autodl-projects/lib/procedures/q_exps.py

64 lines
2.1 KiB
Python
Raw Normal View History

2021-03-06 15:38:34 +01:00
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.02 #
#####################################################
import qlib
from qlib.utils import init_instance_by_config
from qlib.workflow import R
from qlib.utils import flatten_dict
from qlib.log import set_log_basic_config
def update_gpu(config, gpu):
config = config.copy()
if "task" in config and "GPU" in config["task"]["model"]:
config["task"]["model"]["GPU"] = gpu
elif "model" in config and "GPU" in config["model"]:
config["model"]["GPU"] = gpu
elif "GPU" in config:
config["GPU"] = gpu
return config
def update_market(config, market):
config = config.copy()
config["market"] = market
config["data_handler_config"]["instruments"] = market
return config
def run_exp(task_config, dataset, experiment_name, recorder_name, uri):
# model initiaiton
print("")
print("[{:}] - [{:}]: {:}".format(experiment_name, recorder_name, uri))
print("dataset={:}".format(dataset))
model = init_instance_by_config(task_config["model"])
# start exp
with R.start(experiment_name=experiment_name, recorder_name=recorder_name, uri=uri):
log_file = R.get_recorder().root_uri / "{:}.log".format(experiment_name)
set_log_basic_config(log_file)
# train model
R.log_params(**flatten_dict(task_config))
model.fit(dataset)
recorder = R.get_recorder()
R.save_objects(**{"model.pkl": model})
# generate records: prediction, backtest, and analysis
for record in task_config["record"]:
record = record.copy()
if record["class"] == "SignalRecord":
srconf = {"model": model, "dataset": dataset, "recorder": recorder}
record["kwargs"].update(srconf)
sr = init_instance_by_config(record)
sr.generate()
else:
rconf = {"recorder": recorder}
record["kwargs"].update(rconf)
ar = init_instance_by_config(record)
ar.generate()