135 lines
4.3 KiB
Python
135 lines
4.3 KiB
Python
|
#####################################################
|
||
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
||
|
#####################################################
|
||
|
# python exps/LFNA/lfna-ttss-hpnet.py --env_version v1 --hidden_dim 16
|
||
|
#####################################################
|
||
|
import sys, time, copy, torch, random, argparse
|
||
|
from tqdm import tqdm
|
||
|
from copy import deepcopy
|
||
|
from pathlib import Path
|
||
|
|
||
|
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
|
||
|
if str(lib_dir) not in sys.path:
|
||
|
sys.path.insert(0, str(lib_dir))
|
||
|
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint
|
||
|
from log_utils import time_string
|
||
|
from log_utils import AverageMeter, convert_secs2time
|
||
|
|
||
|
from utils import split_str2indexes
|
||
|
|
||
|
from procedures.advanced_main import basic_train_fn, basic_eval_fn
|
||
|
from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric
|
||
|
from datasets.synthetic_core import get_synthetic_env
|
||
|
from models.xcore import get_model
|
||
|
from xlayers import super_core
|
||
|
|
||
|
|
||
|
from lfna_utils import lfna_setup, train_model, TimeData
|
||
|
from lfna_models import HyperNet_VX as HyperNet
|
||
|
|
||
|
|
||
|
def main(args):
|
||
|
logger, env_info, model_kwargs = lfna_setup(args)
|
||
|
dynamic_env = env_info["dynamic_env"]
|
||
|
model = get_model(dict(model_type="simple_mlp"), **model_kwargs)
|
||
|
|
||
|
total_time = env_info["total"]
|
||
|
for i in range(total_time):
|
||
|
for xkey in ("timestamp", "x", "y"):
|
||
|
nkey = "{:}-{:}".format(i, xkey)
|
||
|
assert nkey in env_info, "{:} no in {:}".format(nkey, list(env_info.keys()))
|
||
|
train_time_bar = total_time // 2
|
||
|
|
||
|
criterion = torch.nn.MSELoss()
|
||
|
logger.log("There are {:} weights.".format(model.get_w_container().numel()))
|
||
|
|
||
|
# pre-train the model
|
||
|
dataset = init_dataset = TimeData(0, env_info["0-x"], env_info["0-y"])
|
||
|
|
||
|
shape_container = model.get_w_container().to_shape_container()
|
||
|
hypernet = HyperNet(shape_container, 16)
|
||
|
print(hypernet)
|
||
|
|
||
|
optimizer = torch.optim.Adam(hypernet.parameters(), lr=args.init_lr, amsgrad=True)
|
||
|
|
||
|
best_loss, best_param = None, None
|
||
|
for _iepoch in range(args.epochs):
|
||
|
container = hypernet(None)
|
||
|
|
||
|
preds = model.forward_with_container(dataset.x, container)
|
||
|
optimizer.zero_grad()
|
||
|
loss = criterion(preds, dataset.y)
|
||
|
loss.backward()
|
||
|
optimizer.step()
|
||
|
# save best
|
||
|
if best_loss is None or best_loss > loss.item():
|
||
|
best_loss = loss.item()
|
||
|
best_param = copy.deepcopy(model.state_dict())
|
||
|
print("hyper-net : best={:.4f}".format(best_loss))
|
||
|
|
||
|
init_loss = train_model(model, init_dataset, args.init_lr, args.epochs)
|
||
|
logger.log("The pre-training loss is {:.4f}".format(init_loss))
|
||
|
|
||
|
print(model)
|
||
|
print(hypernet)
|
||
|
|
||
|
logger.log("-" * 200 + "\n")
|
||
|
logger.close()
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
parser = argparse.ArgumentParser("Use the data in the past.")
|
||
|
parser.add_argument(
|
||
|
"--save_dir",
|
||
|
type=str,
|
||
|
default="./outputs/lfna-synthetic/lfna-debug",
|
||
|
help="The checkpoint directory.",
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--env_version",
|
||
|
type=str,
|
||
|
required=True,
|
||
|
help="The synthetic enviornment version.",
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--hidden_dim",
|
||
|
type=int,
|
||
|
required=True,
|
||
|
help="The hidden dimension.",
|
||
|
)
|
||
|
#####
|
||
|
parser.add_argument(
|
||
|
"--init_lr",
|
||
|
type=float,
|
||
|
default=0.1,
|
||
|
help="The initial learning rate for the optimizer (default is Adam)",
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--meta_batch",
|
||
|
type=int,
|
||
|
default=32,
|
||
|
help="The batch size for the meta-model",
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--meta_seq",
|
||
|
type=int,
|
||
|
default=10,
|
||
|
help="The length of the sequence for meta-model.",
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--epochs",
|
||
|
type=int,
|
||
|
default=2000,
|
||
|
help="The total number of epochs.",
|
||
|
)
|
||
|
# Random Seed
|
||
|
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
|
||
|
args = parser.parse_args()
|
||
|
if args.rand_seed is None or args.rand_seed < 0:
|
||
|
args.rand_seed = random.randint(1, 100000)
|
||
|
assert args.save_dir is not None, "The save dir argument can not be None"
|
||
|
args.save_dir = "{:}-{:}-d{:}".format(
|
||
|
args.save_dir, args.env_version, args.hidden_dim
|
||
|
)
|
||
|
main(args)
|