autodl-projects/xautodl/xlayers/super_trade_stem.py

64 lines
2.3 KiB
Python
Raw Normal View History

2021-03-21 13:52:22 +01:00
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #
#####################################################
from __future__ import division
from __future__ import print_function
import math
from functools import partial
from typing import Optional, Text
import torch
import torch.nn as nn
import torch.nn.functional as F
2021-05-19 07:00:33 +02:00
from xautodl import spaces
2021-03-21 13:52:22 +01:00
from .super_linear import SuperLinear
from .super_module import SuperModule
from .super_module import IntSpaceType
class SuperAlphaEBDv1(SuperModule):
"""A simple layer to convert the raw trading data from 1-D to 2-D data and apply an FC layer."""
def __init__(self, d_feat: int, embed_dim: IntSpaceType):
super(SuperAlphaEBDv1, self).__init__()
self._d_feat = d_feat
self._embed_dim = embed_dim
self.proj = SuperLinear(d_feat, embed_dim)
@property
def embed_dim(self):
return spaces.get_max(self._embed_dim)
@property
def abstract_search_space(self):
root_node = spaces.VirtualNode(id(self))
space = self.proj.abstract_search_space
if not spaces.is_determined(space):
root_node.append("proj", space)
if not spaces.is_determined(self._embed_dim):
root_node.append("_embed_dim", self._embed_dim.abstract(reuse_last=True))
return root_node
def apply_candidate(self, abstract_child: spaces.VirtualNode):
super(SuperAlphaEBDv1, self).apply_candidate(abstract_child)
if "proj" in abstract_child:
self.proj.apply_candidate(abstract_child["proj"])
def forward_candidate(self, input: torch.Tensor) -> torch.Tensor:
x = input.reshape(len(input), self._d_feat, -1) # [N, F*T] -> [N, F, T]
x = x.permute(0, 2, 1) # [N, F, T] -> [N, T, F]
if not spaces.is_determined(self._embed_dim):
embed_dim = self.abstract_child["_embed_dim"].value
else:
embed_dim = spaces.get_determined_value(self._embed_dim)
out = self.proj(x) * math.sqrt(embed_dim)
return out
def forward_raw(self, input: torch.Tensor) -> torch.Tensor:
x = input.reshape(len(input), self._d_feat, -1) # [N, F*T] -> [N, F, T]
x = x.permute(0, 2, 1) # [N, F, T] -> [N, T, F]
out = self.proj(x) * math.sqrt(self.embed_dim)
return out