autodl-projects/lib/xlayers/super_module.py

243 lines
7.4 KiB
Python
Raw Normal View History

2021-03-18 09:02:55 +01:00
#####################################################
2021-03-20 08:56:37 +01:00
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #
2021-03-18 09:02:55 +01:00
#####################################################
import abc
import warnings
2021-03-20 08:56:37 +01:00
from typing import Optional, Union, Callable
import torch
2021-03-17 11:06:29 +01:00
import torch.nn as nn
2021-03-18 11:32:26 +01:00
from enum import Enum
2021-03-19 08:17:49 +01:00
import spaces
2021-03-20 08:56:37 +01:00
IntSpaceType = Union[int, spaces.Integer, spaces.Categorical]
BoolSpaceType = Union[bool, spaces.Categorical]
2021-03-18 11:32:26 +01:00
2021-03-23 12:13:51 +01:00
class LayerOrder(Enum):
"""This class defines the enumerations for order of operation in a residual or normalization-based layer."""
PreNorm = "pre-norm"
PostNorm = "post-norm"
2021-03-18 11:32:26 +01:00
class SuperRunMode(Enum):
"""This class defines the enumerations for Super Model Running Mode."""
FullModel = "fullmodel"
2021-03-19 08:17:49 +01:00
Candidate = "candidate"
2021-03-18 11:32:26 +01:00
Default = "fullmodel"
2021-03-17 11:06:29 +01:00
2021-05-06 10:38:58 +02:00
class TensorContainer:
"""A class to maintain both parameters and buffers for a model."""
def __init__(self):
self._names = []
self._tensors = []
self._param_or_buffers = []
self._name2index = dict()
2021-05-07 04:26:35 +02:00
def additive(self, tensors):
result = TensorContainer()
for index, name in enumerate(self._names):
new_tensor = self._tensors[index] + tensors[index]
result.append(name, new_tensor, self._param_or_buffers[index])
return result
def no_grad_clone(self):
result = TensorContainer()
with torch.no_grad():
for index, name in enumerate(self._names):
result.append(
name, self._tensors[index].clone(), self._param_or_buffers[index]
)
return result
2021-05-07 08:27:15 +02:00
def requires_grad_(self, requires_grad=True):
for tensor in self._tensors:
tensor.requires_grad_(requires_grad)
2021-05-07 04:26:35 +02:00
@property
def tensors(self):
return self._tensors
def flatten(self, tensors=None):
if tensors is None:
tensors = self._tensors
tensors = [tensor.view(-1) for tensor in tensors]
return torch.cat(tensors)
def unflatten(self, tensor):
tensors, s = [], 0
for raw_tensor in self._tensors:
length = raw_tensor.numel()
x = torch.reshape(tensor[s : s + length], shape=raw_tensor.shape)
tensors.append(x)
s += length
return tensors
2021-05-06 10:38:58 +02:00
def append(self, name, tensor, param_or_buffer):
if not isinstance(tensor, torch.Tensor):
raise TypeError(
"The input tensor must be torch.Tensor instead of {:}".format(
type(tensor)
)
)
self._names.append(name)
self._tensors.append(tensor)
self._param_or_buffers.append(param_or_buffer)
assert name not in self._name2index, "The [{:}] has already been added.".format(
name
)
self._name2index[name] = len(self._names) - 1
2021-05-07 04:26:35 +02:00
def query(self, name):
if not self.has(name):
raise ValueError(
"The {:} is not in {:}".format(name, list(self._name2index.keys()))
)
index = self._name2index[name]
return self._tensors[index]
def has(self, name):
return name in self._name2index
def has_prefix(self, prefix):
for name, idx in self._name2index.items():
if name.startswith(prefix):
return name
return False
2021-05-06 10:38:58 +02:00
def numel(self):
total = 0
for tensor in self._tensors:
total += tensor.numel()
return total
def __len__(self):
return len(self._names)
def __repr__(self):
return "{name}({num} tensors)".format(
name=self.__class__.__name__, num=len(self)
)
2021-03-18 13:15:50 +01:00
class SuperModule(abc.ABC, nn.Module):
2021-03-18 09:02:55 +01:00
"""This class equips the nn.Module class with the ability to apply AutoDL."""
