_nps), axis=-1, keepdims=True)
return arch_ops
def genotype(self):
genotypes, arch_nps = [], self.arch_parameters.numpy()
for i in range(1, self.max_nodes):
xlist = []
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
weights = arch_nps[ self.edge2index[node_str] ]
op_name = self.op_names[ weights.argmax().item() ]
xlist.append((op_name, j))
genotypes.append( tuple(xlist) )
return genotypes
#
def call(self, inputs, tau, training):
weightss = tf.cond(tau < 0, lambda: tf.nn.softmax(self.arch_parameters, axis=1),
lambda: gumbel_softmax(tf.math.log_softmax(self.arch_parameters, axis=1), tau))
feature = self.stem(inputs, training)
for idx in range(self.num_layers):
cell = getattr(self, 'cell-{:03d}'.format(idx))
if isinstance(cell, SearchCell):
feature = cell.call(feature, weightss, training)
else:
feature = cell(feature, training)
logits = self.lastact(feature, training)
return logits