123 lines
3.3 KiB
Python
123 lines
3.3 KiB
Python
|
import os
|
||
|
import torch
|
||
|
|
||
|
from collections import Counter
|
||
|
|
||
|
|
||
|
class Dictionary(object):
|
||
|
def __init__(self):
|
||
|
self.word2idx = {}
|
||
|
self.idx2word = []
|
||
|
self.counter = Counter()
|
||
|
self.total = 0
|
||
|
|
||
|
def add_word(self, word):
|
||
|
if word not in self.word2idx:
|
||
|
self.idx2word.append(word)
|
||
|
self.word2idx[word] = len(self.idx2word) - 1
|
||
|
token_id = self.word2idx[word]
|
||
|
self.counter[token_id] += 1
|
||
|
self.total += 1
|
||
|
return self.word2idx[word]
|
||
|
|
||
|
def __len__(self):
|
||
|
return len(self.idx2word)
|
||
|
|
||
|
|
||
|
class Corpus(object):
|
||
|
def __init__(self, path):
|
||
|
self.dictionary = Dictionary()
|
||
|
self.train = self.tokenize(os.path.join(path, 'train.txt'))
|
||
|
self.valid = self.tokenize(os.path.join(path, 'valid.txt'))
|
||
|
self.test = self.tokenize(os.path.join(path, 'test.txt'))
|
||
|
|
||
|
def tokenize(self, path):
|
||
|
"""Tokenizes a text file."""
|
||
|
assert os.path.exists(path)
|
||
|
# Add words to the dictionary
|
||
|
with open(path, 'r', encoding='utf-8') as f:
|
||
|
tokens = 0
|
||
|
for line in f:
|
||
|
words = line.split() + ['<eos>']
|
||
|
tokens += len(words)
|
||
|
for word in words:
|
||
|
self.dictionary.add_word(word)
|
||
|
|
||
|
# Tokenize file content
|
||
|
with open(path, 'r', encoding='utf-8') as f:
|
||
|
ids = torch.LongTensor(tokens)
|
||
|
token = 0
|
||
|
for line in f:
|
||
|
words = line.split() + ['<eos>']
|
||
|
for word in words:
|
||
|
ids[token] = self.dictionary.word2idx[word]
|
||
|
token += 1
|
||
|
|
||
|
return ids
|
||
|
|
||
|
class SentCorpus(object):
|
||
|
def __init__(self, path):
|
||
|
self.dictionary = Dictionary()
|
||
|
self.train = self.tokenize(os.path.join(path, 'train.txt'))
|
||
|
self.valid = self.tokenize(os.path.join(path, 'valid.txt'))
|
||
|
self.test = self.tokenize(os.path.join(path, 'test.txt'))
|
||
|
|
||
|
def tokenize(self, path):
|
||
|
"""Tokenizes a text file."""
|
||
|
assert os.path.exists(path)
|
||
|
# Add words to the dictionary
|
||
|
with open(path, 'r', encoding='utf-8') as f:
|
||
|
tokens = 0
|
||
|
for line in f:
|
||
|
words = line.split() + ['<eos>']
|
||
|
tokens += len(words)
|
||
|
for word in words:
|
||
|
self.dictionary.add_word(word)
|
||
|
|
||
|
# Tokenize file content
|
||
|
sents = []
|
||
|
with open(path, 'r', encoding='utf-8') as f:
|
||
|
for line in f:
|
||
|
if not line:
|
||
|
continue
|
||
|
words = line.split() + ['<eos>']
|
||
|
sent = torch.LongTensor(len(words))
|
||
|
for i, word in enumerate(words):
|
||
|
sent[i] = self.dictionary.word2idx[word]
|
||
|
sents.append(sent)
|
||
|
|
||
|
return sents
|
||
|
|
||
|
class BatchSentLoader(object):
|
||
|
def __init__(self, sents, batch_size, pad_id=0, cuda=False, volatile=False):
|
||
|
self.sents = sents
|
||
|
self.batch_size = batch_size
|
||
|
self.sort_sents = sorted(sents, key=lambda x: x.size(0))
|
||
|
self.cuda = cuda
|
||
|
self.volatile = volatile
|
||
|
self.pad_id = pad_id
|
||
|
|
||
|
def __next__(self):
|
||
|
if self.idx >= len(self.sort_sents):
|
||
|
raise StopIteration
|
||
|
|
||
|
batch_size = min(self.batch_size, len(self.sort_sents)-self.idx)
|
||
|
batch = self.sort_sents[self.idx:self.idx+batch_size]
|
||
|
max_len = max([s.size(0) for s in batch])
|
||
|
tensor = torch.LongTensor(max_len, batch_size).fill_(self.pad_id)
|
||
|
for i in range(len(batch)):
|
||
|
s = batch[i]
|
||
|
tensor[:s.size(0),i].copy_(s)
|
||
|
if self.cuda:
|
||
|
tensor = tensor.cuda()
|
||
|
|
||
|
self.idx += batch_size
|
||
|
|
||
|
return tensor
|
||
|
|
||
|
next = __next__
|
||
|
|
||
|
def __iter__(self):
|
||
|
self.idx = 0
|
||
|
return self
|