def __init__(self):
super(SuperModule, self).__init__()
2021-03-18 13:15:50 +01:00
self._super_run_type = SuperRunMode.Default
2021-03-19 08:17:49 +01:00
self._abstract_child = None
2021-03-20 08:56:37 +01:00
self._verbose = False
2021-03-18 09:02:55 +01:00
2021-03-19 08:17:49 +01:00
def set_super_run_type(self, super_run_type):
def _reset_super_run(m):
if isinstance(m, SuperModule):
m._super_run_type = super_run_type
self.apply(_reset_super_run)
def add_module(self, name: str, module: Optional[torch.nn.Module]) -> None:
if not isinstance(module, SuperModule):
warnings.warn(
2021-04-23 11:14:49 +02:00
"Add {:}:{:} module, which is not SuperModule, into {:}".format(
name, module.__class__.__name__, self.__class__.__name__
)
+ "\n"
+ "It may cause some functions invalid."
)
super(SuperModule, self).add_module(name, module)
2021-03-20 08:56:37 +01:00
def apply_verbose(self, verbose):
def _reset_verbose(m):
if isinstance(m, SuperModule):
m._verbose = verbose
self.apply(_reset_verbose)
2021-03-19 16:57:23 +01:00
def apply_candidate(self, abstract_child):
2021-03-19 08:17:49 +01:00
if not isinstance(abstract_child, spaces.VirtualNode):
raise ValueError(
"Invalid abstract child program: {:}".format(abstract_child)
)
self._abstract_child = abstract_child
2021-05-07 08:27:15 +02:00
def get_w_container(self):
2021-05-06 10:38:58 +02:00
container = TensorContainer()
for name, param in self.named_parameters():
container.append(name, param, True)
for name, buf in self.named_buffers():
container.append(name, buf, False)
return container
2021-03-19 08:17:49 +01:00
@property
2021-03-18 09:02:55 +01:00
def abstract_search_space(self):
raise NotImplementedError
2021-03-18 11:32:26 +01:00
@property
def super_run_type(self):
return self._super_run_type
2021-03-19 08:17:49 +01:00
@property
def abstract_child(self):
return self._abstract_child
2021-03-20 08:56:37 +01:00
@property
def verbose(self):
return self._verbose
2021-03-18 11:32:26 +01:00
@abc.abstractmethod
def forward_raw(self, *inputs):
2021-03-19 08:17:49 +01:00
"""Use the largest candidate for forward. Similar to the original PyTorch model."""
raise NotImplementedError
@abc.abstractmethod
def forward_candidate(self, *inputs):
2021-03-18 11:32:26 +01:00
raise NotImplementedError
2021-03-20 08:56:37 +01:00
@property
def name_with_id(self):
return "name={:}, id={:}".format(self.__class__.__name__, id(self))
def get_shape_str(self, tensors):
if isinstance(tensors, (list, tuple)):
shapes = [self.get_shape_str(tensor) for tensor in tensors]
if len(shapes) == 1:
return shapes[0]
else:
return ", ".join(shapes)
elif isinstance(tensors, (torch.Tensor, nn.Parameter)):
return str(tuple(tensors.shape))
else:
raise TypeError("Invalid input type: {:}.".format(type(tensors)))
2021-03-18 11:32:26 +01:00
def forward(self, *inputs):
2021-03-20 08:56:37 +01:00
if self.verbose:
print(
"[{:}] inputs shape: {:}".format(
self.name_with_id, self.get_shape_str(inputs)
)
)
2021-03-18 11:32:26 +01:00
if self.super_run_type == SuperRunMode.FullModel:
2021-03-20 08:56:37 +01:00
outputs = self.forward_raw(*inputs)
2021-03-19 08:17:49 +01:00
elif self.super_run_type == SuperRunMode.Candidate:
2021-03-20 08:56:37 +01:00
outputs = self.forward_candidate(*inputs)
2021-03-18 11:32:26 +01:00
else:
raise ModeError(
"Unknown Super Model Run Mode: {:}".format(self.super_run_type)
)
2021-03-20 08:56:37 +01:00
if self.verbose:
print(
"[{:}] outputs shape: {:}".format(
self.name_with_id, self.get_shape_str(outputs)
)
)
return outputs
2021-05-07 04:26:35 +02:00
def forward_with_container(self, inputs, container, prefix=[]):
raise NotImplementedError